Skip to main content

Fractals in Neuroanatomy and Basic Neurosciences: An Overview

  • Chapter
  • First Online:
The Fractal Geometry of the Brain

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI))

  • 2806 Accesses

Abstract

The introduction of fractal geometry in the neurosciences has been a major paradigm shift over the last decades as it has helped overcome approximations and limitations that occur when Euclidean and reductionist approaches are used to analyze neurons or the entire brain. Fractal geometry allows for quantitative analysis and description of the geometric complexity of the brain, from its single units to the neuronal networks.

As illustrated in the second section of this book, fractal analysis provides a quantitative tool for the study of morphology of brain cells (i.e., neurons and microglia) and its components (e.g., dendritic trees, synapses) as well as the brain structure itself (cortex, functional modules, neuronal networks). The self-similar logic which generates and shapes the different hierarchical systems of the brain and even some structures related to its “container,” that is, the cranial sutures on the skull, is widely discussed in the following chapters, with a link between the applications of fractal analysis to the neuroanatomy and basic neurosciences to the clinical applications discussed in the third section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alfarez DN, De Simoni A, Velzing EH, Bracey E, Joëls M, Edwards FA, et al. Corticosterone reduces dendritic complexity in developing hippocampal CA1 neurons. Hippocampus. 2009;19:828–36.

    Article  CAS  PubMed  Google Scholar 

  2. Bieberich E. Recurrent fractal neural networks: a strategy for the exchange of local and global information processing in the brain. Biosystems. 2002;66:145–64.

    Google Scholar 

  3. Cannon RC, Wheal HV, Turner DA. Dendrites of classes of hippocampal neurons differ in structural complexity and branching patterns. J Comp Neurol. 1999;413:619–33.

    Article  CAS  PubMed  Google Scholar 

  4. Caserta F, Eldred WD, Fernandez E, Hausman RE, Stanford LR, Bulderev SV, et al. Determination of fractal dimension of physiologically characterized neurons in two and three dimensions. J Neurosci Methods. 1995;56:133–44.

    Article  CAS  PubMed  Google Scholar 

  5. Caserta F, Stanley HE, Eldred WD, Daccord G, Hausman RE, Nittmann J. Physical mechanisms underlying neurite outgrowth: a quantitative analysis of neuronal shape. Phys Rev Lett. 1990;64:95–8.

    Article  PubMed  Google Scholar 

  6. Di Ieva A, Esteban FJ, Grizzi F, Klonowski W, Martin-Landrove M. Fractals in the neurosciences, part II: clinical applications and future perspectives. Neuroscientist. 2015;21:30–43.

    Article  PubMed  Google Scholar 

  7. Di Ieva A, Grizzi F, Jelinek H, Pellionisz AJ, Losa GA. Fractals in the neurosciences, part I: general principles and basic neurosciences. Neuroscientist. 2013;20:403–17.

    Article  PubMed  Google Scholar 

  8. Free SL, Sisodiya SM, Cook MJ, Fish DR, Shorvon SD. Three-dimensional fractal analysis of the white matter surface from magnetic resonance images of the human brain. Cereb Cortex. 1996;6:830–6.

    Google Scholar 

  9. Gallos LK, Makse HA, Sigman M. A small world of weak ties provides optimal global integration of self-similar modules in functional brain networks. Proc Natl Acad Sci U S A. 2012;109:2825–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gallos LK, Sigman M, Makse HA. The conundrum of functional brain networks: small-world efficiency or fractal modularity. Front Physiol. 2012;3:123.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gou L, Wei B, Sadiq R, Sadiq Y, Deng Y. Topological vulnerability evaluation model based on fractal dimension of complex networks. PLoS One. 2016;11:e0146896.

    Google Scholar 

  12. Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, Jacob Filho W, Lent R, Herculano-Houzel S. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol. 2009;513:532–41.

    Article  PubMed  Google Scholar 

  13. Hofman MA. The fractal geometry of convoluted brains. J Hirnforsch. 1991;32:103–11.

    CAS  PubMed  Google Scholar 

  14. Jelinek HF EG. Dendritic branching patterns of pyramidal cells in the visual cortex of the nocturnal owl monkey: a fractal analysis. Fractals. 2003;9:297–303.

    Google Scholar 

  15. John AM, Elfanagely O, Ayala CA, Cohen M, Prestigiacomo CJ. The utility of fractal analysis in clinical neuroscience. Rev Neurosci. 2015;26:633–45.

    Article  PubMed  Google Scholar 

  16. Kiselev VG, Hahn KR, Auer DP. Is the brain cortex a fractal? Neuroimage. 2003;20:1765–74.

    Article  PubMed  Google Scholar 

  17. Mandelbrot BB. The fractal geometry of nature. New York: W.H. Freeman; 1982.

    Google Scholar 

  18. Milosević NT, Ristanović D, Gudović R, Rajković K, Marić D. Application of fractal analysis to neuronal dendritic arborisation patterns of the monkey dentate nucleus. Neurosci Lett. 2007;425:23–7.

    Article  PubMed  Google Scholar 

  19. Mota B, Herculano-Houzel S. Brain Structure. Cortical folding scales universally with surface area and thickness, not number of neurons. Science. 2015;349:74–7.

    Article  CAS  PubMed  Google Scholar 

  20. Porter R, Ghosh S, Lange GD, Smith TG. A fractal analysis of pyramidal neurons in mammalian motor cortex. Neurosci Lett. 1991;130:112–6.

    Article  CAS  PubMed  Google Scholar 

  21. Ristanović D, Nedeljkov V, Stefanović BD, Milošević NT, Grgurević M, štulić V. Fractal and nonfractal analysis of cell images: comparison and application to neuronal dendritic arborization. Biol Cybern. 2002;87:278–88.

    Article  PubMed  Google Scholar 

  22. Senitz D, Reichenbach A, Smith TG. Surface complexity of human neocortical astrocytic cells: changes with development, aging, and dementia. J Hirnforsch. 1995;36:531–7.

    CAS  PubMed  Google Scholar 

  23. Skrzat J, Usarz M, Trabka J, Goncerz G. Differentiation of neurons populations based on fractal dimension. Folia Morphol (Warsz). 1996;55:444–6.

    CAS  Google Scholar 

  24. Smith TG, Marks WB, Lange GD, Sheriff WH, Neale EA. A fractal analysis of cell images. J Neurosci Methods. 1989;27:173–80.

    Article  PubMed  Google Scholar 

  25. Suckling J, Wink AM, Bernard FA, Barnes A, Bullmore E. Endogenous multifractal brain dynamics are modulated by age, cholinergic blockade and cognitive performance. J Neurosci Methods. 2008;174:292–300.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhang L, Liu JZ, Dean D, Sahgal V, Yue GH. A three-dimensional fractal analysis method for quantifying white matter structure in human brain. J Neurosci Methods. 2006;150:242–53.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Di Ieva MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Di Ieva, A. (2016). Fractals in Neuroanatomy and Basic Neurosciences: An Overview. In: Di Ieva, A. (eds) The Fractal Geometry of the Brain. Springer Series in Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3995-4_5

Download citation

Publish with us

Policies and ethics