Skip to main content

Applications of AFM in Pharmaceutical Sciences

  • Chapter
  • First Online:
Analytical Techniques in the Pharmaceutical Sciences

Abstract

Atomic force microscopy (AFM) is a high-resolution imaging technique that uses a small probe (tip and cantilever) to provide topographical information on surfaces in air or in liquid media. By pushing the tip into the surface or by pulling it away, nanomechanical data such as compliance (stiffness, Young’s Modulus) or adhesion, respectively, may be obtained and can also be presented visually in the form of maps displayed alongside topography images. This chapter outlines the principles of operation of AFM, describing some of the important imaging modes and then focuses on the use of the technique for pharmaceutical research. Areas include tablet coating and dissolution, crystal growth and polymorphism, particles and fibres, nanomedicine, nanotoxicology, drug-protein and protein-protein interactions, live cells, bacterial biofilms and viruses. Specific examples include mapping of ligand-receptor binding on cell surfaces, studies of protein-protein interactions to provide kinetic information and the potential of AFM to be used as an early diagnostic tool for cancer and other diseases. Many of these reported investigations are from 2011 to 2014, both from the literature and a few selected studies from the authors’ laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abendan RS, Swift JA (2005) Dissolution on cholesterol monohydrate single-crystal surfaces monitored by in situ atomic force microscopy. Cryst Growth Des 5:2146–2153

    Article  CAS  Google Scholar 

  • Adamcik J, Mezzenga R (2012) Study of amyloid fibrils via atomic force microscopy. Curr Opin Colloid Interface Sci 17:369–379

    Article  CAS  Google Scholar 

  • Ando T, Uchihashi T, Kodera N, Yamamoto D, Miyagi A, Taniguchi M, Yamashita H (2008) High-speed AFM and nano-visualization of biomolecular processes. Pflugers Arch 456:211–225

    Article  CAS  PubMed  Google Scholar 

  • Antonio PD, Lasalvia M, Perna G, Capozzi V (2012) Scale-independent roughness value of cell membranes studied by means of AFM technique. Biochim Biophys Acta 1818:3141–3148

    Article  PubMed  CAS  Google Scholar 

  • Arora S, Rajwade JM, Paknikar KM (2012) Nanotoxicology and in vitro studies: the need of the hour. Toxicol Appl Pharmacol 258:151–165

    Article  CAS  PubMed  Google Scholar 

  • Baclayon M, Wuite GJL, Roos WH (2010) Imaging and manipulation of single viruses by atomic force microscopy. Soft Matter 6:5273–5285

    Article  CAS  Google Scholar 

  • Bastatas L, Martinez-Martin D, Matthews J, Hashem J, Lee YJ, Sennoune S, Filleur S, Martinez-Zaguilan R, Park S (2012) AFM nano-mechanics and calcium dynamics of prostate cancer cells with distinct metastatic potential. Biochim Biophys Acta 1820:1111–1120

    Article  CAS  PubMed  Google Scholar 

  • Begat P, Morton DAV, Staniforth JN, Price R (2004) The cohesive-adhesive balances in dry powder inhaler formulations I: direct quantification by atomic force microscopy. Pharm Res 21:1591–1597

    Article  CAS  PubMed  Google Scholar 

  • Belletti D, Tonelli M, Forni F, Tosi G, Vandelli MA, Ruozi B (2013) AFM and TEM characterization of siRNAs lipoplexes: a combinatory tools to predict the efficacy of complexation. Colloid Surface Physicochem Eng Aspect 436:459–466

    Article  CAS  Google Scholar 

  • Berquand A, Mingeot-Leclercq MP, Dufrene YF (2004) Real-time imaging of drug-membrane interactions by atomic force microscopy. BBA-Biomembranes 1664:198–205

    Article  CAS  PubMed  Google Scholar 

  • Bianco A, Kostarelos K, Prato M (2005) Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol 9:674–679

