Advertisement

Asymmetrical Flow Field Flow Fractionation: A Useful Tool for the Separation of Protein Pharmaceuticals and Particulate Systems

  • Julia EngertEmail author
  • Roman Mathaes
  • Gerhard Winter
Chapter
Part of the Advances in Delivery Science and Technology book series (ADST)

Abstract

The focus of this chapter will be on asymmetrical flow field flow fractionation (AF4) for the separation and characterization of protein pharmaceuticals and particulate systems. The chapter will provide some background and historical information on field flow fractionation and the general working principle. In addition, a practical guide on how to use AF4 will be described and critical parameters for the development of a suitable separation method will be discussed. The use of AF4 for protein pharmaceuticals as well as particulate systems will be described and some examples given in the literature will be presented. Finally, a summary of the most recent trends in AF4 and an outlook will be given for potential application fields in the future.

Keywords

Asymmetrical flow field flow fractionation Protein pharmaceuticals Separation 

Notes

Acknowledgements

The authors wish to thank Dr.-Ing. Marcus Engert for preparing the schematic illustrations.

References

  1. Alfi M, Park J (2014) Theoretical analysis of the local orientation effect and the lift-hyperlayer mode of rodlike particles in field-flow fractionation. J Sep Sci 37(7):876–883. doi: 10.1002/jssc.201300902 CrossRefPubMedGoogle Scholar
  2. Arakawa T, Ejima D, Li T, Philo JS (2010) The critical role of mobile phase composition in size exclusion chromatography of protein pharmaceuticals. J Pharm Sci 99(4):1674–1692. doi: 10.1002/jps.21974 CrossRefPubMedGoogle Scholar
  3. Caldwell KD (1988) Field-flow fractionation. Anal Chem 60:959–971CrossRefGoogle Scholar
  4. Caldwell KD, Nguyen TT, Myers MN, Giddings JC (1979) Observations on anomalous retention in steric field-flow fractionation. Sep Sci Technol 14:935–946CrossRefGoogle Scholar
  5. Carpenter JF, Randolph TW, Jiskoot W, Crommelin DJA, Middaugh CR, Winter G (2010) Potential inaccurate quantitation and sizing of protein aggregates by size exclusion chromatography: essential need to use orthogonal methods to assure the quality of therapeutic protein products. J Pharm Sci 99(5):2200–2208. doi: 10.1002/jps.21989 CrossRefPubMedGoogle Scholar
  6. Chuan YP, Fan YY, Lua L, Middelberg APJ (2008) Quantitative analysis of virus-like particle size and distribution by field-flow fractionation. Biotechnol Bioeng 99(6):1425–1433. doi: 10.1002/bit.21710 CrossRefPubMedGoogle Scholar
  7. Chun J, Fagan JA, Hobbie EK, Bauer BJ (2008) Size separation of single-wall carbon nanotubes by flow-field flow fractionation. Anal Chem 80(7):2514–2523. doi: 10.1021/ac7023624 CrossRefPubMedGoogle Scholar
  8. di Cagno M, Terndrup Nielsen T, Lambertsen Larsen K, Kuntsche J, Bauer-Brandl A (2014) β-Cyclodextrin-dextran polymers for the solubilization of poorly soluble drugs. Int J Pharma 468(1–2):258–263. doi:http://dx.doi.org/10.1016/j.ijpharm.2014.04.029
  9. Engel A, Plöger M, Mulac D, Langer K (2014) Asymmetric flow field-flow fractionation (AF4) for the quantification of nanoparticle release from tablets during dissolution testing. Int J Pharma 461(1–2):137–144. doi:http://dx.doi.org/10.1016/j.ijpharm.2013.11.044
  10. Fincke A, Winter J, Bunte T, Olbrich C (2014) Thermally induced degradation pathways of three different antibody-based drug development candidates. Eur J Pharm Sci 62:148–160. doi:http://dx.doi.org/10.1016/j.ejps.2014.05.014
  11. Fraunhofer W (2003) Asymmetrical flow field-flow-fractionation in pharmaceutical analytics—investigations in aggregation tendencies of pharmaceutical antibodies. Ph.D. thesis, Ludwig-Maximilians-University of MunichGoogle Scholar
