Rheology in Pharmaceutical Sciences

  • Johanna Aho
  • Søren Hvidt
  • Stefania BaldursdottirEmail author
Part of the Advances in Delivery Science and Technology book series (ADST)


Rheology is the science of flow and deformation of matter. Particularly gels and non-Newtonian fluids, which exhibit complex flow behavior, are frequently encountered in pharmaceutical engineering and manufacturing, or when dealing with various in vivo fluids. Therefore understanding rheology is important, and the ability to use rheological characterization tools is of great importance for any pharmaceutical scientist involved in the field. Flow can be generated by shear or extensional deformations, or a combination of both. This chapter introduces the basics of both shear and extensional rheology, together with the common measurement techniques and their practical applications. Examples of the use of rheological techniques in the pharmaceutical field, as well as other closely related fields such as food and polymer science, are also given.


Elasticity Extensional rheology Interfacial rheology Oscillatory shear deformation Polymer melts and solutions Rheology Steady shear flow Viscoelasticity Viscosity 


  1. Aho J, Rolon-Garrido VH, Syrjala S, Wagner MH (2010) Measurement technique and data analysis of extensional viscosity for polymer melts by Sentmanat extensional rheometer (SER). Rheol Acta 49(4):359–370. doi: 10.1007/s00397-010-0439-8 CrossRefGoogle Scholar
  2. Allen A, Cunliffe WJ, Pearson JP, Sellers LA, Ward R (1984) Studies on gastrointestinal mucus. Scand J Gastroenterol Suppl 93:101–113PubMedGoogle Scholar
  3. Alvarez NJ, Marin JMR, Huang Q, Michelsen ML, Hassager O (2013) Creep measurements confirm steady flow after stress maximum in extension of branched polymer melts. Phys Rev Lett 110(16):168301. doi: 10.1103/Physrevlett.110.168301 PubMedCrossRefGoogle Scholar
  4. Anna SL, McKinley GH (2001) Elasto-capillary thinning and breakup of model elastic liquids. J Rheol 45(1):115–138. doi: 10.1122/1.1332389 CrossRefGoogle Scholar
  5. Antoniou E, Alexandridis P (2010) Polymer conformation in mixed aqueous-polar organic solvents. Eur Polym J 46(2):324–335. doi: 10.1016/j.eurpolymj.2009.10.005 CrossRefGoogle Scholar
  6. Anwar S, Fell JT, Dickinson PA (2005) An investigation of the disintegration of tablets in biorelevant media. Int J Pharm 290(1–2):121–127. doi: 10.1016/j.ijpharm.2004.11.023 PubMedCrossRefGoogle Scholar
  7. Atuma C, Strugala V, Allen A, Holm L (2001) The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo. Am J Physiol 280(5):G922–G929Google Scholar
  8. Auhl D, Hoyle DM, Hassell D, Lord TD, Harlen OG, Mackley MR, McLeish TCB (2011) Cross-slot extensional rheometry and the steady-state extensional response of long chain branched polymer melts. J Rheol 55(4):875–900. doi: 10.1122/1.3589972 CrossRefGoogle Scholar
  9. Bach A, Rasmussen HK, Hassager O (2003) Extensional viscosity for polymer melts measured in the filament stretching rheometer. J Rheol 47(2):429–441. doi: 10.1122/1.1545072 CrossRefGoogle Scholar
