Advertisement

Applications of AFM in Pharmaceutical Sciences

  • Dimitrios A. LamprouEmail author
  • James R. Smith
Chapter
Part of the Advances in Delivery Science and Technology book series (ADST)

Abstract

Atomic force microscopy (AFM) is a high-resolution imaging technique that uses a small probe (tip and cantilever) to provide topographical information on surfaces in air or in liquid media. By pushing the tip into the surface or by pulling it away, nanomechanical data such as compliance (stiffness, Young’s Modulus) or adhesion, respectively, may be obtained and can also be presented visually in the form of maps displayed alongside topography images. This chapter outlines the principles of operation of AFM, describing some of the important imaging modes and then focuses on the use of the technique for pharmaceutical research. Areas include tablet coating and dissolution, crystal growth and polymorphism, particles and fibres, nanomedicine, nanotoxicology, drug-protein and protein-protein interactions, live cells, bacterial biofilms and viruses. Specific examples include mapping of ligand-receptor binding on cell surfaces, studies of protein-protein interactions to provide kinetic information and the potential of AFM to be used as an early diagnostic tool for cancer and other diseases. Many of these reported investigations are from 2011 to 2014, both from the literature and a few selected studies from the authors’ laboratories.

Keywords

Atomic force microscopy (AFM) Bacteria and bacterial biofilms Cantilevers Drug crystal growth Drug-protein interactions Live cells Nanomedicine Nanotoxicology Pharmaceutical science Protein-protein interactions Scanning force microscopy (SFM) Viruses 