    Article  CAS  PubMed  Google Scholar 

  • Binnig G, Rohrer H (1982) Scanning tunnelling microscopy. Helv Phys Acta 55:726–735

    CAS  Google Scholar 

  • Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  PubMed  Google Scholar 

  • Bushell GR, Watson GS, Holt SA, Myhra S (1995) Imaging and nano-dissection of tobacco virus by atomic force microscopy. J Microsc 180:174–181

    Article  Google Scholar 

  • Butt HJ, Cappella M, Kappl M (2005) Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep 59:1–152

    Article  CAS  Google Scholar 

  • Cail TL, Hochella MF (2005) Experimentally derived sticking efficiencies of microparticles using atomic force microscopy. Environ Sci Technol 39:1011–1017

    Article  CAS  PubMed  Google Scholar 

  • Cao T, Tang H, Liang X, Wang A, Auner GW, Salley SO, Ng KYS (2006) Nanoscale investigation on adhesion of E. coli to surface modified silicone using atomic force microscopy. Biotechnol Bioeng 94:167–176

    Article  CAS  PubMed  Google Scholar 

  • Cappella B, Dietler G (1999) Force-distance curves by atomic force microscopy. Surf Sci Rep 34:1–104

    Article  CAS  Google Scholar 

  • Chen YY, Wu CC, Hsu JL, Peng L, Chang HY, Yew TR (2009) Surface rigidity change of Escherichia coli after filamentous bacteriophage infection. Langmuir 25:4607–4614

    Article  CAS  PubMed  Google Scholar 

  • Chinnapongse SL, MacCuspie RI, Hackley VA (2011) Persistence of singly dispersed silver nanoparticles in natural freshwaters, synthetic seawater, and simulated estuarine waters. Sci Total Environ 409:2443–2450

    Article  CAS  PubMed  Google Scholar 

  • Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    Article  CAS  PubMed  Google Scholar 

  • Chopinet L, Formosa C, Rols MP, Duval RE, Dague E (2013) Imaging living cells surface and quantifying its properties at high resolution using AFM in QITM mode. Micron 48:26–33

    Article  CAS  PubMed  Google Scholar 

  • Chow EHH, Bucar D-K, Jones W (2012) New opportunities in crystal engineering—the role of atomic force microscopy in studies of molecular crystals. Chem Commun 74:9210–9226

    Article  CAS  Google Scholar 

  • Clifford CA, Seah MP (2005) The determination of atomic force microscope cantilever spring constants via dimensional methods for nanomechanical analysis. Nanotechnology 16:1666–1680

    Article  Google Scholar 

  • Couston RG, Lamprou DA, Uddin S, van der Walle C (2012) Interaction and destabilization of a monoclonal antibody and albumin to surfaces of varying functionality and hydrophobicity. Int J Pharm 438:71–80

    Article  CAS  PubMed  Google Scholar 

  • Craig GE, Brown SD, Lamprou DA, Graham D, Wheate NJ (2012) Cisplatin-tethered gold nanoparticles that exhibit enhanced reproducibility, drug loading, and stability: a step closer to pharmaceutical approval? Inorg Chem 51:3490–3497

    Article  CAS  PubMed  Google Scholar 

  • Cross SE, Jin YS, Rao J, Gimzewski JK (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2:780–783

    Article  CAS  PubMed  Google Scholar 

  • Csontos I, Ronaszegi K, Szabo A, Keszei S, Anna P, Fekete P, Marosi G, Nagy T (2006) Controlled technology for forming a nanostructured polymer coating for solid pharmaceuticals. Polym Adv Tech 17:884–888

    Article  CAS  Google Scholar 

  • Danesh A, Chen X, Davies MC, Roberts CJ, Sanders GHW, Tendler SJ, Williams PM (2000) Polymorphic discrimination using atomic force microscopy: distinguishing between two polymorphs of the drug cimetidine. Langmuir 16:866–870

