Thermal Analysis of Pharmaceuticals

  • Sheng QiEmail author
Part of the Advances in Delivery Science and Technology book series (ADST)


Thermal methods have been widely used and are well-established routine methods for pharmaceutical raw material and dosage form characterization. The conventional thermal methods all involve measuring a response from a material (usually in the form of energy/temperature or mass changes) as a result of applying heat to the sample. In this chapter the most widely used thermal analytical methods along with some more recently developed local thermal analysis and thermally based imaging methods are reviewed with regards to their working principle and applications in pharmaceutical product development. In the recent years, with the addition of the newly developed thermal imaging techniques, the capability of thermal analysis has broadened from conventional bulk sample analysis to also allowing more localized micron to sub-micron scale distribution and compositional analysis. The limitations of thermal methods for different applications are also discussed in relation to other characterization methods.


Differential scanning calorimetry Hyper DSC Thermogravimetric analysis Localized thermal analysis Amorphous Crystallisation Polymorphism Physical stability 


  1. Ahlneck C, Zografi G (1990) The molecular basis of moisture effects on the physical and chemical stability of drugs in the solid state. Int J Pharm 62:87–95CrossRefGoogle Scholar
  2. Andronis V, Yoshioka M, Zografi G (1997) Effects of sorbed water on the crystallization of indomethacin from the amorphous state. J Pharm Sci 86:346–351CrossRefPubMedGoogle Scholar
  3. Aso Y, Yoshioka S, Kojima S (2004) Molecular mobility-based estimation of the crystallization rates of amorphous nifedipine and phenobarbital in poly(vinylpyrrolidone) solid dispersions. J Pharm Sci 93:384–391CrossRefPubMedGoogle Scholar
  4. Badrinarayanan P, Zheng W, Li Q et al (2007) The glass transition temperature versus the fictive temperature. J Non-Cryst Solids 353:2603–2612CrossRefGoogle Scholar
  5. Bhugra C, Shmeis R, Krill S et al (2006) Predictions of onset of crystallization from experimental relaxation times I—Correlation of molecular mobility from temperatures above the glass transition to temperatures below the glass transition. Pharm Res 23:2277–2290CrossRefPubMedGoogle Scholar
  6. Böhmer KLNR, Angell CA, Plazek DJ (1993) Nonexponential relaxations in strong and fragile glass formers. J Chem Phys 99:9Google Scholar
  7. Bruce CD, Fegely KA, Rajabi-Siahboomi AR et al (2010) The influence of heterogeneous nucleation on the surface crystallization of guaifenesin from melt extrudates containing Eudragit® L10055 or Acryl-EZE®. Eur J Pharm Biopharm 75:71–78CrossRefPubMedGoogle Scholar
  8. Burger A, Ramberger R (1979) On the polymorphism of pharmaceuticals and other molecular crystals. II. Microchim Acta 72:273–316CrossRefGoogle Scholar
  9. Claudy P, Jabrane S, Létoffé JM (1997) Annealing of a glycerol glass: enthalpy, fictive temperature and glass transition temperature change with annealing parameters. Thermochim Acta 293:1–11CrossRefGoogle Scholar
  10. Craig DQM, Barsnes M, Royall P et al (2000) An evaluation of the use of modulated temperature DSC as a means of assessing the relaxation behaviour of amorphous lactose. Pharm Res 17:696–700CrossRefPubMedGoogle Scholar
  11. da Fonseca Antunes AB, De Geest BG, Vervaet C et al (2013) Gelucire 44/14 based immediate release formulations for poorly water-soluble drugs. Drug Dev Ind Pharm 39:791–798CrossRefPubMedGoogle Scholar
  12. Felix T, Anwar H, Takeru H (1974) Quantitative analytical method for determination of drugs dispersed in polymers using differential scanning calorimetry. J Pharm Sci 63:427–429CrossRefGoogle Scholar
  13. Ford JL (1999) Thermal analysis of hydroxypropylmethylcellulose and methylcellulose: powders, gels and matrix tablets. Int J Pharm 179:209–228CrossRefPubMedGoogle Scholar
  14. Gabbott P, Clarke P, Mann T et al (2003) A high-sensitivity, high-speed DSC technique: measurement of amorphous lactose. Am Lab 35:17Google Scholar
