Skip to main content

On Multiscaling of Parkinsonian Rest Tremor Signals and Their Classification

  • Chapter
  • First Online:
  • 2727 Accesses

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI))

Abstract

Self-similar stochastic processes and broad probability distributions are ubiquitous in Nature and in many man-made systems. The brain is a particularly interesting example of (natural) complex system where those features play a pivotal role. In fact, the controversial yet experimentally validated “criticality hypothesis” explaining the functioning of the brain implies the presence of scaling laws for correlations. Recently, we have analyzed a collection of rest tremor velocity signals recorded from patients affected by Parkinson’s disease, with the aim of determining and hence exploiting the presence of scaling laws. Our results show that multiple scaling laws are required in order to describe the dynamics of such signals, stressing the complexity of the underlying generating mechanism. We successively extracted numeric features by using the multifractal detrended fluctuation analysis procedure. We found that such features can be effective for discriminating classes of signals recorded in different experimental conditions. Notably, we show that the use of medication (L-DOPA) can be recognized with high accuracy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abry P, Wendt H, Jaffard S. When Van Gogh meets Mandelbrot: multifractal classification of painting’s texture. Sig Process. 2013;93(3):554–72.

    Google Scholar 

  2. Arianos S, Carbone A. Detrending moving average algorithm: a closed-form approximation of the scaling law. Phys A Stat Mech Appl. 2007;382(1):9–15.

    Google Scholar 

  3. Balachandran R, Welch EB, Dawant BM, Fitzpatrick JM. Effect of MR distortion on targeting for deep-brain stimulation. IEEE Trans Biomed Eng. 2010;57(7):1729–35.

    Google Scholar 

  4. Barunik J, Kristoufek L. On Hurst exponent estimation under heavy-tailed distributions. Phys A Stat Mech Appl. 2010;389(18):3844–55.

    Google Scholar 

  5. Bashan A, Bartsch R, Kantelhardt JW, Havlin S. Comparison of detrending methods for fluctuation analysis. Phys A Stat Mech Appl. 2008;387(21):5080–90.

    Google Scholar 

  6. Beran J, Feng Y, Ghosh S, Kulik R. Long-memory processes. Heidelberg: Springer; 2013.

    Google Scholar 

  7. Beuter A, Modolo J. Delayed and lasting effects of deep brain stimulation on locomotion in Parkinson’s disease. Chaos Interdiscip J Nonlinear Sci. 2009;19(2):026114.

    Google Scholar 

  8. Beuter A, Titcombe MS, Richer F, Gross C, Guehl D. Effect of deep brain stimulation on amplitude and frequency characteristics of rest tremor in Parkinson’s disease. Thalamus Relat Syst. 2001;1(3):203–11.

    Google Scholar 

  9. Bialek W, Nemenman I, Tishby N. Predictability, complexity, and learning. Neural Comput. 2001;13(11):2409–63.

    Google Scholar 

  10. Bronstein JM, Tagliati M, Alterman RL, Lozano AM, Volkmann J, Stefani A, Horak FB, Okun MS, Foote KD, Krack P, et al. Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. Arch Neurol. 2011;68(2):165.

    Google Scholar 

  11. Chen Z, Ivanov PC, Hu K, Stanley HE. Effect of nonstationarities on detrended fluctuation analysis. Phys Rev E. 2002;65:041107.

    Google Scholar 

  12. Chhabra A, Jensen RV. Direct determination of the f(α) singularity spectrum. Phys Rev Lett. 1989;62:1327–30.

    Google Scholar 

  13. Crutchfield JP, Feldman DP. Regularities unseen, randomness observed: levels of entropy convergence. Chaos Interdiscip J Nonlinear Sci. 2003;13(1):25–54.

    Google Scholar 

  14. de Oliveira ME, Menegaldo LL, Lucarelli P, Andrade BLB, Büchler P. On the use of information theory for detecting upper limb motor dysfunction: an application to Parkinson’s disease. Phys A Stat Mech Appl. 2011;390(23):4451–8.

    Google Scholar 

  15. Di Ieva A, Grizzi F, Jelinek H, Pellionisz AJ, Losa GA. Fractals in the neurosciences, part I general principles and basic neurosciences. Neuroscientist. 2014;20(4):403–17.

    Google Scholar 

  16. Di Ieva A, Esteban FJ, Grizzi F, Klonowski W, Mart ́ın-Landrove M. Fractals in the neurosciences, part II clinical applications and future perspectives. Neuroscientist. 2015;21(1):30–43.

