Fluorescence Spectroscopy: Basic Foundations and Methods

  • Luis A. BagatolliEmail author
Part of the Advances in Delivery Science and Technology book series (ADST)


Fluorescence spectroscopy is a powerful experimental tool used by scientists from many disciplines. During the last decades there have been important developments on distinct fluorescence methods, particularly those related to the study of biological phenomena. This chapter discusses the foundations of the fluorescence phenomenon, introduces some general methodologies and provides selected examples on applications focused to disentangle structural and dynamical aspects of biological processes.


Light absorption, fluorescence emission Fluorescence lifetime Fluorescence polarization FRET Fluorescence instrumentation Fluorophores Raster imaging correlation spectroscopy 



The author wants to thanks the Danish National Research Foundation (which supports MEMPHYS-Center for Biomembrane Physics) and Drs. David Jameson and Roberto Stock for the critical reading of this manuscript.


  1. Acuna AU, Amat-Guerri F, Morcillo P, Liras M, Rodriguez B (2009) Structure and formation of the fluorescent compound of Lignum nephriticum. Org Lett 11(14):3020–3023PubMedCrossRefGoogle Scholar
  2. Alcala JR, Gratton E, Prendergast FG (1987a) Interpretation of fluorescence decays in proteins using continuous lifetime distributions. Biophys J 51(6):925–936PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alcala JR, Gratton E, Prendergast FG (1987b) Fluorescence lifetime distributions in proteins. Biophys J 51(4):597–604PubMedPubMedCentralCrossRefGoogle Scholar
  4. Alcala JR, Gratton E, Prendergast FG (1987c) Resolvability of fluorescence lifetime distributions using phase fluorometry. Biophys J 51(4):587–596PubMedPubMedCentralCrossRefGoogle Scholar
  5. Alvarez-Roman R, Naik A, Kalia YN, Fessi H, Guy RH (2004) Visualization of skin penetration using confocal laser scanning microscopy. Eur J Pharm Biopharm 58(2):301–316PubMedCrossRefGoogle Scholar
  6. Bagatolli LA (2006) To see or not to see: lateral organization of biological membranes and fluorescence microscopy. Biochim Biophys Acta 1758(10):1541–1556PubMedCrossRefGoogle Scholar
  7. Bagatolli LA (2013) LAURDAN fluorescence properties in membranes: a journey from the fluorometer to the microscope. In: Mely Y, Duportail G (eds) Fluorescent methods to study biological membranes, vol 13, Springer series on fluorescence. Springer, Berlin, pp 3–36CrossRefGoogle Scholar
  8. Bagatolli LA, Montich GG, Ravera M, Perez JD, Fidelio GD (1995) Fatty acid indole fluorescent derivatives as probes to measure the polarity of interfaces containing gangliosides. Chem Phys Lipids 78(2):193–202CrossRefGoogle Scholar
  9. Bagatolli LA, Kivatinitz SC, Aguilar F, Soto MA, Sotomayor CP, Fidelio GD (1996a) Two distinguishable fluorescent modes of 1-anilino 8-naphthalenesulfonate bound to Human Albumin. J Fluoresc 6:33–40PubMedCrossRefGoogle Scholar
  10. Bagatolli LA, Kivatinitz SC, Fidelio GD (1996b) Interaction of small ligands with human serum albumin IIIA subdomain. How to determine the affinity constant using an easy steady state fluorescent method. J Pharm Sci 85(10):1131–1132PubMedCrossRefGoogle Scholar
  11. Bloksgaard M, Brewer J, Bagatolli LA (2013) Structural and dynamical aspects of skin studied by multiphoton excitation fluorescence microscopy-based methods. Eur J Pharm Sci 50(5):586–594PubMedCrossRefGoogle Scholar