    Article  CAS  Google Scholar 

  • Danesh A, Connell SD, Davies MC, Roberts CJ, Tendler SJ, Williams PM, Wilkins MJ (2001) An in situ dissolution study of aspirin crystal planes (100) and (001) by atomic force microscopy. Pharm Res 18:299–303

    Article  CAS  PubMed  Google Scholar 

  • Dazzi A, Prater CB, Hu Q, Chase DB, Rabolt JF, Marcott C (2012) AFM-IR: combining atomic force microscopy and infrared spectroscopy for nanoscale chemical characterization. Appl Spectrosc 66:1365–1384

    Article  CAS  PubMed  Google Scholar 

  • Deniset-Besseau A, Prater CB, Virolle M-J, Dazzi A (2014) Monitoring triacylglycerols accumulation by atomic force microscopy based infrared spectroscopy in streptomyces species for biodiesel applications. J Phys Chem Lett 5:654–658

    Article  CAS  PubMed  Google Scholar 

  • Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJA (2004) Nanotoxicology. Occup Environ Med 61:727–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drygin YF, Bordunova OA, Gallyamov MO, Yaminsky IV (1998) Atomic force microscopy examination of tobacco mosaic virus and virion RNA. FEBS Lett 425:217–221

    Article  CAS  PubMed  Google Scholar 

  • Durbin SD, Carlson WE (1992) Lysozyme crystal growth studied by atomic force microscopy. J Cryst Growth 122:71–79

    Article  CAS  Google Scholar 

  • Eaton P, West P (2010) Atomic force microscopy. Oxford University Press, Oxford

    Book  Google Scholar 

  • Ebner A, Chtcheglova LA, Preiner J, Tang J, Wildling L, Gruber HJ, Hinterdorfer P (2010) Simultaneous topography and recognition imaging. In: Bhushan B (ed) Scanning probe microscopy in nanoscience and nanotechnology nanoscience and technology. Springer, Heidelberg, pp 325–362

    Chapter  Google Scholar 

  • Edwardson JM, Henderson RM (2004) Atomic force microscopy and drug discovery. Drug Discov Today 9:64–71

    Article  CAS  PubMed  Google Scholar 

  • Emerson RJ IV, Camesano TA (2004) Nanoscale investigation of pathogenic microbial adhesion to biomaterials. Appl Environ Microbiol 70:6012–6022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahs A, Louarn G (2013) Plant protein interactions studied using AFM force spectroscopy: nanomechanical and adhesion properties. Phys Chem Chem Phys 15:11339–11348

    Article  CAS  PubMed  Google Scholar 

  • Florin EL, Moy VT, Gaub HE (1994) Adhesion forces between individual ligand-receptor pairs. Science 264:415–417

    Article  CAS  PubMed  Google Scholar 

  • Gladnikoff M, Rousso I (2008) Directly monitoring individual retrovirus budding events using atomic force microscopy. Biophys J 94:320–326

    Article  CAS  PubMed  Google Scholar 

  • Grama CN, Venkatpurwar VP, Lamprou DA, Kumar RMNV (2013) Towards scale-up and regulatory shelf-stability testing of curcumin encapsulated polyester nanoparticles. Drug Deliv Transl Res 3:286–293

    Article  CAS  PubMed  Google Scholar 

  • Harke B, Chacko JV, Haschke H, Canale C, Diaspro A (2012) A novel nanoscopic tool by combining AFM with STED microscopy. Opt Nanoscopy 1:1–6

    Article  Google Scholar 

  • Heu C, Berquand A, Elie-Caille C, Nicod L (2012) Glyphosate-induced stiffening of HaCaT keratinocytes, a peak force tapping study on living cells. J Struct Biol 178:1–7

