Skip to main content

Fractals and Electromyograms

  • Chapter
  • First Online:
The Fractal Geometry of the Brain

Abstract

The complexity nature of the physiological time series can be analysed using fractal theory. The nonlinearity of physiological systems have important relevance in modelling complicated surface electromyogram (sEMG) where the interactions and crosstalk occur over a wide range of temporal and spatial scales. Fractal theory-based analysis is one of the most promising new approaches for extracting such hidden interactions from physiological time series signal like sEMG, which can provide information regarding the characteristic temporal scales and the adaptability of muscle activity response. This chapter investigates the use of fractal theory for analysis of sEMG signal for applications in rehabilitation and age-related changes in the muscle properties and contraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acharya, Bhat SP, Kannathal N, Rao A, Lim CM. Analysis of cardiac health using fractal dimension and wavelet transformation. ITBM-RBM. 2005;26(2):133–9.

    Article  Google Scholar 

  2. Anmuth CJ, Goldberg G, Mayer NH. Fractal dimension of electromyographic signals recorded with surface electrodes during isometric contractions is linearly correlated with muscle activation. Muscle Nerve. 1994;17(8):953–4.

    Article  CAS  PubMed  Google Scholar 

  3. Arjunan SP, Kumar DK. Decoding subtle forearm flexions using fractal features of surface electromyogram from single and multiple sensors. J Neuroeng Rehabil. 2010;7:53.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Arjunan SP, Kumar DK. Age-associated changes in muscle activity during isometric contraction. Muscle Nerve. 2013;47:545–9.

    Article  PubMed  Google Scholar 

  5. Barry BK, Carson RG. The consequences of resistance training for movement control in older adults. J Gerontol A Biol Sci Med Sci. 2004;59(7):730–54.

    Article  PubMed  Google Scholar 

  6. Basmajian J, De Luca CJ. Muscles alive: their functions revealed by electromyography. 5th ed. Baltimore: Williams & Wilkins; 1985.

    Google Scholar 

  7. Bassingthwaighte J, Liebovitch L, West B. Fractal physiology. New York: Oxford University Press; 1994. p. 29–30.

    Book  Google Scholar 

  8. Beretta-Piccoli M, D’Antona G, Barbero M, Fisher B, Dieli-Conwright CM, et al. Evaluation of central and peripheral fatigue in the quadriceps using fractal dimension and conduction velocity in young females. PLoS One. 2015;10(4):e0123921.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bourke P. ‘Self similarity’, fractals, chaos; 2007. URL: http://local.wasp.uwa.edu.au/pbourke/fractals/selfsimilar/.

  10. Brown M, Hasser EM. Complexity of Age-related change in skeletal muscle. J Gerontol J Gerontol A Biol Sci Med Sci. 1996;51(2):B117–23.

    Article  CAS  Google Scholar 

  11. Che Azemin MZ, Kumar DK, et al. Age-related rarefaction in the fractal dimension of retinal vessel. Neurobiol Aging. 2012;33(1):194.e1–4.

    Article  Google Scholar 

  12. Chen W-T, Wang Z-Z, Ren X-M. Characterization of surface EMG signals using improved approximate entropy’. J Zhejiang Univ Sci B. 2006;7(10):844–8.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Doherty TJ, Vandervoort AA, Taylor AW, Brown WF. Effects of motor unit losses on strength in older men and women’. J Appl Physiol. 1993;74:868–74.

    Article  CAS  PubMed  Google Scholar 

  14. Durgam V, Fernandes G, Preiszl H, Lutzenberger W, Pulvermuller F, Birbaumer N. Fractal dimensions of short eeg time series in humans. Neurosci Lett. 1997;225(2):77–80.

    Article  Google Scholar 

  15. Esteller R, Vachtsevanos G, Echauz J, Litt B. ‘A comparison of waveform fractal dimension algorithms’, circuits and systems I: fundamental theory and applications. IEEE Transactions on [see also Circuits and systems I: regular papers, IEEE Transactions on]. 2001;48(2):177–83.

    Google Scholar 

  16. Galganski ME, Fuglevand AJ, Enoka RM. Reduced control of motor output in a human hand muscle of elderly subjects during submaximal contractions. J Neurophysiol. 1993;69:2108–15.

    CAS  PubMed  Google Scholar 

  17. Gitter JA, Czerniecki MJ. Fractal analysis of the electromyographic interference pattern. J Neurosci Methods. 1995;58(1–2):103–8.