  12. Bouwstra JA, Honeywell-Nguyen PL (2002) Skin structure and mode of action of vesicles. Adv Drug Deliv Rev 54:S41–S55PubMedCrossRefGoogle Scholar
  13. Boyle R (1664) Experiments and considerations touching colours. Henry Herringman, LondonGoogle Scholar
  14. Brewer J, Bloksgaard M, Kubiak J, Sorensen JA, Bagatolli LA (2013) Spatially resolved two-color diffusion measurements in human skin applied to transdermal liposome penetration. J Invest Dermatol 133(5):1260–1268PubMedCrossRefGoogle Scholar
  15. Carrer DC, Vermehren C, Bagatolli LA (2008) Pig skin structure and transdermal delivery of liposomes: a two photon microscopy study. J Control Release 132(1):12–20PubMedCrossRefGoogle Scholar
  16. Cevc G (1997) Drug delivery across the skin. Expert Opin Investig Drugs 6(12):1887–1937PubMedCrossRefGoogle Scholar
  17. Cevc G (2003) Transdermal drug delivery of insulin with ultradeformable carriers. Clin Pharmacokinet 42(5):461–474PubMedCrossRefGoogle Scholar
  18. Cevc G (2004) Lipid vesicles and other colloids as drug carriers on the skin. Adv Drug Deliv Rev 56(5):675–711PubMedCrossRefGoogle Scholar
  19. Cevc G, Schatzlein A, Richardsen H (2002) Ultradeformable lipid vesicles can penetrate the skin and other semi-permeable barriers unfragmented. Evidence from double label CLSM experiments and direct size measurements. Biochim Biophys Acta 1564(1):21–30PubMedCrossRefGoogle Scholar
  20. Clegg R (2009) Förster resonance energy transfer—FRET: what is it, why do it, and how it’s done. In: Gadella TWJ (ed) FRET and FLIM techniques, vol 33, pp 1–57Google Scholar
  21. Coutinho A, Garcia C, Gonzalez-Rodriguez J, Lillo MP (2007) Conformational changes in human integrin alphaIIbbeta3 after platelet activation, monitored by FRET. Biophys Chem 130(1–2):76–87PubMedCrossRefGoogle Scholar
  22. Daniel E, Weber G (1966) Cooperative effects in binding by bovine serum albumin. I. The binding of 1-anilino-8-naphthalenesulfonate. Fluorimetric titrations. Biochemistry 5(6):1893–1900PubMedCrossRefGoogle Scholar
  23. Diaspro A, Bianchini P, Vicidomini G, Faretta M, Ramoino P, Usai C (2006) Multi-photon excitation microscopy. Biomed Eng Online 5:36PubMedPubMedCentralCrossRefGoogle Scholar
  24. Digman MA, Gratton E (2012) Scanning image correlation spectroscopy. Bioessays 34(5):377–385PubMedPubMedCentralCrossRefGoogle Scholar
  25. Digman MA, Brown CM, Sengupta P, Wiseman PW, Horwitz AR, Gratton E (2005a) Measuring fast dynamics in solutions and cells with a laser scanning microscope. Biophys J 89(2):1317–1327PubMedPubMedCentralCrossRefGoogle Scholar
  26. Digman MA, Sengupta P, Wiseman PW, Brown CM, Horwitz AR, Gratton E (2005b) Fluctuation correlation spectroscopy with a laser-scanning microscope: exploiting the hidden time structure. Biophys J 88(5):L33–L36PubMedPubMedCentralCrossRefGoogle Scholar
  27. Digman MA, Caiolfa VR, Zamai M, Gratton E (2008) The phasor approach to fluorescence lifetime imaging analysis. Biophys J 94(2):L14–L16PubMedCrossRefGoogle Scholar
  28. Eftink MR (1994) The use of fluorescence methods to monitor unfolding transitions in proteins. Biophys J 66(2 Pt 1):482–501PubMedPubMedCentralCrossRefGoogle Scholar
  29. Eftink MR, Ghiron CA (1981) Fluorescence quenching studies with proteins. Anal Biochem 114(2):199–227PubMedCrossRefGoogle Scholar