References

  1. Abendan RS, Swift JA (2005) Dissolution on cholesterol monohydrate single-crystal surfaces monitored by in situ atomic force microscopy. Cryst Growth Des 5:2146–2153CrossRefGoogle Scholar
  2. Adamcik J, Mezzenga R (2012) Study of amyloid fibrils via atomic force microscopy. Curr Opin Colloid Interface Sci 17:369–379CrossRefGoogle Scholar
  3. Ando T, Uchihashi T, Kodera N, Yamamoto D, Miyagi A, Taniguchi M, Yamashita H (2008) High-speed AFM and nano-visualization of biomolecular processes. Pflugers Arch 456:211–225PubMedCrossRefGoogle Scholar
  4. Antonio PD, Lasalvia M, Perna G, Capozzi V (2012) Scale-independent roughness value of cell membranes studied by means of AFM technique. Biochim Biophys Acta 1818:3141–3148PubMedCrossRefGoogle Scholar
  5. Arora S, Rajwade JM, Paknikar KM (2012) Nanotoxicology and in vitro studies: the need of the hour. Toxicol Appl Pharmacol 258:151–165PubMedCrossRefGoogle Scholar
  6. Baclayon M, Wuite GJL, Roos WH (2010) Imaging and manipulation of single viruses by atomic force microscopy. Soft Matter 6:5273–5285CrossRefGoogle Scholar
  7. Bastatas L, Martinez-Martin D, Matthews J, Hashem J, Lee YJ, Sennoune S, Filleur S, Martinez-Zaguilan R, Park S (2012) AFM nano-mechanics and calcium dynamics of prostate cancer cells with distinct metastatic potential. Biochim Biophys Acta 1820:1111–1120PubMedCrossRefGoogle Scholar
  8. Begat P, Morton DAV, Staniforth JN, Price R (2004) The cohesive-adhesive balances in dry powder inhaler formulations I: direct quantification by atomic force microscopy. Pharm Res 21:1591–1597PubMedCrossRefGoogle Scholar
  9. Belletti D, Tonelli M, Forni F, Tosi G, Vandelli MA, Ruozi B (2013) AFM and TEM characterization of siRNAs lipoplexes: a combinatory tools to predict the efficacy of complexation. Colloid Surface Physicochem Eng Aspect 436:459–466CrossRefGoogle Scholar
  10. Berquand A, Mingeot-Leclercq MP, Dufrene YF (2004) Real-time imaging of drug-membrane interactions by atomic force microscopy. BBA-Biomembranes 1664:198–205PubMedCrossRefGoogle Scholar
  11. Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9:674–679PubMedCrossRefGoogle Scholar
  12. Binnig G, Rohrer H (1982) Scanning tunnelling microscopy. Helv Phys Acta 55:726–735Google Scholar
  13. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933PubMedCrossRefGoogle Scholar
  14. Bushell GR, Watson GS, Holt SA, Myhra S (1995) Imaging and nano-dissection of tobacco virus by atomic force microscopy. J Microsc 180:174–181CrossRefGoogle Scholar
  15. Butt HJ, Cappella M, Kappl M (2005) Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep 59:1–152CrossRefGoogle Scholar
  16. Cail TL, Hochella MF (2005) Experimentally derived sticking efficiencies of microparticles using atomic force microscopy. Environ Sci Technol 39:1011–1017PubMedCrossRefGoogle Scholar
  17. Cao T, Tang H, Liang X, Wang A, Auner GW, Salley SO, Ng KYS (2006) Nanoscale investigation on adhesion of E. coli to surface modified silicone using atomic force microscopy. Biotechnol Bioeng 94:167–176PubMedCrossRefGoogle Scholar
  18. Cappella B, Dietler G (1999) Force-distance curves by atomic force microscopy. Surf Sci Rep 34:1–104CrossRefGoogle Scholar
  19. Chen YY, Wu CC, Hsu JL, Peng L, Chang HY, Yew TR (2009) Surface rigidity change of Escherichia coli after filamentous bacteriophage infection. Langmuir 25:4607–4614PubMedCrossRefGoogle Scholar
  20. Chinnapongse SL, MacCuspie RI, Hackley VA (2011) Persistence of singly dispersed silver nanoparticles in natural freshwaters, synthetic seawater, and simulated estuarine waters. Sci Total Environ 409:2443–2450PubMedCrossRefGoogle Scholar
  21. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366PubMedCrossRefGoogle Scholar