    Article  CAS  PubMed  Google Scholar 

  • Hinterdorfer P, Baumgartner W, Gruber HJ, Schilcher K, Schindler H (1996) Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc Natl Acad Sci U S A 93:3477–3481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janowski M, Bulte JWM, Walczak P (2012) Personalized nanomedicine advancements for stem cell tracking. Adv Drug Deliv Rev 64:1488–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kao F-S, Ger W, Pan Y-R, Yu H-C, Hsu R-Q, Chen H-M (2012) Chip-based protein–protein interaction studied by atomic force microscopy. Biotechnol Bioeng 109:2460–2467

    Article  CAS  PubMed  Google Scholar 

  • Karagkiozaki V, Logothetidis S, Vavoulidis E (2012) Nanomedicine pillars and monitoring nanobio-interactions. In: Logothetidis S (ed) Nanomedicine and nanobiotechnology. Springer, Heidelberg, pp 27–52

    Chapter  Google Scholar 

  • Karagkiozaki V, Karagiannidis PG, Gioti M, Kavatzikidou P, Georgiou D, Georgaraki E, Logothetidis S (2013) Bioelectronics meets nanomedicine for cardiovascular implants: PEDOT-based nanocoatings for tissue regeneration. Biochim Biophys Acta 1830:4294–4304

    Article  CAS  PubMed  Google Scholar 

  • Kienberger F, Zhu R, Moser R, Blaas D, Hinterdorfer P (2004) Monitoring RNA release from human rhinovirus by dynamic force microscopy. J Virol 78:3203–3209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolbe WF, Ogletree DF, Salmeron MB (1992) Atomic force microscopy imaging of T4 bacteriophages on silicon substrates. Ultramicroscopy 42–44:1113–1117

    Article  PubMed  Google Scholar 

  • Kozlova EK, Chernysh AM, Moroz VV, Kuzovlev AN (2013) Analysis of nanostructure of red blood cells membranes by space fourier transform of AFM images. Micron 44:218–227

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsov YG, McPherson A (2011) Atomic force microscopy in imaging of viruses and virus-infected cells. Microbiol Mol Biol Rev 75:268–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuznetsov YG, Malkin AJ, Lucas RW, Plomp M, McPherson A (2001) Imaging of viruses by atomic force microscopy. J Gen Virol 82:2025–2034

    Article  CAS  PubMed  Google Scholar 

  • Kwok TSH, Sunderland BW, Heng PWS (2004) An investigation on the influence of a vinyl pyrrolidone/vinyl acetate copolymer on the moisture permeation, mechanical and adhesive properties of aqueous-based hydroxypropyl methylcellulose film coatings. Chem Pharm Bull 52:790–796

    Google Scholar 

  • Lamprou DA, Smith JR, Nevell TG, Barbu E, Willis CR, Tsibouklis J (2010) Self-assembled structures of alkanethiols on gold-coated cantilever tips and substrates for atomic force microscopy: molecular organisation and conditions for reproducible deposition. Appl Surf Sci 256:1961–1968

    Article  CAS  Google Scholar 

  • Lamprou DA, Venkattpurwar V, Kumar MNVR (2013) Atomic force microscopy images label-free, drug encapsulated nanoparticles in vivo and detects difference in tissue mechanical properties of treated and untreated: a tip for nanotoxicology. PLoS One 8, e64490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Land TA, De Yoreo JJ (2000) The evolution of growth modes and activity of growth sources on canavalin investigated by in situ atomic force microscopy. J Cryst Growth 208:623–637

    Google Scholar 

  • Lau PCY, Lindhout T, Beveridge TJ, Dutcher JR, Lam JS (2009) Differential lipopolysaccharide core capping leads to quantitative and correlated modifications of mechanical and structural properties in pseudomonas aeruginosa biofilms. J Bacteriol 191:6618–6631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy G (1961) Comparison of dissolution and absorption rates of different commercial aspirin tablets. J Pharm Sci 50:388–392

