Mass Spectrometry Imaging of Pharmaceuticals: From Tablets to Tissues

  • Ivan M. KempsonEmail author
  • Clive A. PrestidgeEmail author
Part of the Advances in Delivery Science and Technology book series (ADST)


Drug efficacy is dependent upon effective and controlled release for delivery to the target site. The properties of a drug product effecting delivery are carefully manipulated by a variety of ingredients/excipients serving various purposes. As such, there is high dependence on the optimal construction and spatial arrangement of all ingredients. The subsequent fate of the active pharmaceutical ingredient then ultimately determines therapeutic and toxic effects. Mass spectrometry imaging offers high sensitivity, specificity, high mass resolution and high mass ranges for imaging component distributions in solid forms and in biological tissues. This chapter reviews mass spectrometry imaging techniques most commonly utilised in these research areas. Examples are then provided of imaging various components in solid form products and on the exciting area of label-free imaging of pharmaceuticals and metabolites in animal tissues. A small section is also provided on micro-array imaging of biologicals. Due to the relative immaturity of the field, a special focus on future perspectives and emerging potential concludes the chapter.


Mass spectrometry Imaging ToF-SIMS LA-ICPMS MALDI Active pharmaceutical ingredients Excipients Analysis Small molecules Biologicals 3D Metabolism 