  10. Bagley EB (1957) End corrections in the capillary flow of polyethylene. J Appl Phys 28(5):624–627. doi: 10.1063/1.1722814 CrossRefGoogle Scholar
  11. Bain MK, Maity D, Bhowmick B, Mondal D, Mollick MMR, Sarkar G, Bhowmik M, Rana D, Chattopadhyay D (2013) Effect of PEG–salt mixture on the gelation temperature and morphology of MC gel for sustained delivery of drug. Carbohydr Polym 91(2):529–536. doi: 10.1016/j.carbpol.2012.08.040 PubMedCrossRefGoogle Scholar
  12. Baldursdottir S, Kjoniksen A-L (2005) Rheological characterization and turbidity of riboflavin-photosensitized changes in alginate/GDL systems. Eur J Pharm Biopharm 59(3):501–510PubMedCrossRefGoogle Scholar
  13. Barnes HA (2004) The rheology of emulsions. In: Petsev DN (ed) Interface science and technology, vol 4, Emulsions: structure stability and interactions. Elsevier, LondonGoogle Scholar
  14. Barry BW, Meyer MC (1979a) The rheological properties of carbopol gels. I. Continuous shear and creep properties of carbopol gels. Int J Pharm 2(1):1–25. doi: 10.1016/0378-5173(79)90025-5 CrossRefGoogle Scholar
  15. Barry BW, Meyer MC (1979b) The rheological properties of carbopol gels II. Oscillatory properties of carbopol gels. Int J Pharm 2(1):27–40. doi: 10.1016/0378-5173(79)90026-7 CrossRefGoogle Scholar
  16. Bhaskar KR, Gong D, Bansil R, Pajevic S, Hamilton JA, Turner BS, LaMont JT (1991) Profound increase in viscosity and aggregation of pig gastric mucin at low pH. Am J Physiol 261(5):G827–G832PubMedGoogle Scholar
  17. Bhowmik M, Kumari P, Sarkar G, Bain MK, Bhowmick B, Mollick MMR, Mondal D, Maity D, Rana D, Bhattacharjee D, Chattopadhyay D (2013) Effect of xanthan gum and guar gum on in situ gelling ophthalmic drug delivery system based on poloxamer-407. Int J Biol Macromol 62:117–123. doi: 10.1016/j.ijbiomac.2013.08.024 PubMedCrossRefGoogle Scholar
  18. Binding DM (1988) An approximate analysis for contraction and converging flows. J Nonnewton Fluid Mech 27(2):173–189. doi: 10.1016/0377-0257(88)85012-2 CrossRefGoogle Scholar
  19. Boegh M, Baldursdóttir SG, Müllertz A, Nielsen HM (2014) Property profiling of biosimilar mucus in a novel mucus-containing in vitro model for assessment of intestinal drug absorption. Eur J Pharm Biopharm 87(2):227–35. doi: 10.1016/j.ejpb.2014.01.001 PubMedCrossRefGoogle Scholar
  20. Bohr A, Yang M, Baldursdottir S, Kristensen J, Dyas M, Stride E, Edirisinghe M (2012) Particle formation and characteristics of Celecoxib-loaded poly(lactic-co-glycolic acid) microparticles prepared in different solvents using electrospraying. Polymer 53(15):3220–3229. doi: 10.1016/j.polymer.2012.05.002 CrossRefGoogle Scholar
  21. Bollaın C, Collar C (2004) Dough viscoelastic response of hydrocolloid/enzyme/surfactant blends assessed by uni- and bi-axial extension measurements. Food Hydrocolloids 18(3):499–507. doi: 10.1016/j.foodhyd.2003.08.007 CrossRefGoogle Scholar
  22. Bourbon AI, Pinheiro AC, Ribeiro C, Miranda C, Maia JM, Teixeira JA, Vicente AA (2010) Characterization of galactomannans extracted from seeds of Gleditsia triacanthos and Sophora japonica through shear and extensional rheology: comparison with guar gum and locust bean gum. Food Hydrocolloids 24(2–3):184–192. doi: 10.1016/j.foodhyd.2009.09.004 CrossRefGoogle Scholar