  22. Chopinet L, Formosa C, Rols MP, Duval RE, Dague E (2013) Imaging living cells surface and quantifying its properties at high resolution using AFM in QITM mode. Micron 48:26–33PubMedCrossRefGoogle Scholar
  23. Chow EHH, Bucar D-K, Jones W (2012) New opportunities in crystal engineering—the role of atomic force microscopy in studies of molecular crystals. Chem Commun 74:9210–9226CrossRefGoogle Scholar
  24. Clifford CA, Seah MP (2005) The determination of atomic force microscope cantilever spring constants via dimensional methods for nanomechanical analysis. Nanotechnology 16:1666–1680CrossRefGoogle Scholar
  25. Couston RG, Lamprou DA, Uddin S, van der Walle C (2012) Interaction and destabilization of a monoclonal antibody and albumin to surfaces of varying functionality and hydrophobicity. Int J Pharm 438:71–80PubMedCrossRefGoogle Scholar
  26. Craig GE, Brown SD, Lamprou DA, Graham D, Wheate NJ (2012) Cisplatin-tethered gold nanoparticles that exhibit enhanced reproducibility, drug loading, and stability: a step closer to pharmaceutical approval? Inorg Chem 51:3490–3497PubMedCrossRefGoogle Scholar
  27. Cross SE, Jin YS, Rao J, Gimzewski JK (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2:780–783PubMedCrossRefGoogle Scholar
  28. Csontos I, Ronaszegi K, Szabo A, Keszei S, Anna P, Fekete P, Marosi G, Nagy T (2006) Controlled technology for forming a nanostructured polymer coating for solid pharmaceuticals. Polym Adv Tech 17:884–888CrossRefGoogle Scholar
  29. Danesh A, Chen X, Davies MC, Roberts CJ, Sanders GHW, Tendler SJ, Williams PM (2000) Polymorphic discrimination using atomic force microscopy: distinguishing between two polymorphs of the drug cimetidine. Langmuir 16:866–870CrossRefGoogle Scholar
  30. Danesh A, Connell SD, Davies MC, Roberts CJ, Tendler SJ, Williams PM, Wilkins MJ (2001) An in situ dissolution study of aspirin crystal planes (100) and (001) by atomic force microscopy. Pharm Res 18:299–303PubMedCrossRefGoogle Scholar
  31. Dazzi A, Prater CB, Hu Q, Chase DB, Rabolt JF, Marcott C (2012) AFM-IR: combining atomic force microscopy and infrared spectroscopy for nanoscale chemical characterization. Appl Spectrosc 66:1365–1384PubMedCrossRefGoogle Scholar
  32. Deniset-Besseau A, Prater CB, Virolle M-J, Dazzi A (2014) Monitoring triacylglycerols accumulation by atomic force microscopy based infrared spectroscopy in streptomyces species for biodiesel applications. J Phys Chem Lett 5:654–658PubMedCrossRefGoogle Scholar
  33. Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJA (2004) Nanotoxicology. Occup Environ Med 61:727–728PubMedPubMedCentralCrossRefGoogle Scholar
  34. Drygin YF, Bordunova OA, Gallyamov MO, Yaminsky IV (1998) Atomic force microscopy examination of tobacco mosaic virus and virion RNA. FEBS Lett 425:217–221PubMedCrossRefGoogle Scholar
  35. Durbin SD, Carlson WE (1992) Lysozyme crystal growth studied by atomic force microscopy. J Cryst Growth 122:71–79CrossRefGoogle Scholar
  36. Eaton P, West P (2010) Atomic force microscopy. Oxford University Press, OxfordCrossRefGoogle Scholar
  37. Ebner A, Chtcheglova LA, Preiner J, Tang J, Wildling L, Gruber HJ, Hinterdorfer P (2010) Simultaneous topography and recognition imaging. In: Bhushan B (ed) Scanning probe microscopy in nanoscience and nanotechnology nanoscience and technology. Springer, Heidelberg, pp 325–362CrossRefGoogle Scholar
  38. Edwardson JM, Henderson RM (2004) Atomic force microscopy and drug discovery. Drug Discov Today 9:64–71PubMedCrossRefGoogle Scholar
  39. Emerson RJ IV, Camesano TA (2004) Nanoscale investigation of pathogenic microbial adhesion to biomaterials. Appl Environ Microbiol 70:6012–6022PubMedPubMedCentralCrossRefGoogle Scholar
  40. Fahs A, Louarn G (2013) Plant protein interactions studied using AFM force spectroscopy: nanomechanical and adhesion properties. Phys Chem Chem Phys 15:11339–11348PubMedCrossRefGoogle Scholar