    Article  CAS  PubMed  Google Scholar 

  • Li QS, Lee GYH, Ong CN, Lim CT (2008) AFM indentation study of breast cancer cells. Biochem Biophys Res Commun 374:609–613

    Article  CAS  PubMed  Google Scholar 

  • Li M, Xiao X, Liu L, Xi N, Wang Y, Dong Z, Zhang W (2013) Nanoscale mapping and organization analysis of target proteins on cancer cells from B-cell lymphoma patients. Exp Cell Res 319:2812–2821

    Article  CAS  PubMed  Google Scholar 

  • Liu C-H, Horng J-T, Chang J-S, Hsieh C-F, Tseng Y-C, Lin S (2012) Localization and force analysis at the single virus particle level using atomic force microscopy. Biochem Biophys Res Commun 417:109–115

    Article  CAS  PubMed  Google Scholar 

  • Mains J, Lamprou DA, McIntosh L, Oswald IDH, Urquhart AJ (2013) Beta-adrenoceptor antagonists affect amyloid nanostructure; amyloid hydrogels as drug delivery vehicles. Chem Commun 49:5082–5084

    Article  CAS  Google Scholar 

  • Mao H, Chen W, Laurent S, Thirifays C, Burtea C, Rezaee F, Mahmoudi M (2013) Hard corona composition and cellular toxicities of the graphene sheets. Colloids Surf B Biointerfaces 109:212–218

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Martin D, Carrasco C, Hernando-Perez M, de Pablo PJ, Gomez-Herrero J, Perez R, Mateu MG, Carrascosa JL, Kiracofe D, Melcher J, Raman A (2012) Resolving structure and mechanical properties at the nanoscale of viruses with frequency modulated atomic force microscopy. PLoS One 7, e30204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mateu MG (2013) Assembly, stability and dynamics of virus capsids. Arch Biochem Biophys 531:65–79

    Article  CAS  PubMed  Google Scholar 

  • Matthaus C, Chernenko T, Newmark JA, Warner CM, Diem M (2007) Label-free detection of mitochondrial distribution in cells by nonresonant Raman microspectroscopy. Biophys J 93:668–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McPherson A, Malkin AJ, Kuznetsov YG, Plomp M (2001) Atomic force microscopy applications in macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 57:1053–1060

    Article  CAS  PubMed  Google Scholar 

  • Melcher J, Carrasco C, Xu X, Carrascosa JL, Gomez-Herrero J, de Pablo JD, Raman A (2009) Origins of phase contrast in the atomic force microscope in liquids. Proc Natl Acad Sci U S A 106:13655–13660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyazaki T, Aso Y, Kawanishi T (2011) Feasibility of atomic force microscopy for determining crystal growth rates of nifedipine at the surface of amorphous solids with and without polymers. J Pharm Sci 100:4413–4420

    Article  CAS  PubMed  Google Scholar 

  • Morris VJ, Kirby AR, Gunning AP (2001) Atomic force microscopy for biologists. Imperial College Press, London

    Google Scholar 

  • Muller DJ, Helenius J, Alsteens D, Dufrene YF (2009) Force probing surfaces of living cells to molecular resolution. Nat Chem Biol 5:383–390

    Article  PubMed  CAS  Google Scholar 

  • Onuma K, Ito A, Tateishi T, Kameyama T (1995) Surface observations of synthetic hydroxyapatite single crystal by atomic force microscopy. J Cryst Growth 148:201–206

    Article  CAS  Google Scholar 

  • Onyesom I, Lamprou DA, Sygellou L, Owusu-Ware SK, Antonijevic M, Chowdhry BZ, Douroumis D (2013) Sirolimus encapsulated liposomes for cancer therapy: physicochemical and mechanical characterization of sirolimus distribution within liposome bilayers. Mol Pharm 10:4281–4293