  23. Brandsma RL, Rizvi SSH (2001) Effect of manufacturing treatments on the rheological character of Mozzarella cheese made from microfiltration retentate depleted of whey proteins1. Int J Food Sci Technol 36(6):601–610. doi: 10.1046/j.1365-2621.2001.00506.x CrossRefGoogle Scholar
  24. Broughton-Head VJ, Shur J, Carroll MP, Smith JR, Shute JK (2007) Unfractionated heparin reduces the elasticity of sputum from patients with cystic fibrosis. Am J Physiol 293(5):L1240–L1249. doi: 10.1152/ajplung.00206.2007 Google Scholar
  25. Cao X, Bansil R, Bhaskar KR, Turner BS, LaMont JT, Niu N, Afdhal NH (1999) pH-dependent conformational change of gastric mucin leads to sol-gel transition. Biophys J 76(3):1250–1258. doi: 10.1016/S0006-3495(99)77288-7 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Celli JP, Turner BS, Afdhal NH, Ewoldt RH, McKinley GH, Bansil R, Erramilli S (2007) Rheology of gastric mucin exhibits a pH-dependent sol-gel transition. Biomacromolecules 8(5):1580–1586. doi: 10.1021/bm0609691 PubMedCrossRefGoogle Scholar
  27. Chatraei S, Macosko CW, Winter HH (1981) Lubricated squeezing flow–a new biaxial extensional rheometer. J Rheol 25(4):433–443. doi: 10.1122/1.549648 CrossRefGoogle Scholar
  28. Cogswell FN (1972) Converging flow of polymer melts in extrusion dies. Polym Eng Sci 12(1):64. doi: 10.1002/pen.760120111 CrossRefGoogle Scholar
  29. Cone RA (2009) Barrier properties of mucus. Adv Drug Delivery Rev 61(2):75–85. doi: 10.1016/j.addr.2008.09.008 CrossRefGoogle Scholar
  30. Critchfield AS, Yao G, Jaishankar A, Friedlander RS, Lieleg O, Doyle PS, McKinley G, House M, Ribbeck K (2013) Cervical mucus properties stratify risk for Preterm birth. PLoS One 8(8), e69528. doi: 10.1371/journal.pone.0069528 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Cu Y, Saltzman WM (2009) Mathematical modeling of molecular diffusion through mucus. Adv Drug Delivery Rev 61(2):101–114. doi: 10.1016/j.addr.2008.09.006 CrossRefGoogle Scholar
  32. Dealy JM, Larson RG (2006) Structure and rheology of molten polymers—from structure to flow behavior and back again. Carl Hanser, MunichCrossRefGoogle Scholar
  33. Dealy JM, Wissbrun KF (1999) Melt rheology and its role in plastics processing—theory and applications. Kluwer Academic, DordrechtGoogle Scholar
  34. Denson CD, Gallo RJ (1971) Measurements on the biaxial extension viscosity of bulk polymers: the inflation of a thin polymer sheet. Polym Eng Sci 11(2):174–176. doi: 10.1002/pen.760110213 CrossRefGoogle Scholar
  35. Dott C, Tyagi C, Tomar LK, Choonara YE, Kumar P, du Toit LC, Pillay V (2013) A mucoadhesive electrospun nanofibrous matrix for rapid oramucosal drug delivery. J Nanomater 2013:924947. doi: 10.1155/2013/924947 CrossRefGoogle Scholar
  36. Eccleston GM, Hudson NE (2000) The use of a capillary rheometer to determine the shear and extensional flow behaviour of nasal spray suspensions. J Pharm Pharmacol 52(10):1223–1232. doi: 10.1211/0022357001777351 PubMedCrossRefGoogle Scholar