  41. Florin EL, Moy VT, Gaub HE (1994) Adhesion forces between individual ligand-receptor pairs. Science 264:415–417PubMedCrossRefGoogle Scholar
  42. Gladnikoff M, Rousso I (2008) Directly monitoring individual retrovirus budding events using atomic force microscopy. Biophys J 94:320–326PubMedCrossRefGoogle Scholar
  43. Grama CN, Venkatpurwar VP, Lamprou DA, Kumar RMNV (2013) Towards scale-up and regulatory shelf-stability testing of curcumin encapsulated polyester nanoparticles. Drug Deliv Transl Res 3:286–293PubMedCrossRefGoogle Scholar
  44. Harke B, Chacko JV, Haschke H, Canale C, Diaspro A (2012) A novel nanoscopic tool by combining AFM with STED microscopy. Opt Nanoscopy 1:1–6CrossRefGoogle Scholar
  45. Heu C, Berquand A, Elie-Caille C, Nicod L (2012) Glyphosate-induced stiffening of HaCaT keratinocytes, a peak force tapping study on living cells. J Struct Biol 178:1–7PubMedCrossRefGoogle Scholar
  46. Hinterdorfer P, Baumgartner W, Gruber HJ, Schilcher K, Schindler H (1996) Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc Natl Acad Sci U S A 93:3477–3481PubMedPubMedCentralCrossRefGoogle Scholar
  47. Janowski M, Bulte JWM, Walczak P (2012) Personalized nanomedicine advancements for stem cell tracking. Adv Drug Deliv Rev 64:1488–1507PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kao F-S, Ger W, Pan Y-R, Yu H-C, Hsu R-Q, Chen H-M (2012) Chip-based protein–protein interaction studied by atomic force microscopy. Biotechnol Bioeng 109:2460–2467PubMedCrossRefGoogle Scholar
  49. Karagkiozaki V, Logothetidis S, Vavoulidis E (2012) Nanomedicine pillars and monitoring nanobio-interactions. In: Logothetidis S (ed) Nanomedicine and nanobiotechnology. Springer, Heidelberg, pp 27–52CrossRefGoogle Scholar
  50. Karagkiozaki V, Karagiannidis PG, Gioti M, Kavatzikidou P, Georgiou D, Georgaraki E, Logothetidis S (2013) Bioelectronics meets nanomedicine for cardiovascular implants: PEDOT-based nanocoatings for tissue regeneration. Biochim Biophys Acta 1830:4294–4304PubMedCrossRefGoogle Scholar
  51. Kienberger F, Zhu R, Moser R, Blaas D, Hinterdorfer P (2004) Monitoring RNA release from human rhinovirus by dynamic force microscopy. J Virol 78:3203–3209PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kolbe WF, Ogletree DF, Salmeron MB (1992) Atomic force microscopy imaging of T4 bacteriophages on silicon substrates. Ultramicroscopy 42–44:1113–1117PubMedCrossRefGoogle Scholar
  53. Kozlova EK, Chernysh AM, Moroz VV, Kuzovlev AN (2013) Analysis of nanostructure of red blood cells membranes by space fourier transform of AFM images. Micron 44:218–227PubMedCrossRefGoogle Scholar
  54. Kuznetsov YG, McPherson A (2011) Atomic force microscopy in imaging of viruses and virus-infected cells. Microbiol Mol Biol Rev 75:268–285PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kuznetsov YG, Malkin AJ, Lucas RW, Plomp M, McPherson A (2001) Imaging of viruses by atomic force microscopy. J Gen Virol 82:2025–2034PubMedCrossRefGoogle Scholar
  56. Kwok TSH, Sunderland BW, Heng PWS (2004) An investigation on the influence of a vinyl pyrrolidone/vinyl acetate copolymer on the moisture permeation, mechanical and adhesive properties of aqueous-based hydroxypropyl methylcellulose film coatings. Chem Pharm Bull 52:790–796Google Scholar
  57. Lamprou DA, Smith JR, Nevell TG, Barbu E, Willis CR, Tsibouklis J (2010) Self-assembled structures of alkanethiols on gold-coated cantilever tips and substrates for atomic force microscopy: molecular organisation and conditions for reproducible deposition. Appl Surf Sci 256:1961–1968CrossRefGoogle Scholar
  58. Lamprou DA, Venkattpurwar V, Kumar MNVR (2013) Atomic force microscopy images label-free, drug encapsulated nanoparticles in vivo and detects difference in tissue mechanical properties of treated and untreated: a tip for nanotoxicology. PLoS One 8, e64490PubMedPubMedCentralCrossRefGoogle Scholar