  30. Gratton E, Jameson DM, Hall RD (1984) Multifrequency phase and modulation fluorometry. Annu Rev Biophys Bioeng 13:105–124PubMedCrossRefGoogle Scholar
  31. Hawe A, Sutter M, Jiskoot W (2008) Extrinsic fluorescent dyes as tools for protein characterization. Pharm Res 25(7):1487–1499PubMedPubMedCentralCrossRefGoogle Scholar
  32. He XM, Carter DC (1992) Atomic structure and chemistry of human serum albumin. Nature 358(6383):209–215PubMedCrossRefGoogle Scholar
  33. Honeywell-Nguyen PL, Gooris GS, Bouwstra JA (2004) Quantitative assessment of the transport of elastic and rigid vesicle components and a model drug from these vesicle formulations into human skin in vivo. J Investig Dermatol 123(5):902–910PubMedCrossRefGoogle Scholar
  34. Honeywell-Nguyen PL, Groenink HWW, Bouwstra JA (2006) Elastic vesicles as a tool for dermal and transdermal delivery. J Liposome Res 16(3):273–280CrossRefGoogle Scholar
  35. Isasi SC, Bianco ID, Fidelio GD (1995) Gangliosides raise the intracellular Ca2+ level in different cell types. Life Sci 57(5):449–456PubMedCrossRefGoogle Scholar
  36. Jameson D (1998) Gregorio Weber, 1916–1997: a fluorescent lifetime. Biophys J 75:419–421PubMedPubMedCentralCrossRefGoogle Scholar
  37. Jameson DM, Ross JA (2010) Fluorescence polarization/anisotropy in diagnostics and imaging. Chem Rev 110(5):2685–2708PubMedPubMedCentralCrossRefGoogle Scholar
  38. Jameson D, Croney JC, Moens P (2003) Fluorescence: basic concepts, practical aspects and some anecdotes. Methods Enzymol 360:1–43PubMedCrossRefGoogle Scholar
  39. Jameson DM, Ross JA, Albanesi JP (2009) Fluorescence fluctuation spectroscopy: ushering in a new age of enlightenment for cellular dynamics. Biophys Rev 1(3):105–118PubMedPubMedCentralCrossRefGoogle Scholar
  40. Johnson ID (2010a) Indicators for Ca2+, Mg2+, Zn2+ and other metal ions. In: The molecular probes handbook: a guide to fluorescent probes and labeling technologies, 11th edn. Life Technologies Corporation, sect 19.12Google Scholar
  41. Johnson ID (2010a) The molecular probes handbook: a guide to fluorescent probes and labeling technologies, 11th edn. Life Technologies Corporation, CarlsbadGoogle Scholar
  42. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New YorkCrossRefGoogle Scholar
  43. Lakowicz JR, Weber G (1973a) Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules. Biochemistry 12(21):4161–4170PubMedCrossRefGoogle Scholar
  44. Lakowicz JR, Weber G (1973b) Quenching of protein fluorescence by oxygen. Detection of structural fluctuations in proteins on the nanosecond time scale. Biochemistry 12(21):4171–4179PubMedCrossRefGoogle Scholar
  45. Lasagna M, Vargas V, Jameson DM, Brunet JE (1996) Spectral properties of environmentally sensitive probes associated with horseradish peroxidase. Biochemistry 35(3):973–979PubMedCrossRefGoogle Scholar
  46. Maystre D (2012) Theory of Wood’s anomalies. In: Enouch S, Bonod N (eds) Plasmonics, vol 167, Springer series in optical sciences. Springer, Berlin, pp 39–83CrossRefGoogle Scholar
  47. Murata S, Iwanaga C, Toda T, Kokubun H (1972) Fluorescence and radiationless transitions from the second excited states of azulene derivatives. Ber Bunsenges Phys Chem 76:1176–1183Google Scholar
  48. Newton I (1665–1666) Of colours. Cambridge University Library, CambridgeGoogle Scholar
  49. Parasassi T, Gratton E (1995) Membrane lipid domains and dynamics as detected by LAURDAN fluorescence. J Fluoresc 5(1):59–69PubMedCrossRefGoogle Scholar