  37. Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New YorkGoogle Scholar
  38. Franck A. 2007. The ARES-EVF: Option for measuring extensional viscosity of polymer melts.
  39. Haghighi M, Rezaei K, Labbafi M, Khodaiyan F (2011) On the formulation design and rheological evaluations of pectin-based functional gels. J Food Sci 76(1):E15–E22. doi: 10.1111/j.1750-3841.2010.01876.x PubMedCrossRefGoogle Scholar
  40. Haward SJ (2014) Characterization of hyaluronic acid and synovial fluid in stagnation point elongational flow. Biopolymers 101(3):287–305. doi: 10.1002/Bip.22357 PubMedCrossRefGoogle Scholar
  41. Haward S, Odell J, Berry M, Hall T (2011) Extensional rheology of human saliva. Rheol Acta 50(11–12):869–879. doi: 10.1007/s00397-010-0494-1 CrossRefGoogle Scholar
  42. Haward SJ, Ober TJ, Oliveira MSN, Alves MA, McKinley GH (2012) Extensional rheology and elastic instabilities of a wormlike micellar solution in a microfluidic cross-slot device. Soft Matter 8(2):536–555. doi: 10.1039/C1sm06494k CrossRefGoogle Scholar
  43. Horter D, Dressman JB (2001) Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv Drug Delivery Rev 46(1–3):75–87. doi: 10.1016/S0169-409X(00)00130-7 CrossRefGoogle Scholar
  44. Humphrey SP, Williamson RT (2001) A review of saliva: normal composition, flow, and function. J Prosthet Dent 85(2):162–169PubMedCrossRefGoogle Scholar
  45. Kaschta JM, Münstedt H (2008) Measuring the elongational properties of polymer melts—a simple task? Paper presented at The XVth International Congress on Rheology August 3–8, 2008—Monterey, CaliforniaGoogle Scholar
  46. Kirkham S, Kolsum U, Rousseau K, Singh D, Vestbo J, Thornton DJ (2008) MUC5B Is the major mucin in the gel phase of sputum in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 178(10):1033–1039. doi: 10.1164/rccm.200803-391OC PubMedPubMedCentralCrossRefGoogle Scholar
  47. Kocevar-Nared J, Kristl J, Smid-Korbar J (1997) Comparative rheological investigation of crude gastric mucin and natural gastric mucus. Biomaterials 18(9):677–681. doi: 10.1016/S0142-9612(96)00180-9 PubMedCrossRefGoogle Scholar
  48. Kojarunchitt T, Hook S, Rizwan S, Rades T, Baldursdottir S (2011) Development and characterization of modified poloxamer 407 thermoresponsive depot systems containing cubosomes. Int J Pharm 408(1–2):20–26. doi: 10.1016/j.ijpharm.2011.01.037 PubMedCrossRefGoogle Scholar
  49. Kompani M, Venerus DC (2000) Equibiaxial extensional flow of polymer melts via lubricated squeezing flow. I. Experimental analysis. Rheol Acta 39(5):444–451. doi: 10.1007/s003970000106 CrossRefGoogle Scholar
  50. Korhonen M, Hellen L, Hirvonen J, Yliruusi J (2001) Rheological properties of creams with four different surfactant combinations - effect of storage time and conditions. Int J Pharm 221(1–2):187–196. doi: 10.1016/S0378-5173(01)00675-5 PubMedCrossRefGoogle Scholar
  51. Lazaridou A, Duta D, Papageorgiou M, Belc N, Biliaderis CG (2007) Effects of hydrocolloids on dough rheology and bread quality parameters in gluten-free formulations. J Food Eng 79(3):1033–1047. doi: 10.1016/j.jfoodeng.2006.03.032 CrossRefGoogle Scholar
  52. Mackley MR, Tock C, Anthony R, Butler SA, Chapman G, Vadillo DC (2013) The rheology and processing behavior of starch and gum-based dysphagia thickeners. J Rheol 57(6):1533–1553. doi: 10.1122/1.4820494 CrossRefGoogle Scholar
  53. Macosko CW, Ocansey MA, Winter HH (1982) Steady planar extension with lubricated dies. J Nonnewton Fluid Mech 11(3–4):301–316. doi: 10.1016/0377-0257(82)80037-2 CrossRefGoogle Scholar