  59. Land TA, De Yoreo JJ (2000) The evolution of growth modes and activity of growth sources on canavalin investigated by in situ atomic force microscopy. J Cryst Growth 208:623–637Google Scholar
  60. Lau PCY, Lindhout T, Beveridge TJ, Dutcher JR, Lam JS (2009) Differential lipopolysaccharide core capping leads to quantitative and correlated modifications of mechanical and structural properties in pseudomonas aeruginosa biofilms. J Bacteriol 191:6618–6631PubMedPubMedCentralCrossRefGoogle Scholar
  61. Levy G (1961) Comparison of dissolution and absorption rates of different commercial aspirin tablets. J Pharm Sci 50:388–392PubMedCrossRefGoogle Scholar
  62. Li QS, Lee GYH, Ong CN, Lim CT (2008) AFM indentation study of breast cancer cells. Biochem Biophys Res Commun 374:609–613PubMedCrossRefGoogle Scholar
  63. Li M, Xiao X, Liu L, Xi N, Wang Y, Dong Z, Zhang W (2013) Nanoscale mapping and organization analysis of target proteins on cancer cells from B-cell lymphoma patients. Exp Cell Res 319:2812–2821PubMedCrossRefGoogle Scholar
  64. Liu C-H, Horng J-T, Chang J-S, Hsieh C-F, Tseng Y-C, Lin S (2012) Localization and force analysis at the single virus particle level using atomic force microscopy. Biochem Biophys Res Commun 417:109–115PubMedCrossRefGoogle Scholar
  65. Mains J, Lamprou DA, McIntosh L, Oswald IDH, Urquhart AJ (2013) Beta-adrenoceptor antagonists affect amyloid nanostructure; amyloid hydrogels as drug delivery vehicles. Chem Commun 49:5082–5084CrossRefGoogle Scholar
  66. Mao H, Chen W, Laurent S, Thirifays C, Burtea C, Rezaee F, Mahmoudi M (2013) Hard corona composition and cellular toxicities of the graphene sheets. Colloids Surf B Biointerfaces 109:212–218PubMedCrossRefGoogle Scholar
  67. Martinez-Martin D, Carrasco C, Hernando-Perez M, de Pablo PJ, Gomez-Herrero J, Perez R, Mateu MG, Carrascosa JL, Kiracofe D, Melcher J, Raman A (2012) Resolving structure and mechanical properties at the nanoscale of viruses with frequency modulated atomic force microscopy. PLoS One 7, e30204PubMedPubMedCentralCrossRefGoogle Scholar
  68. Mateu MG (2013) Assembly, stability and dynamics of virus capsids. Arch Biochem Biophys 531:65–79PubMedCrossRefGoogle Scholar
  69. Matthaus C, Chernenko T, Newmark JA, Warner CM, Diem M (2007) Label-free detection of mitochondrial distribution in cells by nonresonant Raman microspectroscopy. Biophys J 93:668–673PubMedPubMedCentralCrossRefGoogle Scholar
  70. McPherson A, Malkin AJ, Kuznetsov YG, Plomp M (2001) Atomic force microscopy applications in macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 57:1053–1060PubMedCrossRefGoogle Scholar
  71. Melcher J, Carrasco C, Xu X, Carrascosa JL, Gomez-Herrero J, de Pablo JD, Raman A (2009) Origins of phase contrast in the atomic force microscope in liquids. Proc Natl Acad Sci U S A 106:13655–13660PubMedPubMedCentralCrossRefGoogle Scholar
  72. Miyazaki T, Aso Y, Kawanishi T (2011) Feasibility of atomic force microscopy for determining crystal growth rates of nifedipine at the surface of amorphous solids with and without polymers. J Pharm Sci 100:4413–4420PubMedCrossRefGoogle Scholar
  73. Morris VJ, Kirby AR, Gunning AP (2001) Atomic force microscopy for biologists. Imperial College Press, LondonGoogle Scholar
  74. Muller DJ, Helenius J, Alsteens D, Dufrene YF (2009) Force probing surfaces of living cells to molecular resolution. Nat Chem Biol 5:383–390PubMedCrossRefGoogle Scholar
  75. Onuma K, Ito A, Tateishi T, Kameyama T (1995) Surface observations of synthetic hydroxyapatite single crystal by atomic force microscopy. J Cryst Growth 148:201–206CrossRefGoogle Scholar