  50. Parasassi T, Krasnowska EK, Bagatolli LA, Gratton E (1998) LAURDAN and Prodan as polarity sensitive fluorescent membrane probes. J Fluoresc 8(4):365–373CrossRefGoogle Scholar
  51. Perrin F (1926) Polarisation de la lumière de fluorescence. Vie moyenne des molécules dans l'etat excité. J Phys Radium 7:390–401CrossRefGoogle Scholar
  52. Rosso SB, Gonzalez M, Bagatolli LA, Duffard RO, Fidelio GD (1998) Evidence of a strong interaction of 2,4-dichlorophenoxyacetic acid herbicide with human serum albumin. Life Sci 63(26):2343–2351PubMedCrossRefGoogle Scholar
  53. Simonsson C, Madsen JT, Graneli A, Andersen KE, Karlberg AT, Jonsson CA, Ericson MB (2011) A study of the enhanced sensitizing capacity of a contact allergen in lipid vesicle formulations. Toxicol Appl Pharmacol 252(3):221–227PubMedCrossRefGoogle Scholar
  54. Slavik J (1982) Anilinonaphthalene sulfonate as a probe of membrane composition and function. Biochim Biophys Acta 694(1):1–25PubMedCrossRefGoogle Scholar
  55. Stefl M, James NG, Ross JA, Jameson DM (2011) Applications of phasors to in vitro time-resolved fluorescence measurements. Anal Biochem 410:62–69PubMedCrossRefGoogle Scholar
  56. Strickler SJ, Berg RA (1962) Relationship between absorption intensity and fluorescence lifetime of molecules. J Chem Phys 37:814–822CrossRefGoogle Scholar
  57. Tsien CL, Fraser HS, Long WJ, Kennedy RL (1998) Using classification tree and logistic regression methods to diagnose myocardial infarction. Stud Health Technol Inform 52(Pt 1):493–497PubMedGoogle Scholar
  58. Ustione A, Piston DW (2011) A simple introduction to multiphoton microscopy. J Microsc 243(3):221–226PubMedCrossRefGoogle Scholar
  59. Valeur B, Berberan-Santos MN (2013) Molecular fluorescence. Principles and applications, 2nd edn. Wiley-VCH Verlag y Co, WeinheimGoogle Scholar
  60. van Kuijk-Meuwissen MEMJ, Junginger HE, Bouwstra JA (1998) Interactions between liposomes and human skin in vitro, a confocal laser scanning microscopy study. Biochim Biophys Acta Biomembr 1371(1):31–39CrossRefGoogle Scholar
  61. van Munster EB, Gadella TW (2005) Fluorescence lifetime imaging microscopy (FLIM). Adv Biochem Eng Biotechnol 95:143–175PubMedGoogle Scholar
  62. Weber G (1952) Polarization of the fluorescence of macromolecules. I. Theory and experimental method. Biochem J 51(2):145–155PubMedPubMedCentralCrossRefGoogle Scholar
  63. Weber G, Daniel E (1966) Cooperative effects in binding by bovine serum albumin. II. The binding of 1-anilino-8-naphthalenesulfonate. Polarization of the ligand fluorescence and quenching of the protein fluorescence. Biochemistry 5(6):1900–1907PubMedCrossRefGoogle Scholar
  64. Weber G, Farris FJ (1979) Synthesis and spectral properties of a hydrophobic fluorescent probe: 6-propionyl-2-(dimethylamino)naphthalene. Biochemistry 18(14):3075–3078PubMedCrossRefGoogle Scholar
  65. Weber G, Laurence DJ (1954) Fluorescent indicators of adsorption in aqueous solution and on the solid phase. Biochem J 56 (325th Meeting):xxxiGoogle Scholar
  66. Weber G, Young LB (1964) Fragmentation of bovine serum albumin by pepsin. I. The origin of the acid expansion of the albumin molecule. J Biol Chem 239:1415–1423PubMedGoogle Scholar

Copyright information

© Controlled Release Society 2016

Authors and Affiliations

  1. 1.MEMPHYS—Center for Biomembrane PhysicsUniversity of Southern DenmarkOdense MDenmark

Personalised recommendations