  54. Mao Y, McClements DJ (2011) Modulation of bulk physicochemical properties of emulsions by hetero-aggregation of oppositely charged protein-coated lipid droplets. Food Hydrocolloids 25(5):1201–1209. doi: 10.1016/j.foodhyd.2010.11.007 CrossRefGoogle Scholar
  55. Mao Y, McClements DJ (2012a) Fabrication of functional micro-clusters by heteroaggregation of oppositely charged protein-coated lipid droplets. Food Hydrocolloids 27(1):80–90. doi: 10.1016/j.foodhyd.2011.08.013 CrossRefGoogle Scholar
  56. Mao Y, McClements DJ (2012b) Modulation of emulsion rheology through electrostatic heteroaggregation of oppositely charged lipid droplets: influence of particle size and emulsifier content. J Colloid Interface Sci 380(1):60–66. doi: 10.1016/j.jcis.2012.05.007 PubMedCrossRefGoogle Scholar
  57. Morrison FA (2001) Understanding rheology. Oxford University Press, New YorkGoogle Scholar
  58. Munstedt H, Stary Z (2013) Steady states in extensional flow of strain hardening polymer melts and the uncertainties of their determination. J Rheol 57(4):1065–1077. doi: 10.1122/1.4803932 CrossRefGoogle Scholar
  59. Nelson B (2003) Capillary rheometry. In: Lobo HB, Bonilla JV (eds) Handbook in plastics analysis. Marcel Dekker, New YorkGoogle Scholar
  60. Ober TJ, Haward SJ, Pipe CJ, Soulages J, McKinley GH (2013) Microfluidic extensional rheometry using a hyperbolic contraction geometry. Rheol Acta 52(6):529–546. doi: 10.1007/s00397-013-0701-y CrossRefGoogle Scholar
  61. Olmsted SS, Meyn LA, Rohan LC, Hillier SL (2003) Glycosidase and proteinase activity of anaerobic gram-negative bacteria isolated from women with bacterial vaginosis. Sex Transm Dis 30(3):257–261PubMedCrossRefGoogle Scholar
  62. Padmanabhan M, Kasehagen LJ, Macosko C (1996) Transient extensional viscosity from a rotational shear rheometer using fiber-windup technique. J Rheol 40(4):473–481. doi: 10.1122/1.550792 CrossRefGoogle Scholar
  63. Parojcic J, Vasiljevic D, Ibric S, Djuric Z (2008) Tablet disintegration and drug dissolution in viscous media: paracetamol IR tablets. Int J Pharm 355(1–2):93–99PubMedCrossRefGoogle Scholar
  64. Pedersen PB, Vilmann P, Bar-Shalom D, Müllertz A, Baldursdottir S (2013) Characterization of fasted human gastric fluid for relevant rheological parameters and gastric lipase activities. Eur J Pharm Biopharm 85(3):958–965. doi: 10.1016/j.ejpb.2013.05.007 PubMedCrossRefGoogle Scholar
  65. Pipe CJ, Majmudar TS, McKinley GH (2008) High shear rate viscometry. Rheol Acta 47(5–6):621–642. doi: 10.1007/s00397-008-0268-1 CrossRefGoogle Scholar
  66. Radwan A, Amidon GL, Langguth P (2012) Mechanistic investigation of food effect on disintegration and dissolution of BCS class III compound solid formulations: the importance of viscosity. Biopharm Drug Dispos 33(7):403–416. doi: 10.1002/bdd.1798 PubMedCrossRefGoogle Scholar
  67. Raphaelides SN, Gioldasi A (2005) Elongational flow studies of set yogurt. J Food Eng 70(4):538–545. doi: 10.1016/j.jfoodeng.2004.10.008 CrossRefGoogle Scholar
  68. Rubin BK (2007) Mucus structure and properties in cystic fibrosis. Paediatr Respir Rev 8(1):4–7. doi: 10.1016/j.prrv.2007.02.004 PubMedCrossRefGoogle Scholar
  69. Saiki Y, Prestidge CA, Horn RG (2007) Effects of droplet deformability on emulsion rheology. Colloids Surfaces A 299 (1–3):65-72. doi:
  70. Schmitt C, Kolodziejczyk E (2009) Gums and stabilizers for the food industry, vol 15. Royal Society of Chemistry, Cambridge, UKGoogle Scholar