  76. Onyesom I, Lamprou DA, Sygellou L, Owusu-Ware SK, Antonijevic M, Chowdhry BZ, Douroumis D (2013) Sirolimus encapsulated liposomes for cancer therapy: physicochemical and mechanical characterization of sirolimus distribution within liposome bilayers. Mol Pharm 10:4281–4293PubMedCrossRefGoogle Scholar
  77. Plomp M, Rice MK, Wagner EK, McPherson A, Malkin AJ (2002) Rapid visualization at high resolution of pathogens by atomic force microscopy: structural studies of herpes simplex virus-1. Am J Pathol 160:1959–1966PubMedPubMedCentralCrossRefGoogle Scholar
  78. Potta SG, Minemi S, Nukala RK, Peinado C, Lamprou DA, Urquhart AJ, Douroumis D (2011) Preparation and characterization of ibuprofen solid lipid nanoparticles with enhanced solubility. J Microencapsul 28:74–81PubMedCrossRefGoogle Scholar
  79. Riener CK, Stroh CM, Ebner A, Klampfl C, Gall AA, Romania C, Lyubchenko YL, Hinterdorfer P, Gruber HJ (2003) Simple test system for single molecule recognition force microscopy. Anal Chim Acta 479:59–75CrossRefGoogle Scholar
  80. Roberts CJ (2005) What can we learn from atomic force microscopy adhesion measurements with single drug particles? Eur J Pharm Sci 24:153–157PubMedCrossRefGoogle Scholar
  81. Roldo M, Power K, Smith JR, Cox PA, Papagelis K, Bouropoulos N, Fatouros DG (2009) N-Octyl-O-sulfate chitosan stabilises single wall carbon nanotubes in aqueous media and bestows biocompatibility. Nanoscale 1:366–373PubMedCrossRefGoogle Scholar
  82. Romer M, Heinamaki J, Strachan C, Sandler N, Yliruusi J (2008) Prediction of tablet film-coating thickness using a rotating plate coating system and NIR spectroscopy. AAPS PharmSciTech 9:1047–1053PubMedPubMedCentralCrossRefGoogle Scholar
  83. Schmitz I, Schreiner M, Friedbacher G, Grasserbauer M (1997) Phase imaging as an extension to tapping mode AFM for the identification of material properties on humidity-sensitive surfaces. Appl Surf Sci 115:190–198CrossRefGoogle Scholar
  84. Seitavuopio P, Rantanen J, Yliruusi J (2003) Tablet surface characterisation by various imaging techniques. Int J Pharm 254:281–286PubMedCrossRefGoogle Scholar
  85. Seitavuopio P, Rantanen J, Yliruusia J (2005) Use of roughness maps in visualisation of surfaces. Eur J Pharm Biopharm 59:351–358PubMedCrossRefGoogle Scholar
  86. Seitavuopio P, Heinamaki J, Rantanen J, Yliruusi J (2006) Monitoring tablet surface roughness during the film coating process. AAPS PharmSciTech 7:E1–E6PubMedCentralCrossRefGoogle Scholar
  87. Sikora AE, Smith JR, Campbell SA, Firman F (2012) AFM protein-protein interactions within the EcoR124I molecular motor. Soft Matter 8:6358–6363CrossRefGoogle Scholar
  88. Sitterberg J, Ozcetin A, Ehrhardt C, Bakowsky U (2010) Utilising atomic force microscopy for the characterisation of nanoscale drug delivery systems. Eur J Pharm Biopharm 74:2–13PubMedCrossRefGoogle Scholar
  89. Smith JR, Lamprou DA (2014) Polymer coatings for biomedical applications: a review. Trans IMF 92:9–19CrossRefGoogle Scholar
  90. Smith DA, Connell SD, Kirkham CR (2003a) Chemical force microscopy: applications in surface characterisation of natural hydroxyapatite. Anal Chim Acta 479:39–57CrossRefGoogle Scholar
  91. Smith JR, Breakspear S, Campbell SA (2003b) AFM in surface finishing: part 2 surface roughness. Trans IMF 81:B55–B58Google Scholar
  92. Song Y, Bhushan B (2006) Dynamic analysis of torsional resonance mode of atomic force microscopy and its application to in-plane surface property extraction. Microsyst Technol 12:219–230CrossRefGoogle Scholar
  93. Suresh S (2007) Nanomedicine - Elastic clues in cancer detection. Nat Nanotechnol 2:748–749PubMedCrossRefGoogle Scholar
  94. Suzuki Y, Sakai N, Yoshida A, Uekusa Y, Yagi A, Imaoka Y, Ito S, Karaki K, Takeyasu K (2013) High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events. Sci Rep 3:2131PubMedPubMedCentralGoogle Scholar