    Article  CAS  PubMed  Google Scholar 

  • Plomp M, Rice MK, Wagner EK, McPherson A, Malkin AJ (2002) Rapid visualization at high resolution of pathogens by atomic force microscopy: structural studies of herpes simplex virus-1. Am J Pathol 160:1959–1966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potta SG, Minemi S, Nukala RK, Peinado C, Lamprou DA, Urquhart AJ, Douroumis D (2011) Preparation and characterization of ibuprofen solid lipid nanoparticles with enhanced solubility. J Microencapsul 28:74–81

    Article  CAS  PubMed  Google Scholar 

  • Riener CK, Stroh CM, Ebner A, Klampfl C, Gall AA, Romania C, Lyubchenko YL, Hinterdorfer P, Gruber HJ (2003) Simple test system for single molecule recognition force microscopy. Anal Chim Acta 479:59–75

    Article  CAS  Google Scholar 

  • Roberts CJ (2005) What can we learn from atomic force microscopy adhesion measurements with single drug particles? Eur J Pharm Sci 24:153–157

    Article  CAS  PubMed  Google Scholar 

  • Roldo M, Power K, Smith JR, Cox PA, Papagelis K, Bouropoulos N, Fatouros DG (2009) N-Octyl-O-sulfate chitosan stabilises single wall carbon nanotubes in aqueous media and bestows biocompatibility. Nanoscale 1:366–373

    Article  CAS  PubMed  Google Scholar 

  • Romer M, Heinamaki J, Strachan C, Sandler N, Yliruusi J (2008) Prediction of tablet film-coating thickness using a rotating plate coating system and NIR spectroscopy. AAPS PharmSciTech 9:1047–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitz I, Schreiner M, Friedbacher G, Grasserbauer M (1997) Phase imaging as an extension to tapping mode AFM for the identification of material properties on humidity-sensitive surfaces. Appl Surf Sci 115:190–198

    Article  CAS  Google Scholar 

  • Seitavuopio P, Rantanen J, Yliruusi J (2003) Tablet surface characterisation by various imaging techniques. Int J Pharm 254:281–286

    Article  CAS  PubMed  Google Scholar 

  • Seitavuopio P, Rantanen J, Yliruusia J (2005) Use of roughness maps in visualisation of surfaces. Eur J Pharm Biopharm 59:351–358

    Article  CAS  PubMed  Google Scholar 

  • Seitavuopio P, Heinamaki J, Rantanen J, Yliruusi J (2006) Monitoring tablet surface roughness during the film coating process. AAPS PharmSciTech 7:E1–E6

    Article  PubMed Central  Google Scholar 

  • Sikora AE, Smith JR, Campbell SA, Firman F (2012) AFM protein-protein interactions within the EcoR124I molecular motor. Soft Matter 8:6358–6363

    Article  CAS  Google Scholar 

  • Sitterberg J, Ozcetin A, Ehrhardt C, Bakowsky U (2010) Utilising atomic force microscopy for the characterisation of nanoscale drug delivery systems. Eur J Pharm Biopharm 74:2–13

    Article  CAS  PubMed  Google Scholar 

  • Smith JR, Lamprou DA (2014) Polymer coatings for biomedical applications: a review. Trans IMF 92:9–19

    Article  CAS  Google Scholar 

  • Smith DA, Connell SD, Kirkham CR (2003a) Chemical force microscopy: applications in surface characterisation of natural hydroxyapatite. Anal Chim Acta 479:39–57

    Article  CAS  Google Scholar 

  • Smith JR, Breakspear S, Campbell SA (2003b) AFM in surface finishing: part 2 surface roughness. Trans IMF 81:B55–B58

    CAS  Google Scholar 

  • Song Y, Bhushan B (2006) Dynamic analysis of torsional resonance mode of atomic force microscopy and its application to in-plane surface property extraction. Microsyst Technol 12:219–230

    Article  CAS  Google Scholar 

  • Suresh S (2007) Nanomedicine - Elastic clues in cancer detection. Nat Nanotechnol 2:748–749