  12. Fraunhofer W, Winter G (2004) The use of asymmetrical flow field-flow fractionation in pharmaceutics and biopharmaceutics. Eur J Pharma Biopharma 58(2):369–383. doi:http://dx.doi.org/10.1016/j.ejpb.2004.03.034
  13. Fraunhofer W, Winter G, Coester C (2004) Asymmetrical flow field-flow fractionation and multiangle light scattering for analysis of gelatin nanoparticle drug carrier systems. Anal Chem 76(7):1909–1920. doi: 10.1021/ac0353031 CrossRefPubMedGoogle Scholar
  14. Freitag AJ, Wittmann K, Immohr LI, Winter G, Myschik J (2011a) Asymmetrical flow field-flow fractionation—a preparative tool to obtain endotoxin-free protein Species. GIT Lab J 15:17–18Google Scholar
  15. Freitag AJ, Wittmann K, Winter G, Myschik J (2011b) The preparative use of flow field-flow fractionation (AF4). LC GC Europe 24(3):134–137Google Scholar
  16. Freitag A, Shomali M, Michalakis S, Biel M, Siedler M, Kaymakcalan Z, Carpenter J, Randolph T, Winter G, Engert J (2014) Investigation of the immunogenicity of different types of aggregates of a murine monoclonal antibody in mice. Pharm Res 32(2):430–444. doi: 10.1007/s11095-014-1472-6 CrossRefPubMedGoogle Scholar
  17. Fukuda J, Iwura T, Yanagihara S, Kano K (2014) Separation and quantification of monoclonal-antibody aggregates by hollow-fiber-flow field-flow fractionation. Anal Bioanal Chem 406(25):6257–6264. doi: 10.1007/s00216-014-8065-4 CrossRefPubMedGoogle Scholar
  18. Gabrielson JP, Brader ML, Pekar AH, Mathis KB, Winter G, Carpenter JF, Randolph TW (2007) Quantitation of aggregate levels in a recombinant humanized monoclonal antibody formulation by size-exclusion chromatography, asymmetrical flow field flow fractionation, and sedimentation velocity. J Pharm Sci 96(2):268–279. doi: 10.1002/jps.20760 CrossRefPubMedGoogle Scholar
  19. Giddings JC (1978) Displacement and dispersion of particles of finite size in flow channels with lateral forces: field-flow fractionation and hydrodynamic chromatography. Sep Sci Technol 13:241–245CrossRefGoogle Scholar
  20. Giddings JC (1993) Field-flow fractionation: analysis of macromolecular, colloidal, and particulate materials. Science 260:1456–1465CrossRefPubMedGoogle Scholar
  21. Gigault J, Pettibone JM, Schmitt C, Hackley VA (2014a) Rational strategy for characterization of nanoscale particles by asymmetric-flow field flow fractionation: a tutorial. Anal Chim Acta 809:9–24. doi:http://dx.doi.org/10.1016/j.aca.2013.11.021
  22. Gigault J, Zhang W, Lespes G, Charleux B, Grassl B (2014b) Asymmetrical flow field-flow fractionation analysis of water suspensions of polymer nanofibers synthesized via RAFT-mediated emulsion polymerization. Anal Chim Acta 819:116–121. doi:http://dx.doi.org/10.1016/j.aca.2014.02.011
  23. Gottschalk S, Lang R, Winter G (2006). Quantification of Insoluble Monoclonal Antibody Aggregates. Wyatt Application Note (http://www.wyatt.com/files/literature/app-notes/fff-mals/insoluble-mab-aggregates.pdf), retrieved 08/06/2016
  24. Heroult J, Nischwitz V, Bartczak D, Goenaga-Infante H (2014) The potential of asymmetric flow field-flow fractionation hyphenated to multiple detectors for the quantification and size estimation of silica nanoparticles in a food matrix. Anal Bioanal Chem 406(16):3919–3927. doi: 10.1007/s00216-014-7831-7 CrossRefPubMedGoogle Scholar
  25. Hinna A, Steiniger F, Hupfeld S, Brandl M, Kuntsche J (2014) Asymmetrical flow field-flow fractionation with on-line detection for drug transfer studies: a feasibility study. Anal Bioanal Chem 406(30):7827–7813. doi: 10.1007/s00216-014-7643-9 CrossRefPubMedGoogle Scholar
  26. Hupfeld S, Holsaeter AM, Skar M, Frantzen CB, Brandl M (2006) Liposome size analysis by dynamic/static light scattering upon size exclusion-/field flow fractionation. J Nanosci Nanotechnol 6(8):1–7CrossRefGoogle Scholar