    Google Scholar 

  17. Donner RV, Potirakis SM, Barbosa SM, Matos JAO, Pereira AJSC, Neves LJPF. Intrinsic vs. spurious long-range memory in high-frequency records of environmental radioactivity. Eur Phys J Spec Top. 2015;224(4):741–62.

    Google Scholar 

  18. Drożdż S, Kwapien J, Oświęcimka P, Rak R. Quantitative features of multifractal subtleties in time series. EPL (Europhys Lett). 2009;88(6):60003.

    Google Scholar 

  19. Dutta S, Ghosh D, Chatterjee S. Multifractal detrended fluctuation analysis of human gait diseases. Front Physiol. 2013;4:274.

    Google Scholar 

  20. Engin M, Demirağ S, Engin EZ, Çelebi G, Ersan F, Asena E, Çolakoğlu Z. The classification of human tremor signals using artificial neural network. Expert Syst Appl. 2007;33(3):754–61.

    Google Scholar 

  21. Fabrizii M, Moinfar F, Jelinek HF, Karperien A, Ahammer H. Fractal analysis of cervical intraepithelial neoplasia. PLoS One. 2014;9(10):e108457.

    Google Scholar 

  22. Fernández-Martínez M, Sánchez-Granero MA, Segovia JET. Measuring the self-similarity exponent in L ́evy stable processes of financial time series. Phys A Stat Mech Appl. 2013;392(21):5330–45.

    Google Scholar 

  23. Gao J, Cao Y, Tung W-W, Hu J. Multiscale analysis of complex time series: integration of chaos and random fractal theory, and beyond. New York: Wiley; 2007.

    Google Scholar 

  24. Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE. Physiobank, physiotoolkit, and physionet components of a new research resource for complex physiologic signals. Circulation. 2000;101(23):215–20.

    Google Scholar 

  25. Haeri M, Sarbaz Y, Gharibzadeh S. Modeling the Parkinson’s tremor and its treatments. J Theor Biol. 2005;236(3):311–22.

    Google Scholar 

  26. Harte D. Multifractals: theory and applications. Boca Raton: CRC Press; 2010.

    Google Scholar 

  27. Hu K, Ivanov PC, Chen Z, Carpena P, Stanley HE. Effect of trends on detrended fluctuation analysis. Phys Rev E. 2001;64:011114.

    Google Scholar 

  28. Ihlen EAF. Multifractal analyses of human response time: potential pitfalls in the interpretation of results. Front Hum Neurosci. 2014;8:523.

    Google Scholar 

  29. Islam A, Reza SMS, Iftekharuddin KM. Multifractal texture estimation for detection and segmentation of brain tumors. IEEE Trans Biomed Eng. 2013;60(11):3204–15.

    Google Scholar 

  30. Kantelhardt JW. Fractal and multifractal time series. In: Meyers RA, editor. Mathematics of complexity and dynamical systems. New York: Springer; 2011. p. 463–87.

    Google Scholar 

  31. Kantelhardt JW, Zschiegner SA, Koscielny-Bunde E, Havlin S, Bunde A, Stanley HE. Multifractal detrended fluctuation analysis of non-stationary time series. Phys A Stat Mech Appl. 2002;316(1):87–114.

    Google Scholar 

  32. Kwapien J, Oświęcimka P, Drożdż S. Detrended fluctuation analysis made flexible to detect range of cross-correlated fluctuations. Phys Rev E. 2015;92:052815.

    Google Scholar 

  33. Li J, Cichocki A. Deep learning of multifractal attributes from motor imagery induced EEG. In: Loo C, Yap K, Wong K, Teoh A, Huang K, editors. Neural information processing, volume 8834 of Lecture Notes in Computer Science. Switzerland: Springer International Publishing; 2014. pp. 503–510.

    Google Scholar 

  34. Livi L, Maiorino E, Rizzi A, Sadeghian A. On the long-term correlations and multifractal properties of electric arc furnace time series. Int J Bifurcation Chaos. 2016;26(1):1650007.

    Google Scholar 

  35. Livi L, Sadeghian A, Sadeghian H. Discrimination and characterization of Parkinsonian rest tremors by analyzing long-term correlations and multifractal signatures. IEEE Trans Biomed Eng. 2016.

    Google Scholar 

  36. Maiorino E, Bianchi F, Livi L, Rizzi A, Sadeghian A. Data-driven detrending of nonstationary fractal time series with echo state networks. ArXiv preprint arXiv:1510.07146, Oct. 2015.

    Google Scholar 

  37. Maiorino E, Livi L, Giuliani A, Sadeghian A, Rizzi A. Multifractal characterization of protein contact networks. Phys A Stat Mech Appl. 2015;428:302–13.

    Google Scholar 

  38. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM, Kennedy SH. Deep brain stimulation for treatment-resistant depression. Neuron. 2005;45(5):651–60.