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Sakai N, Yoshida A, Uekusa Y, Yagi A, Imaoka Y, Ito S, Karaki K, Takeyasu K (2013) High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events. Sci Rep 3:2131

    PubMed  PubMed Central  Google Scholar 

  • Tasis D, Papagelis K, Douroumis D, Smith JR, Bouropoulos N, Fatouros DG (2008) Diameter-selective solubilization of carbon nanotubes by lipid micelles. J Nanosci Nanotechnol 8:420–423

    Article  CAS  PubMed  Google Scholar 

  • Tetard L, Passian RH, Farahi RH, Thundat T (2010) Atomic force microscopy of silica nanoparticles and carbon nanohorns in macrophages and red blood cells. Ultramicroscopy 110:586–591

    Article  CAS  PubMed  Google Scholar 

  • Thakuria R, Eddleston MD, Chow EHH, Lloyd GO, Aldous BJ, Krzyzaniak JF, Bond AD, Jones W (2013) Use of in situ atomic force microscopy to follow phase changes at crystal surfaces in real time. Angew Chem Int Ed 52:10541–10544

    Article  CAS  Google Scholar 

  • Theodoropoulos D, Rova A, Smith JR, Barbu E, Calabrese G, Vizirianakis IS, Tsibouklis J, Fatouros DG (2013) Towards boron neutron capture therapy: the formulation and preliminary in vitro evaluation of liposomal vehicles for the therapeutic delivery of the dequalinium salt of bis-nido-carborane. Bioorg Med Chem Lett 23:6161–6166

    Article  CAS  PubMed  Google Scholar 

  • Thio BJR, Zhou D, Keller AA (2011) Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles. J Hazard Mater 189:556–563

    Article  CAS  PubMed  Google Scholar 

  • Thompson C, Davies MC, Roberts CJ, Tendler SJ, Wilkinson MJ (2004) The effects of additives on the growth and morphology of paracetamol (acetaminophen) crystals. Int J Pharm 280:137–150

    Article  CAS  PubMed  Google Scholar 

  • Thundat T, Zheng XY, Sharp SL, Allison DP, Warmack RJ, Joy DC, Ferrell TL (1992) Calibration of atomic force microscope tips using biomolecules. Scanning Microsc 6:903–910

    CAS  Google Scholar 

  • Tonglei L, Kenneth RM, Kinam P (2000) Influence of solvent and crystalline supramolecular structure on the formation of etching patterns on acetaminophen single crystals: a study with atomic force microscopy and computer simulation. J Phys Chem B 104:2019–2032

    Article  CAS  Google Scholar 

  • Tsukada M, Irie R, Yonemochi Y, Noda R, Kamiya H, Watanabe W, Kauppinen EI (2004) Adhesion force measurement of a DPI size pharmaceutical particle by colloid probe atomic force microscopy. Powder Tech 141:262–269

    Article  CAS  Google Scholar 

  • Van Eerdenbrugh B, Lo M, Kjoller K, Marcott C, Taylor LS (2012) Nanoscale mid-infrared imaging of phase separation in a drug–polymer blend. J Pharm Sci 101:2066–2073

    Article  PubMed  CAS  Google Scholar 

  • Wang XY, He PY, Du J, Zhang JZ (2010) Quercetin in combating H2O2 induced early cell apoptosis and mitochondrial damage to normal human keratinocytes. Chin Med J 123:532–536

    Google Scholar 

  • Wise JA, Smith JR, Bouropoulos N, Yannopoulos SN, van der Merwe SM, Fatouros DG (2008) Single wall carbon nanotube dispersions stabilised with N-trimethyl-chitosan. J Biomed Nanotechnol 4:67–72

    CAS  Google Scholar 

  • Wu N, Kong Y, Zu Y, Fu Y, Liu Z, Meng R, Liu X, Efferth T (2011) Activity investigation of pinostrobin towards herpes simplex virus-1 as determined by atomic force microscopy. Phytomedicine 18:110–118