  1. Ait-Belkacem R, Sellami L, Villard C, DePauw E, Calligaris D, Lafitte D (2012) Mass spectrometry imaging is moving toward drug protein co-localization. Trends Biotechnol 30(9):466–474CrossRefPubMedGoogle Scholar
  2. Al-Bataineh SA, Short RD (2014) Protein patterning on microplasma-activated PEO-like coatings. Plasma Processes Polym 11(3):263–268CrossRefGoogle Scholar
  3. Braun RM, Beyder A, Xu J, Wood MC, Ewing AG, Winograd N (1999) Spatially resolved detection of attomole quantities of organic molecules localized in picoliter vials using time-of-flight secondary ion mass spectrometry. Anal Chem 71(16):3318–3324CrossRefPubMedGoogle Scholar
  4. Brito E, Abreu S, Brien C, Skinner W (2010) ToF-SIMS as a new method to determine the contact angle of mineral surfaces. Langmuir 26(11):8122–8130CrossRefGoogle Scholar
  5. Brulet M, Seyer A, Edelman A, Brunelle A, Fritsch J, Ollero M, Laprévote O (2010) Lipid mapping of colonic mucosa by cluster TOF-SIMS imaging and multivariate analysis in cftr knockout mice. J Lipid Res 51(10):3034–3045CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bugay DE (2001) Characterization of the solid-state: spectroscopic techniques. Adv Drug Del Rev 48(1):43–65CrossRefGoogle Scholar
  7. Bunch J, Clench MR, Richards DS (2004) Determination of pharmaceutical compounds in skin by imaging matrix-assisted laser desorption/ionisation mass spectrometry. Rapid Commun Mass Spectrom 18(24):3051–3060CrossRefPubMedGoogle Scholar
  8. Chan JGY, Chan HK, Prestidge CA, Denman JA, Young PM, Traini D (2013) A novel dry powder inhalable formulation incorporating three first-line anti-tubercular antibiotics. Eur J Pharm Biopharm 83(2):285–292CrossRefPubMedGoogle Scholar
  9. Chughtai K, Heeren RMA (2010) Mass spectrometric imaging for biomedical tissue analysis. Chem Rev 110(5):3237–3277CrossRefPubMedPubMedCentralGoogle Scholar
  10. Earnshaw CJ, Carolan VA, Richards DS, Clench MR (2010) Direct analysis of pharmaceutical tablet formulations using matrix-assisted laser desorption/ionisation mass spectrometry imaging. Rapid Commun Mass Spectrom 24(11):1665–1672CrossRefPubMedGoogle Scholar
  11. Eijkel GB, Kaletaş BK, Van Der Wiel IM, Kros JM, Luider TM, Heeren RMA (2009) Correlating MALDI and SIMS imaging mass spectrometric datasets of biological tissue surfaces. Surf Interface Anal 41(8):675–685CrossRefGoogle Scholar
  12. Finnskog D, Ressine A, Laurell T, Marko-Varga G (2004) Integrated protein microchip assay with dual fluorescent- and MALDI read-out. J Proteome Res 3(5):988–994CrossRefPubMedGoogle Scholar
  13. Fisher GL, Belu AM, Mahoney CM, Wormuth K, Sanada N (2009) Three-dimensional time-of-flight secondary ion mass spectrometry imaging of a pharmaceutical in a coronary stent coating as a function of elution time. Anal Chem 81(24):9930–9940CrossRefPubMedGoogle Scholar
  14. Fournier I, Wisztorski M, Salzet M (2008) Tissue imaging using MALDI-MS: a new frontier of histopathology proteomics. Expert Rev Proteomics 5(3):413–424CrossRefPubMedGoogle Scholar
  15. Galhena AS, Harris GA, Nyadong L, Murray KK, Fernández FM (2010) Small molecule ambient mass spectrometry imaging by infrared laser ablation metastable-induced chemical ionization. Anal Chem 82(6):2178–2181CrossRefPubMedGoogle Scholar
  16. Goodwin RJA, Iverson SL, Andren PE (2012) The significance of ambient-temperature on pharmaceutical and endogenous compound abundance and distribution in tissues sections when analyzed by matrix-assisted laser desorption/ionization mass spectrometry imaging. Rapid Commun Mass Spectrom 26(5):494–498CrossRefPubMedGoogle Scholar
  17. Grey AC, Schey KL (2009) Age-related changes in the spatial distribution of human lens α-crystallin products by MALDI imaging mass spectrometry. Invest Ophthalmol Vis Sci 50(9):4319–4329CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gusev AI, Vasseur OJ, Proctor A, Sharkey AG, Hercules DM (1995) Imaging of thin-layer chromatograms using matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 67(24):4565–4570CrossRefGoogle Scholar
  19. Harris GA, Nyadong L, Fernandez FM (2008) Recent developments in ambient ionization techniques for analytical mass spectrometry. Analyst 133(10):1297–1301CrossRefPubMedGoogle Scholar
  20. Heeren RMA, Smith DF, Stauber J, Kükrer-Kaletas B, MacAleese L (2009) Imaging mass spectrometry: hype or hope? J Am Soc Mass Spectrom 20(6):1006–1014CrossRefPubMedGoogle Scholar
  21. Hsieh Y, Chen J, Korfmacher WA (2007) Mapping pharmaceuticals in tissues using MALDI imaging mass spectrometry. J Pharmacol Toxicol Methods 55(2):193–200CrossRefPubMedGoogle Scholar
  22. Hsieh Y, Li F, Korfmacher WA (2010) Mapping pharmaceuticals in rat brain sections using MALDI imaging mass spectrometry. Methods Mol Biol 656:147–158CrossRefPubMedGoogle Scholar
  23. Izmer A, Gholap D, De Houwer K, Cuyckens F, Vanhaecke F (2012) A pilot study on the use of laser ablation-ICP-mass spectrometry for assessing/mapping the distribution of a drug and its metabolites across the body compartments of rats. J Anal At Spectrom 27(3):413–418CrossRefGoogle Scholar
  24. Jones EA, Lockyer NP, Vickerman JC (2007) Mass spectral analysis and imaging of tissue by ToF-SIMS—the role of buckminsterfullerene, C60 +, primary ions. Int J Mass Spectrom 260(2–3):146–157CrossRefGoogle Scholar
  25. Kempson IM, Martin AL, Denman JA, French PW, Prestidge CA, Barnes TJ (2010) Detecting the presence of denatured human serum albumin in an adsorbed protein monolayer using. TOF-SIMS Langmuir 26(14):12075–12080CrossRefPubMedGoogle Scholar