  95. Tasis D, Papagelis K, Douroumis D, Smith JR, Bouropoulos N, Fatouros DG (2008) Diameter-selective solubilization of carbon nanotubes by lipid micelles. J Nanosci Nanotechnol 8:420–423PubMedCrossRefGoogle Scholar
  96. Tetard L, Passian RH, Farahi RH, Thundat T (2010) Atomic force microscopy of silica nanoparticles and carbon nanohorns in macrophages and red blood cells. Ultramicroscopy 110:586–591PubMedCrossRefGoogle Scholar
  97. Thakuria R, Eddleston MD, Chow EHH, Lloyd GO, Aldous BJ, Krzyzaniak JF, Bond AD, Jones W (2013) Use of in situ atomic force microscopy to follow phase changes at crystal surfaces in real time. Angew Chem Int Ed 52:10541–10544CrossRefGoogle Scholar
  98. Theodoropoulos D, Rova A, Smith JR, Barbu E, Calabrese G, Vizirianakis IS, Tsibouklis J, Fatouros DG (2013) Towards boron neutron capture therapy: the formulation and preliminary in vitro evaluation of liposomal vehicles for the therapeutic delivery of the dequalinium salt of bis-nido-carborane. Bioorg Med Chem Lett 23:6161–6166PubMedCrossRefGoogle Scholar
  99. Thio BJR, Zhou D, Keller AA (2011) Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles. J Hazard Mater 189:556–563PubMedCrossRefGoogle Scholar
  100. Thompson C, Davies MC, Roberts CJ, Tendler SJ, Wilkinson MJ (2004) The effects of additives on the growth and morphology of paracetamol (acetaminophen) crystals. Int J Pharm 280:137–150PubMedCrossRefGoogle Scholar
  101. Thundat T, Zheng XY, Sharp SL, Allison DP, Warmack RJ, Joy DC, Ferrell TL (1992) Calibration of atomic force microscope tips using biomolecules. Scanning Microsc 6:903–910Google Scholar
  102. Tonglei L, Kenneth RM, Kinam P (2000) Influence of solvent and crystalline supramolecular structure on the formation of etching patterns on acetaminophen single crystals: a study with atomic force microscopy and computer simulation. J Phys Chem B 104:2019–2032CrossRefGoogle Scholar
  103. Tsukada M, Irie R, Yonemochi Y, Noda R, Kamiya H, Watanabe W, Kauppinen EI (2004) Adhesion force measurement of a DPI size pharmaceutical particle by colloid probe atomic force microscopy. Powder Tech 141:262–269CrossRefGoogle Scholar
  104. Van Eerdenbrugh B, Lo M, Kjoller K, Marcott C, Taylor LS (2012) Nanoscale mid-infrared imaging of phase separation in a drug–polymer blend. J Pharm Sci 101:2066–2073PubMedCrossRefGoogle Scholar
  105. Wang XY, He PY, Du J, Zhang JZ (2010) Quercetin in combating H2O2 induced early cell apoptosis and mitochondrial damage to normal human keratinocytes. Chin Med J 123:532–536Google Scholar
  106. Wise JA, Smith JR, Bouropoulos N, Yannopoulos SN, van der Merwe SM, Fatouros DG (2008) Single wall carbon nanotube dispersions stabilised with N-trimethyl-chitosan. J Biomed Nanotechnol 4:67–72Google Scholar
  107. Wu N, Kong Y, Zu Y, Fu Y, Liu Z, Meng R, Liu X, Efferth T (2011) Activity investigation of pinostrobin towards herpes simplex virus-1 as determined by atomic force microscopy. Phytomedicine 18:110–118PubMedCrossRefGoogle Scholar
  108. Xue W-F, Hellewell AL, Gosal WS, Homans SW, Hewitt EW, Radford SE (2009) Fibril fragmentation enhances amyloid cytotoxicity. J Biol Chem 284:34272–34282PubMedPubMedCentralCrossRefGoogle Scholar
  109. Yip CM, Ward MD (1996) Atomic force microscopy of insulin single crystals: direct visualization of molecules and crystal growth. Biophys J 71:1071–1078PubMedPubMedCentralCrossRefGoogle Scholar
  110. Zhang W, Stack AG, Chen Y (2011) Interaction force measurement between E. coli cells and nanoparticles immobilized surfaces by using AFM. Colloids Surf B Biointerfaces 82:316–324PubMedCrossRefGoogle Scholar

Copyright information

© Controlled Release Society 2016

Authors and Affiliations

  1. 1.Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS)University of StrathclydeGlasgowUK
  2. 2.School of Pharmacy and Biomedical SciencesUniversity of PortsmouthPortsmouthUK

Personalised recommendations