    Article  CAS  PubMed  Google Scholar 

  • Xue W-F, Hellewell AL, Gosal WS, Homans SW, Hewitt EW, Radford SE (2009) Fibril fragmentation enhances amyloid cytotoxicity. J Biol Chem 284:34272–34282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yip CM, Ward MD (1996) Atomic force microscopy of insulin single crystals: direct visualization of molecules and crystal growth. Biophys J 71:1071–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Stack AG, Chen Y (2011) Interaction force measurement between E. coli cells and nanoparticles immobilized surfaces by using AFM. Colloids Surf B Biointerfaces 82:316–324

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios A. Lamprou .

Editor information

Editors and Affiliations

Appendix: Obtaining an AFM Contact Mode Image in Air

Appendix: Obtaining an AFM Contact Mode Image in Air

As a practical demonstration, this section outlines a typical sequence of the steps necessary for the acquisition of the simplest of AFM operations: a contact mode image to be obtained in air. Most of the details that make the sequence particularly relevant for a specific instrument have been excluded deliberately. Bacteria on a mica surface has been chosen as an example. Mica is an ideal substrate for many AFM studies since it is atomically flat (glass coverslips can appear quite rough for many high-resolution studies); fresh, uncontaminated surfaces can be also prepared, without the need for cleaning, by simply attaching adhesive tape and peeling away the top layer from this layered material (Morris et al. 2001). Mica is negatively charged and so improved adhesion to often negatively charged biological specimens, such as DNA, can be achieved by derivatising the mica surface with a suitable polycation, e.g., poly-l-lysine (Eaton and West 2010).

  1. 1.

    Turn on the AFM instrument and computer, and open the software.

  2. 2.

    Place a piece of mica (1 cm2, cut with scissors) on a nickel stub (1.2 cm2) using double-sided adhesive tape. Press it on firmly.

  3. 3.

    Cleave the mica with adhesive tape. Derivatise the mica, if required.

  4. 4.

    Add an aliquot (10 μL) of the solution containing bacteria to the mica surface. Leave the drop of solution in place for 2 min.

  5. 5.

    Carefully rinse the treated mica plate with distilled water to remove buffer salts, which might mask any biological sample features.

  6. 6.

    Allow to air-dry or carefully use a jet of nitrogen gas.

  7. 7.

    Place the sample on top of the AFM scanner; the magnet will hold the nickel disc of the sample in place.

  8. 8.

    Select a contact mode probe (of low spring constant k, ca. 0.06 N m−1) and fix into the AFM head above the sample.

  9. 9.

    Line up the laser (according to manufacturer’s instructions).

  10. 10.

    Move the sample and/or probe to select imaging region of interest.

  11. 11.

    Select a required scan range (say, 20 μm) and set the scan rate to 1 Hz. Use an image resolution size of at least 512 × 512 pixels. Select the integral, proportional and derivative (PID, external scanner feedback; Eaton and West 2010) settings outlined by the manufacturer (these will depend mostly on the scanner being used and whether air or liquid is the medium).

  12. 12.

    Lower the probe to just above the sample surface and use the automated approach.

  13. 13.

    Slowly increase the PID settings to maximise image contrast to just below the level that produces noise (piezo ringing). It should also be possible to reduce the applied load (reduce deflection) on the cantilever to improve image quality.

  14. 14.

    Once image settings are optimised, obtain a complete image and save (capture) it.

  15. 15.

    The next typical options will either be to zoom in, move to a different area or change the sample.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Controlled Release Society

About this chapter

Cite this chapter

Lamprou, D.A., Smith, J.R. (2016). Applications of AFM in Pharmaceutical Sciences. In: Müllertz, A., Perrie, Y., Rades, T. (eds) Analytical Techniques in the Pharmaceutical Sciences. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-4029-5_20

Download citation

Publish with us

Policies and ethics