  15. Gaisford S (2008) Fast-scan differential scanning calorimetry. Eur Pharm Rev 13:83–89Google Scholar
  16. Giron D (2001) Investigations of polymorphism and pseudo-polymorphism in pharmaceuticals by combined thermoanalytical techniques. J Therm Anal Calorim 64:37–60CrossRefGoogle Scholar
  17. Gordon M, Taylor J (1952) Ideal copolymers and the second-order transitions of synthetic rubbers. I. Non-crystalline polymers. J Appl Chem 2:493–500CrossRefGoogle Scholar
  18. Grisedale L, Jamieson MJ, Belton PS et al (2011) Characterization and quantification of amorphous material in milled and spray-dried salbutamol sulfate: a comparison of thermal, spectroscopic, and water vapor sorption approaches. J Pharm Sci 100:3114–3129CrossRefPubMedGoogle Scholar
  19. Hammiche A, Pollock HM, Song M et al (1996) Localized thermal analysis using a miniaturized resistive probe. Rev Sci Instrum 67:4268–4274CrossRefGoogle Scholar
  20. Hancock B, Zografi G (1994) The relationship between the glass transition temperature and the water content of amorphous pharmaceutical solids. Pharm Res 11:471–477CrossRefPubMedGoogle Scholar
  21. Hancock BC, Zografi G (1997) Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci 86:1–12CrossRefPubMedGoogle Scholar
  22. Hancock B, Shamblin S, Zografi G (1995) Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures. Pharm Res 12:799–806CrossRefPubMedGoogle Scholar
  23. Hancock BC, York P, Rowe RC (1997) The use of solubility parameters in pharmaceutical dosage form design. Int J Pharm 148:1–21CrossRefGoogle Scholar
  24. Harding L, King W, Dai X et al (2007) Nanoscale characterisation and imaging of partially amorphous materials using local thermomechanical analysis and heated tip AFM. Pharm Res 24:2048–2054CrossRefPubMedGoogle Scholar
  25. Hasegawa S, Ke P, Buckton G (2009) Determination of the structural relaxation at the surface of amorphous solid dispersion using inverse gas chromatography. J Pharm Sci 98:2133–2139CrossRefPubMedGoogle Scholar
  26. Higgins JS, Tambasco M, Lipson JEG (2005) Polymer blends; stretching what we can learn through the combination of experiment and theory. Prog Polym Sci 30:832–843CrossRefGoogle Scholar
  27. Hill VL, Craig DQM, Feely LC (1999) The effects of experimental parameters and calibration on MTDSC data. Int J Pharm 192:21–32CrossRefPubMedGoogle Scholar
  28. Hodge IM (1987) Effects of annealing and prior history on enthalpy relaxation in glassy polymers. 6. Adam-Gibbs formulation of nonlinearity. Macromolecules 20:2897–2908CrossRefGoogle Scholar
  29. Hussein A, El-Menshawe S, Afouna M (2012) Enhancement of the in-vitro dissolution and in-vivo oral bioavailability of silymarin from liquid-filled hard gelatin capsules of semisolid dispersion using Gelucire 44/14 as a carrier. Pharmazie 67:209–214PubMedGoogle Scholar
  30. Janssens S, Denivelle S, Rombaut P et al (2008) Influence of polyethylene glycol chain length on compatibility and release characteristics of ternary solid dispersions of itraconazole in polyethylene glycol/hydroxypropylmethylcellulose 2910 E5 blends. Eur J Pharm Sci 35:203–210CrossRefPubMedGoogle Scholar
  31. Kawakami K (2012) Miscibility analysis of particulate solid dispersions prepared by electrospray deposition. Int J Pharm 433:71–78CrossRefPubMedGoogle Scholar
  32. Khougazand KS, Clas D (2000) Crystallization inhibition in solid dispersions of MK-0591 and poly(vinylpyrrolidone) polymers. J Pharm Sci 89:1325–1334CrossRefGoogle Scholar
  33. Kjoller K, Rose J, Sahagian K (2010) Transition temperature microscopy: nanoscale thermal analysis for micron- and submicron-scale devices. Am Lab 913:598Google Scholar
  34. Kong Y, Hay JN (2002) The measurement of the crystallinity of polymers by DSC. Polymer 43:3873–3878CrossRefGoogle Scholar
  35. Konno H, Taylor L (2008) Ability of different polymers to inhibit the crystallization of amorphous felodipine in the presence of moisture. Pharm Res 25:969–978CrossRefPubMedGoogle Scholar