    Google Scholar 

  39. McIntyre CC, Hahn PJ. Network perspectives on the mechanisms of deep brain stimulation. Neurobiol Dis. 2010;38(3):329–37.

    Google Scholar 

  40. Molino-Minero-Re E, García-Nocetti F, Benítez-Pérez H. Application of a time-scale local Hurst exponent analysis to time series. Digit Sig Process. 2015;37:92–9.

    Google Scholar 

  41. Oświęcimka P, Kwapien J, Drożdż S. Wavelet versus detrended fluctuation analysis of multifractal structures. Phys Rev E. 2006;74:016103.

    Google Scholar 

  42. Oluigbo CO, Salma A, Rezai AR. Deep brain stimulation for neurological disorders. IEEE Rev Biomed Eng. 2012;5:88–99.

    Google Scholar 

  43. Oświęcimka P, Drożdż S, Forczek M, Jadach S, Kwapien J. Detrended cross-correlation analysis consistently extended to multifractality. Phys Rev E. 2014;89(2):023305.

    Google Scholar 

  44. Rasouli G, Rasouli M, Lenz FA, Verhagen L, Borrett DS, Kwan HC. Fractal characteristics of human Parkinsonian neuronal spike trains. Neuroscience. 2006;139(3):1153–8.

    Google Scholar 

  45. Riley MA, Bonnette S, Kuznetsov N, Wallot S, Gao J. A tutorial introduction to adaptive fractal analysis. Front Physiol. 2012;3:371.

    Google Scholar 

  46. Sánchez M, Trinidad JE, García J, Fernández M. The effect of the underlying distribution in Hurst exponent estimation. PloS ONE. 2014;10(5):e0127824.

    Google Scholar 

  47. Serinaldi F. Use and misuse of some Hurst parameter estimators applied to stationary and non-stationary financial time series. Phys A Stat Mech Appl. 2010;389(14):2770–81.

    Google Scholar 

  48. Serletis D, Bardakjian BL, Valiante TA, Carlen PL. Complexity and multifractality of neuronal noise in mouse and human hippocampal epileptiform dynamics. J Neural Eng. 2012;9(5):056008.

    Google Scholar 

  49. Shao Y-H, Gu G-F, Jiang Z-Q, Zhou W-X, Sornette D. Comparing the performance of FA, DFA and DMA using different synthetic long-range correlated time series. Sci Rep. 2012;2:835.

    Google Scholar 

  50. Shawe-Taylor J, Cristianini N. Kernel methods for pattern analysis. Cambridge, UK: Cambridge University Press; 2004.

    Google Scholar 

  51. Slow EJ, Hamani C, Lozano AM, Poon YY, Moro E. Deep brain stimulation for treatment of dystonia secondary to stroke or trauma. J Neurol Neurosurg Psychiatry. 2015;86(9):1046–8.

    Google Scholar 

  52. Talebinejad M, Chan ADC, Miri A. Multiplicative multi-fractal modeling of electromyography signals for discerning neuropathic conditions. J Electromyogr Kinesiol. 2010;20(6):1244–8.

    Google Scholar 

  53. Titcombe MS, Glass L, Guehl D, Beuter A. Dynamics of parkinsonian tremor during deep brain stimulation. Chaos Interdiscip J Nonlinear Sci. 2001;11(4):766–73.

    Google Scholar 

  54. Wendt H, Abry P. Multifractality tests using bootstrapped wavelet leaders. IEEE Trans Signal Process. 2007;55(10):4811–20.

    Google Scholar 

  55. West BJ. Fractal physiology, vol. 2. Oxford: Oxford University Press; 1994.

    Google Scholar 

  56. Wibral M, Lizier JT, Priesemann V. Bits from brains for biologically inspired computing. Front Robot AI. 2015;2:5.

    Google Scholar 

  57. Wu D, Warwick K, Ma Z, Burgess JG, Pan S, Aziz TZ. Prediction of Parkinson’s disease tremor onset using radial basis function neural networks. Expert Syst Appl. 2010;37(4):2923–8.

    Google Scholar 

  58. Yulmetyev RM, Demin SA, Panischev OY, Hänggi P, Timashev SF, Vstovsky GV. Regular and stochastic behavior of Parkinsonian pathological tremor signals. Phys A Stat Mech Appl. 2006;369(2):655–78.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Livi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Livi, L. (2016). On Multiscaling of Parkinsonian Rest Tremor Signals and Their Classification. In: Di Ieva, A. (eds) The Fractal Geometry of the Brain. Springer Series in Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3995-4_26

Download citation

Publish with us

Policies and ethics