  71. Sentmanat ML (2004) Miniature universal testing platform: from extensional melt rheology to solid-state deformation behavior. Rheol Acta 43(6):657–669. doi: 10.1007/s00397-004-0405-4 CrossRefGoogle Scholar
  72. Sokolovskaya E, Barner L, Braese S (2014) Lahann J (2014) Synthesis and On-Demand Gelation of Multifunctional Poly(ethylene glycol)-Based Polymers. Macromol Rapid Commun Macromol Rapid Commun 35(8):780–786PubMedCrossRefGoogle Scholar
  73. Son WK, Youk JH, Lee TS, Park WH (2004) The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers. Polymer 45(9):2959–2966. doi: 10.1016/j.polymer.2004.03.006 CrossRefGoogle Scholar
  74. Sridhar T, Tirtaatmadja V, Nguyen DA, Gupta RK (1991) Measurement of extensional viscosity of polymer-solutions. J Nonnewton Fluid Mech 40(3):271–280. doi: 10.1016/0377-0257(91)87012-M CrossRefGoogle Scholar
  75. Stadler FJ, Friedrich T, Kraus K, Tieke B, Bailly C (2013) Elongational rheology of NIPAM-based hydrogels. Rheol Acta 52(5):413–423. doi: 10.1007/s00397-013-0690-x CrossRefGoogle Scholar
  76. Stokes JR, Davies GA (2007) Viscoelasticity of human whole saliva collected after acid and mechanical stimulation. Biorheology 44(3):141–160PubMedGoogle Scholar
  77. Svrcinova P, Kharlamov A, Filip P (2009) On the measurement of elongational viscosity of polyethylene materials. Acta Technica 54:49–57Google Scholar
  78. Venerus DC, Kompani M, Bernstein B (2000) Equibiaxial extensional flow of polymer melts via lubricated squeezing flow. II. Flow modeling. Rheol Acta 39(6):574–582. doi: 10.1007/s003970000107 CrossRefGoogle Scholar
  79. Vinod KR, Vasa S, Sandhya S (2010) Emerging trends in pharmaceutical polymers. Pharm Lett 2(1):172–180Google Scholar
  80. Vlachopoulos J, Strutt D (2003) The role of rheology in polymer extrusion. Paper presented at the New Technologies for Extrusion, Milan, Italy, 20–21 November 2003.
  81. Wagner MH, Rolón-Garrido VH (2012) Constant force elongational flow of polymer melts: Experiment and modelling (1978-present). J Rheol 56(5):1279. doi: 10.1122/1.4732157 CrossRefGoogle Scholar
  82. Wang Y-Y, Lai SK, Ensign LM, Zhong W, Cone R, Hanes J (2013) The microstructure and bulk rheology of human cervicovaginal mucus are remarkably resistant to changes in pH. Biomacromolecules 14(12):4429–4435. doi: 10.1021/bm401356q PubMedPubMedCentralCrossRefGoogle Scholar
  83. Warburton B, Davis SS (1969) The oscillatory testing of pharmaceutical semi-solids using a transfer function analyser. Rheol Acta 8(2):205–214. doi: 10.1007/BF01984660 CrossRefGoogle Scholar
  84. Wine JJ, Joo NS (2004) Submucosal glands and airway defense. Proc Am Thorac Soc 1(1):47–53. doi: 10.1513/pats.2306015 PubMedCrossRefGoogle Scholar
  85. Yovanoudi M, Dimitreli G, Raphaelides SN, Antoniou KD (2013) Flow behavior studies of kefir type systems. J Food Eng 118(1):41–48. doi: 10.1016/j.jfoodeng.2013.03.036 CrossRefGoogle Scholar
  86. Yu T, Malcolm K, Woolfson D, Jones DS, Andrews GP (2011) Vaginal gel drug delivery systems: understanding rheological characteristics and performance. Expert Opin Drug Delivery 8(10):1309–1322. doi: 10.1517/17425247.2011.600119 CrossRefGoogle Scholar

Copyright information

© Controlled Release Society 2016

Authors and Affiliations

  • Johanna Aho
    • 1
  • Søren Hvidt
    • 2
  • Stefania Baldursdottir
    • 1
    Email author
  1. 1.Department of PharmacyUniversity of CopenhagenCopenhagenDenmark
  2. 2.The Department of Chemistry – Institute of Science and EnvironmentRoskilde UniversityRoskildeDenmark

Personalised recommendations