    Google Scholar 

  18. Graupe D, Cline WK. Functional separation of SEMG signals via arma identification methods for prosthesis control purposes. IEEE Trans Syst Man Cybern. 1975;5(2):252–9.

    Article  Google Scholar 

  19. Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 2000;101(23):e215–20.

    Article  CAS  PubMed  Google Scholar 

  20. Gupta V, Suryanarayanan S, Reddy NP. Fractal analysis of surface EMG signals from the biceps. Int J Med Inform. 1997;45(3):185–92.

    Google Scholar 

  21. Higuchi T. Approach to an irregular time series on the basis of the fractal theory. Phys D. 1988;31(2):277–83.

    Article  Google Scholar 

  22. Hu X, Wang ZZ, Ren XM. Classification of surface EMG signal with fractal dimension. J Zhejiang Univ Sci B. 2005;6(8):844–8.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Huang H-P, Chen C-Y. Development of myoelectric discrimination system for a multi-degree prosthetic hand. IEEE Int Conf Robot Autom. 1999;3:2392–7.

    Google Scholar 

  24. Kalden R, Ibrahim S. Searching for self-similarity in GPRS. In PAM 2004: passive and active network measurement. Springer-Verlag, Berlin Heidelberg 2004. p. 83–92.

    Google Scholar 

  25. Katz MJ. Fractals and the analysis of waveforms. Comput Biol Med. 1988;18(3):145–56.

    Article  CAS  PubMed  Google Scholar 

  26. Kaplan DT, Furman MI, Pincus SM, Ryan SM, Lipsitz LA, Goldberger AL. Aging and the complexity of cardiovascular dynamics. Biophys J. 1991;59:945–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kinoshita H, Francis PR. A comparison of prehension force control in young and elderly individuals. Eur J Appl Physiol. 1996;74:450–60.

    Article  CAS  Google Scholar 

  28. Kleine BU, van Dijk JP, Lapatki BG, Zwarts MJ, Stegeman DF. Using two-dimensional spatial information in decomposition of surface EMG signals. J Electromyogr Kinesiol Off J Int Soc Electrophysiological Kinesiol. 2007;17(5):535–48.

    Article  Google Scholar 

  29. Arjunan SP. Fractal features of surface electromyogram: A new measure for low level muscle activation. Diss. RMIT University, 2008.

    Google Scholar 

  30. Lipsitz LA, Goldberger AL. Loss of ‘complexity’ and aging: potential applications of fractals and chaos theory to senescence. JAMA. 1992;267:1806–9.

    Article  CAS  PubMed  Google Scholar 

  31. Lowery MM, O’Malley MJ. Analysis and simulation of changes in EMG amplitude during high-level fatiguing contractions. IEEE Trans Biomed Eng. 2003;50(9):1052–62.

    Article  PubMed  Google Scholar 

  32. Mandelbrot BB. Fractals: form, chance, and dimension. 1st ed. San Francisco: Freeman; 1977.

    Google Scholar 

  33. Merletti R, Farina D, Gazzoni M, Schieroni MP. Effect of age on muscle functions investigated with surface electromyography. Muscle Nerve. 2002;25(1):65.

    Article  PubMed  Google Scholar 

  34. Peng C-K, Hausdorff JM, Goldberger AL. Fractal mechanisms in neural control: Human heartbeat and gait dynamics in health and disease. In: Walleczek J, ed. Nonlinear Dynamics, Self-Organization, and Biomedicine. Cambridge: Cambridge University Press, 1999. pp. 66–96.

    Google Scholar 

  35. Petrosian A. Kolmogorov complexity of finite sequences and recognition of different preictal EEG patterns. In Proceedings of the Eighth IEEE Symposium on Computer-Based Medical Systems IEEE, Lubbock, USA; 1995. p. 212–17.

    Google Scholar 

  36. Wong KCL, Wang L, Zhang H, Liu H, Shi P. Computational complexity reduction for volumetric cardiac deformation recovery. J Signal Process Syst. 2009;55:281–96.

    Article  Google Scholar 

  37. Xu Z, Xiao S. Fractal dimension of surface EMG and its determinants. In Engineering in Medicine and Biology Society, 1997. Proceedings of the 19th annual international conference of the IEEE’, Vol. 4. p. 1570–73.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sridhar Poosapadi Arjunan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Arjunan, S.P., Kumar, D.K. (2016). Fractals and Electromyograms. In: Di Ieva, A. (eds) The Fractal Geometry of the Brain. Springer Series in Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3995-4_27

Download citation

Publish with us

Policies and ethics