  27. Hupfeld S, Ausbacher D, Brandl M (2009) Asymmetric flow field-flow fractionation of liposomes: optimization of fractionation variables. J Sep Sci 32(9):1465–1470. doi: 10.1002/jssc.200800626 CrossRefPubMedGoogle Scholar
  28. Hupfeld S, Moen HH, Ausbacher D, Haas H, Brandl M (2010) Liposome fractionation and size analysis by asymmetrical flow field-flow fractionation/multi-angle light scattering: influence of ionic strength and osmotic pressure of the carrier liquid. Chem Phys Lipids 163(2):141–147. doi:http://dx.doi.org/10.1016/j.chemphyslip.2009.10.009
  29. John C, Langer K (2014) Asymmetrical flow field-flow fractionation for human serum albumin based nanoparticle characterisation and a deeper insight into particle formation processes. J Chromatogr A 1346:97–106. doi:http://dx.doi.org/10.1016/j.chroma.2014.04.048
  30. Jores K, Mehnert W, Drechsler M, Bunjes H, Johann C, Mäder K (2004) Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy. J Controlled Release 95(2):217–227. doi:http://dx.doi.org/10.1016/j.jconrel.2003.11.012
  31. Kanzer J, Hupfeld S, Vasskog T, Tho I, Hölig P, Mägerlein M, Fricker G, Brandl M (2010) In situ formation of nanoparticles upon dispersion of melt extrudate formulations in aqueous medium assessed by asymmetrical flow field-flow fractionation. J Pharm Biomed Anal 53(3):359–365. doi:http://dx.doi.org/10.1016/j.jpba.2010.04.012
  32. Klein T, Huerzeler C (1999) Characterization of biopolymers, proteins, particles and colloids by means of field-flow fractionation. GIT Labor-Fachzeitschrift 11:1224–1228Google Scholar
  33. Lang R, Winter G, Vogt L, Zürcher A, Dorigo B, Schimmele B (2009) Rational design of a stable, freeze-dried virus-like particle-based vaccine formulation. Drug Dev Ind Pharm 35(1):83–97. doi: 10.1080/03639040802192806 CrossRefPubMedGoogle Scholar
  34. Lee H, Williams SK, Allison SD, Anchordoquy TJ (2001) Analysis of self-assembled cationic lipid-DNA gene carrier complexes using flow field-flow fractionation and light scattering. Anal Chem 73:837–843CrossRefPubMedGoogle Scholar
  35. Litzén A, Wahlund KG (1989) Application of an asymmetrical flow field-flow fractionation channel to the separation and characterization of proteins, plasmids, plasmid fragments, polysaccharides and unicellular algae. J Chromatogr 461:73–87CrossRefPubMedGoogle Scholar
  36. Litzén A, Wahlund KG (1991) Zone broadening and dilution in rectangular and trapezoidal asymmetrical flow field-flow fractionation channels. Anal Chem 63:1001–1007CrossRefGoogle Scholar
  37. Litzén A, Walter JK, Krischollek H, Wahlund KG (1993) Separation and quantitation of monoclonal antibody aggregates by asymmetrical flow field-flow fractionation and comparison to gel permeation chromatography. Anal Biochem 212:469–480CrossRefPubMedGoogle Scholar
  38. Ma D, Martin N, Tribet C, Winnik F (2014) Quantitative characterization by asymmetrical flow field-flow fractionation of IgG thermal aggregation with and without polymer protective agents. Anal Bioanal Chem 406(29):7539–7547. doi: 10.1007/s00216-014-8200-2 CrossRefPubMedGoogle Scholar
  39. Maskos M, Schupp W (2003) Circular asymmetrical flow field-flow fractionation for the semipreparative separation of particles. Anal Chem 75(22):6105–6108. doi: 10.1021/ac034394z CrossRefPubMedGoogle Scholar
  40. Mathaes R, Winter G, Engert J, Besheer A (2013) Application of different analytical methods for the characterization of non-spherical micro- and nanoparticles. Int J Pharma 453(2):620–629. doi:http://dx.doi.org/10.1016/j.ijpharm.2013.05.046
  41. Noga M, Edinger D, Kläger R, Wegner SV, Spatz JP, Wagner E, Winter G, Besheer A (2013) The effect of molar mass and degree of hydroxyethylation on the controlled shielding and deshielding of hydroxyethyl starch-coated polyplexes. Biomaterials 34(10):2530–2538. doi:http://dx.doi.org/10.1016/j.biomaterials.2012.12.025