  36. Lacey A, Price D, Reading M (2006) Theory and practice of modulated temperature differential scanning calorimetry. In: Reading M, Hourston D (eds) Modulated temperature differential scanning calorimetry. Springer, New York, pp 1–81CrossRefGoogle Scholar
  37. Lappalainen M, Pitkänen I, Harjunen P (2006) Quantification of low levels of amorphous content in sucrose by hyperDSC. Int J Pharm 307:150–155CrossRefPubMedGoogle Scholar
  38. Lever TJ, Price DM, Warrington SB (2000) Evolved gas collection from a thermogravimetric analyzer and identification by gas chromatography–mass spectrometry. In: Proceedings of the twenty-eighth conference of the North American Thermal Analysis Society, Savannah, Georgia, October 2000Google Scholar
  39. Li J, Chiappetta D (2008) An investigation of the thermodynamic miscibility between VeTPGS and polymers. Int J Pharm 350:212–219CrossRefPubMedGoogle Scholar
  40. Málek J (1999) Crystallization kinetics by thermal analysis. J Therm Anal Calorim 56:763–769CrossRefGoogle Scholar
  41. Marks JA, Wegiel LA, Taylor LS et al (2014) Pairwise polymer blends for oral drug delivery. J Pharm Sci 103:2871–2883CrossRefPubMedGoogle Scholar
  42. Marsac P, Shamblin S, Taylor L (2006) Theoretical and practical approaches for prediction of drug–polymer miscibility and solubility. Pharm Res 23:2417–2426CrossRefPubMedGoogle Scholar
  43. Marsac P, Li T, Taylor L (2009) Estimation of drug–polymer miscibility and solubility in amorphous solid dispersions using experimentally determined interaction parameters. Pharm Res 26:139–151CrossRefPubMedGoogle Scholar
  44. Moffat JG, Qi S, Craig D (2014) Spatial characterization of hot melt extruded dispersion systems using thermal atomic force microscopy methods: the effects of processing parameters on phase separation. Pharm Res 31:1744–1752CrossRefPubMedPubMedCentralGoogle Scholar
  45. Mosquera-Giraldo L, Trasi NS, Taylor LS (2014) Impact of surfactants on the crystal growth of amorphous celecoxib. Int J Pharm 461:251–257CrossRefPubMedGoogle Scholar
  46. Ng YC, Yang Z, McAuley WJ et al (2013) Stabilisation of amorphous drugs under high humidity using pharmaceutical thin films. Eur J Pharm Biopharm 84:555–565CrossRefPubMedGoogle Scholar
  47. Nishi T, Wang TT (1975) Melting point depression and kinetic effects of cooling on crystallization in poly(vinylidene fluoride)-poly(methyl methacrylate) mixtures. Macromolecules 8:909–915CrossRefGoogle Scholar
  48. Ohtake S, Shalaev E (2013) Effect of water on the chemical stability of amorphous pharmaceuticals: I. Small molecules. J Pharm Sci 102:1139–1154CrossRefPubMedGoogle Scholar
  49. Price DM, Reading M, Hammiche A et al (1999) Micro-thermal analysis: scanning thermal microscopy and localised thermal analysis. Int J Pharm 192:85–96CrossRefPubMedGoogle Scholar
  50. Pyramides G, Robinson JW, William Zito S (1995) The combined use of DSC and TGA for the thermal analysis of atenolol tablets. J Pharm Biomed Anal 13:103–110CrossRefPubMedGoogle Scholar
  51. Qi S, Craig DQM (2012) The development of modulated, quasi-isothermal and ultraslow thermal methods as a means of characterizing the α to γ indomethacin polymorphic transformation. Mol Pharm 9:1087–1099CrossRefPubMedGoogle Scholar
  52. Qi S, Avalle P, Saklatvala R, Craig DQM (2008a) An investigation into the effects of thermal history on the crystallisation behaviour of amorphous paracetamol. Eur J Pharm Biopharm 69:364–371CrossRefPubMedGoogle Scholar
  53. Qi S, Deutsch D, Craig DQ (2008b) An investigation into the mechanisms of drug release from taste-masking fatty acid microspheres. J Pharm Sci 97:3842–3854CrossRefPubMedGoogle Scholar
  54. Qi S, Weuts I, De Cort S et al (2010a) An investigation into the crystallisation behaviour of an amorphous cryomilled pharmaceutical material above and below the glass transition temperature. J Pharm Sci 99:196–208CrossRefPubMedGoogle Scholar
  55. Qi S, Belton P, Nollenberger K et al (2010b) Characterisation and prediction of phase separation in hot-melt extruded solid dispersions: a thermal, microscopic and NMR relaxometry study. Pharm Res 27:1869–1883CrossRefPubMedGoogle Scholar