  26. Kempson IM, Chang P, Bremmell K, Prestidge CA (2013) Low temperature thermal dependent Filgrastim adsorption behavior detected with ToF-SIMS. Langmuir 29(50):15573–15578CrossRefPubMedGoogle Scholar
  27. Khatib-Shahidi S, Andersson M, Herman JL, Gillespie TA, Caprioli RM (2006) Direct molecular analysis of whole-body animal tissue sections by imaging MALDI mass spectrometry. Anal Chem 78(18):6448–6456CrossRefPubMedGoogle Scholar
  28. Klinkert I, Chughtai K, Ellis SR, Heeren RMA (2014) Methods for full resolution data exploration and visualization for large 2D and 3D mass spectrometry imaging datasets. Int J Mass Spectrom 362(1):40–47CrossRefGoogle Scholar
  29. Lanzarotta A, Crowe JB, Witkowski M, Gamble BM (2012) A multidisciplinary approach for the analysis of an adulterated dietary supplement where the active pharmaceutical ingredient was embedded in the capsule shell. J Pharm Biomed Anal 67–68:22–27CrossRefPubMedGoogle Scholar
  30. Lee TG, Park JW, Shon HK, Moon DW, Choi WW, Li K, Chung JH (2008) Biochemical imaging of tissues by SIMS for biomedical applications. Appl Surf Sci 255(4):1241–1248CrossRefGoogle Scholar
  31. Liu X, Qu S, Lu X, Ge X, Leng Y (2009) Time-of-flight secondary ion mass spectrometry study on the distribution of alendronate sodium in drug-loaded ultra-high molecular weight polyethylene. Biomed Mater 4(6):065008CrossRefPubMedGoogle Scholar
  32. Liu X, Ide JL, Norton I, Marchionni MA, Ebling MC, Wang LY, Davis E, Sauvageot CM, Kesari S, Kellersberger KA, Easterling ML, Santagata S, Stuart DD, Alberta J, Agar JN, Stiles CD, Agar NY (2013) Molecular imaging of drug transit through the blood-brain barrier with MALDI mass spectrometry imaging. Sci Rep 3:2859PubMedPubMedCentralGoogle Scholar
  33. Nyadong L, Harris GA, Balayssac S, Galhena AS, Malet-Martino M, Martino R, Parry RM, Wang MD, Fernández FM, Gilard V (2009) Combining two-dimensional diffusion-ordered nuclear magnetic resonance spectroscopy, imaging desorption electrospray ionization mass spectrometry, and direct analysis in real-time mass spectrometry for the integral investigation of counterfeit pharmaceuticals. Anal Chem 81(12):4803–4812CrossRefPubMedPubMedCentralGoogle Scholar
  34. Oetjen J, Aichler M, Trede D, Strehlow J, Berger J, Heldmann S, Becker M, Gottschalk M, Kobarg JH, Wirtz S, Schiffler S, Thiele H, Walch A, Maass P, Alexandrov T (2013) MRI-compatible pipeline for three-dimensional MALDI imaging mass spectrometry using PAXgene fixation. J Proteom 90:52–60CrossRefGoogle Scholar
  35. Pajander J, Haugshøj KB, Bjørneboe K, Wahlberg P, Rantanen J (2013) Foreign matter identification from solid dosage forms. J Pharm Biomed Anal 80:116–125CrossRefPubMedGoogle Scholar
  36. Parson WB, Koeniger SL, Johnson RW, Erickson J, Tian Y, Stedman C, Schwartz A, Tarcsa E, Cole R, Van Berkel GJ (2012) Analysis of chloroquine and metabolites directly from whole-body animal tissue sections by liquid extraction surface analysis (LESA) and tandem mass spectrometry. J Mass Spectrom 47(11):1420–1428CrossRefPubMedGoogle Scholar
  37. Physical Electronics, Inc., USA (2010) TOF-SIMS imaging of a drug pellet cross-section using a Bi3 2+ cluster ion beamGoogle Scholar
  38. Reyzer ML, Caldwell RL, Dugger TC, Forbes JT, Ritter CA, Guix M, Arteaga CL, Caprioli RM (2004) Early changes in protein expression detected by mass spectrometry predict tumor response to molecular therapeutics. Cancer Res 64(24):9093–9100CrossRefPubMedGoogle Scholar
  39. Rohner TC, Staab D, Stoeckli M (2005) MALDI mass spectrometric imaging of biological tissue sections. Mech Ageing Dev 126(1):177–185CrossRefPubMedGoogle Scholar
  40. Schadt S, Kallbach S, Almeida R, Sandel J (2012) Investigation of figopitant and its metabolites in rat tissue by combining whole-body autoradiography with liquid extraction surface analysis mass spectrometry. Drug Metab Disposition 40(3):419–425CrossRefGoogle Scholar
  41. Schwamborn K, Caprioli RM (2010) Molecular imaging by mass spectrometry-looking beyond classical histology. Nat Rev Cancer 10(9):639–646CrossRefPubMedGoogle Scholar
  42. Scoutaris N, Hook AL, Gellert PR, Roberts CJ, Alexander MR, Scurr DJ (2012) ToF-SIMS analysis of chemical heterogeneities in inkjet micro-array printed drug/polymer formulations. J Mater Sci Mater Med 23(2):385–391CrossRefPubMedGoogle Scholar
  43. Shur J, Price R (2012) Advanced microscopy techniques to assess solid-state properties of inhalation medicines. Adv Drug Del Rev 64(4):369–382CrossRefGoogle Scholar
  44. Soltwisch J, Göritz G, Jungmann JH, Kiss A, Smith DF, Ellis SR, Heeren RMA (2014) MALDI mass spectrometry imaging in microscope mode with infrared lasers: bypassing the diffraction limits. Anal Chem 86(1):321–325CrossRefPubMedGoogle Scholar
  45. Takai N, Tanaka Y, Inazawa K, Saji H (2012) Quantitative analysis of pharmaceutical drug distribution in multiple organs by imaging mass spectrometry. Rapid Commun Mass Spectrom 26(13):1549–1556CrossRefPubMedGoogle Scholar
  46. Wendeln C, Heile A, Arlinghaus HF, Ravoo BJ (2010) Carbohydrate microarrays by microcontact printing. Langmuir 26(7):4933–4940CrossRefPubMedGoogle Scholar
  47. Zhou Q, Qu L, Gengenbach T, Denman JA, Larson I, Stewart PJ, Morton DAV (2011) Investigation of the extent of surface coating via mechanofusion with varying additive levels and the influences on bulk powder flow properties. Int J Pharm 413(1–2):36–43CrossRefPubMedGoogle Scholar

Copyright information

© Controlled Release Society 2016

Authors and Affiliations

  1. 1.Future Industries InstituteUniversity of South AustraliaMawson LakesAustralia
  2. 2.School of Pharmacy and Medical SciencesUniversity of South AustraliaAdelaideAustralia

Personalised recommendations