  42. Pauck T, Coelfen H (1998) Hydrodynamic analysis of macromolecular conformation. A comparative study of flow field-flow fractionation and analytical ultracentrifugation. Anal Chem 70:3886–3891CrossRefGoogle Scholar
  43. Pease LF, Lipin DI, Tsai D-H, Zachariah MR, Lua LHL, Tarlov MJ, Middelberg APJ (2009) Quantitative characterization of virus-like particles by asymmetrical flow field flow fractionation, electrospray differential mobility analysis, and transmission electron microscopy. Biotechnol Bioeng 102(3):845–855. doi: 10.1002/bit.22085 CrossRefPubMedGoogle Scholar
  44. Phelan Jr FR, Bauer BJ (2009) Comparison of steric effects in the modeling of spheres and rodlike particles in field-flow fractionation. Chem Eng Sci 64(8):1747–1758. doi:http://dx.doi.org/10.1016/j.ces.2008.10.006
  45. Philo JS (2009) A critical review of methods for size characterization of non-particulate protein aggregates. Curr Pharm Biotechnol 10(4):359–372CrossRefPubMedGoogle Scholar
  46. Reschiglian P, Melucci D, Zattoni A, Malló L, Hansen M, Kummerow A, Miller M (2000) Working without accumulation membrane in flow field-flow fractionation. Anal Chem 15(24):5945–5954CrossRefGoogle Scholar
  47. Reschiglian P, Roda B, Zattoni A, Tanase M, Marassi V, Serani S (2014) Hollow-fiber flow field-flow fractionation with multi-angle laser scattering detection for aggregation studies of therapeutic proteins. Anal Bioanal Chem 406(6):1619–1627. doi: 10.1007/s00216-013-7462-4 CrossRefPubMedGoogle Scholar
  48. Roessner D, Kulicke WM (1994) On-line coupling of flow field-flow fractionation and multi-angle laser light scattering. J Chromatogr A 687:249–258CrossRefGoogle Scholar
  49. Schimpf ME, Caldwell KD, Giddings JC (2000) Field-flow fractionation handbook. Wiley, New YorkGoogle Scholar
  50. Till U, Gaucher-Delmas M, Saint-Aguet P, Hamon G, Marty J-D, Chassenieux C, Payré B, Goudounèche D, Mingotaud A-F, Violleau F (2014) Asymmetrical flow field-flow fractionation with multi-angle light scattering and quasi-elastic light scattering for characterization of polymersomes: comparison with classical techniques. Anal Bioanal Chem 406(30):7841–7853. doi: 10.1007/s00216-014-7891-8 CrossRefPubMedGoogle Scholar
  51. Wagner M, Pietsch C, Tauhardt L, Schallon A, Schubert US (2014) Characterization of cationic polymers by asymmetric flow field-flow fractionation and multi-angle light scattering—a comparison with traditional techniques. J Chromatogr A 1325:195–203. doi:http://dx.doi.org/10.1016/j.chroma.2013.11.049
  52. Wahlund KG, Giddings JC (1987) Properties of an asymmetrical flow field-flow fractionation channel having one permeable wall. Anal Chem 59:1332–1339CrossRefPubMedGoogle Scholar
  53. Williams PS, Giddings JC (1994) Theory of field-programmed field-flow fractionation with corrections for steric effects. Anal Chem 66:4215–4228CrossRefPubMedGoogle Scholar
  54. Williams PS, Giddings MC, Giddings JC (2001) A data analysis algorithm for programmed field-flow fractionation. Anal Chem 73:4202–4211CrossRefPubMedGoogle Scholar
  55. Wyatt PJ (1991) Absolute measurements with FFF and light scattering. Polym Mater Sci Eng 65:198–199Google Scholar
  56. Zattoni A, Rambaldi DC, Roda B, Parisi D, Roda A, Moon MH, Reschiglian P (2008) Hollow-fiber flow field-flow fractionation of whole blood serum. J Chromatogr A 1183(1–2):135–142. doi:http://dx.doi.org/10.1016/j.chroma.2008.01.022
  57. Zillies JC, Zwiorek K, Winter G, Coester C (2007) Method for quantifying the PEGylation of gelatin nanoparticle drug carrier systems using asymmetrical flow field-flow fractionation and refractive index detection. Anal Chem 79(12):4574–4580. doi: 10.1021/ac062135e CrossRefPubMedGoogle Scholar

Copyright information

© Controlled Release Society 2016

Authors and Affiliations

  1. 1.Department of Pharmacy, Pharmaceutical Technology and BiopharmaceuticsLudwig-Maximilians-University MunichMunichGermany

Personalised recommendations