  56. Qi S, Moffat JG, Yang Z (2013) Early stage phase separation in pharmaceutical solid dispersion thin films under high humidity: improved spatial understanding using probe-based thermal and spectroscopic nanocharacterization methods. Mol Pharm 10:918–930CrossRefPubMedGoogle Scholar
  57. Qian F, Huang J, Hussain MA (2010) Drug-polymer solubility and miscibility: stability consideration and practical challenges in amorphous solid dispersion development. J Pharm Sci 99:2941–2947CrossRefPubMedGoogle Scholar
  58. Reading M, Craig DQM (2006) Principles of differential scanning calorimetry. In: Craig DQM, Reading M (eds) Thermal analysis of pharmaceuticals. CRC Press, Boca Raton, pp 2–20Google Scholar
  59. Reading M, Price DM, Grandy DB et al (2001) Micro-thermal analysis of polymers: current capabilities and future prospects. Macromol Symp 167:45–62CrossRefGoogle Scholar
  60. Roos YH (1997) Frozen state transitions in relation to freeze drying. J Therm Anal 48:535–544CrossRefGoogle Scholar
  61. Rumondor AC, Marsac PJ, Stanford LA et al (2009) Phase behavior of poly(vinylpyrrolidone) containing amorphous solid dispersions in the presence of moisture. Mol Pharm 6:1492–1505CrossRefPubMedGoogle Scholar
  62. Saunders M, Podluii K, Shergill S et al (2004) The potential of high-speed DSC (Hyper-DSC) for the detection and quantification of small amounts of amorphous content in predominantly crystalline samples. Int J Pharm 274:35–40CrossRefPubMedGoogle Scholar
  63. Schulz P, Soltero JFA, Puig JE (2000) DSC analysis of surfactant-based microstructures. In: Garti N (ed) Thermal behaviour of dispersed systems. CRC Press, Boca Raton, pp 159–172Google Scholar
  64. Serajuddin ATM (1999) Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J Pharm Sci 88:1058–1066CrossRefPubMedGoogle Scholar
  65. Shamblin SL, Taylor LS, Zografi G (1998) Mixing behavior of colyophilized binary systems. J Pharm Sci 87:694–701CrossRefPubMedGoogle Scholar
  66. Thakral S, Thakral NK (2013) Prediction of drug-polymer miscibility through the use of solubility parameter based Flory-Huggins interaction parameter and the experimental validation: PEG as model polymer. J Pharm Sci 102:2254–2263CrossRefPubMedGoogle Scholar
  67. Theeuwes F, Hussain A, Higuchi T (1974) Quantitative analytical method for determination of drugs dispersed in polymers using differential scanning calorimetry. J Pharm Sci 63:427–429CrossRefPubMedGoogle Scholar
  68. Tobyn M, Brown J, Dennis AB et al (2009) Amorphous drug–PVP dispersions: application of theoretical, thermal and spectroscopic analytical techniques to the study of a molecule with intermolecular bonds in both the crystalline and pure amorphous state. J Pharm Sci 98:3456–3468CrossRefPubMedGoogle Scholar
  69. Van den Mooter G, Wuyts M, Blaton N et al (2001) Physical stabilisation of amorphous ketoconazole in solid dispersions with polyvinylpyrrolidone K25. Eur J Pharm Sci 12:261–269CrossRefPubMedGoogle Scholar
  70. Verdonck E, Schaap K, Thomas LC (1999) A discussion of the principles and applications of modulated temperature DSC (MTDSC). Int J Pharm 192:3–20CrossRefPubMedGoogle Scholar
  71. Vyazovkin S, Dranca I (2005) Physical stability and relaxation of amorphous indomethacin. J Phys Chem B 109:18637–18644CrossRefPubMedGoogle Scholar
  72. Yang ZY, Nollenberger K, Albers J et al (2013) Microstructure of an immiscible polymer blend and its stabilization effect on amorphous solid dispersions. Mol Pharm 10:2767–2780CrossRefPubMedGoogle Scholar
  73. Yang ZY, Nollenberger K, Albers J et al (2014) Molecular implications of drug–polymer solubility in understanding the destabilization of solid dispersions by milling. Mol Pharm 11:2453–2465CrossRefPubMedGoogle Scholar
  74. Zhou D, Zhang GGZ, Law D et al (2008) Thermodynamics, molecular mobility and crystallization kinetics of amorphous griseofulvin. Mol Pharm 5:927–936CrossRefPubMedGoogle Scholar

Copyright information

© Controlled Release Society 2016

Authors and Affiliations

  1. 1.School of PharmacyUniversity of East AngliaNorwichUK

Personalised recommendations