Skip to main content

Computational Fractal-Based Analysis of Brain Tumor Microvascular Networks

  • Chapter
  • First Online:
Book cover The Fractal Geometry of the Brain

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI))

Abstract

Brain parenchyma microvasculature is set in disarray in the presence of tumors, and malignant brain tumors are among the most vascularized neoplasms in humans. As microvessels can be easily identified in histologic specimens, quantification of microvascularity can be used alone or in combination with other histological features to increase the understanding of the dynamic behavior, diagnosis, and prognosis of brain tumors. Different brain tumors, and even subtypes of the same tumor, show specific microvascular patterns, as a kind of “microvascular fingerprint,” which is particular to each histotype. Reliable morphometric parameters are required for the qualitative and quantitative characterization of the neoplastic angioarchitecture, although the lack of standardization of a technique able to quantify the microvascular patterns in an objective way has limited the “morphometric approach” in neuro-oncology.

In this chapter we focus on the importance of the computational-based morphometrics, for the objective description of the tumoral microvascular fingerprinting. By also introducing the concept of “angio-space,” which is the tumoral space occupied by the microvessels, we here present fractal analysis as the most reliable computational tool able to offer objective parameters for the description of the microvascular networks.

The spectrum of different angioarchitectural configurations can be quantified by means of Euclidean and fractal-based parameters in a multiparametric analysis, aimed to offer surrogate biomarkers of cancer. Such parameters are here described from the methodological point of view (i.e., feature extraction) as well as from the clinical perspective (i.e., relation to underlying physiology), in order to offer new computational parameters to the clinicians with the final goal of improving diagnostic and prognostic power of patients affected by brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    At the time of the chapter writing, the WHO classification system for brain tumors published in 2016 was not available yet.

References

  1. Al-Kadi OS. Texture measures combination for improved meningioma classification of histopathological images. Pattern Recog. 2010;43:2043–53.

    Article  Google Scholar 

  2. Al-Kadi OS. A multiresolution clinical decision support system based on fractal model design for classification of histological brain tumours. Comput Med Imaging Graph. 2015;41:67–79.

    Article  PubMed  Google Scholar 

  3. Baish JW, Gazit Y, Berk DA, et al. Role of tumor vascular architecture in nutrient and drug delivery: an invasion percolation-based network model. Microvasc Res. 1996;51:327–46.

    Article  CAS  PubMed  Google Scholar 

  4. Baish JW, Jain RK. Fractals and cancer. Cancer Res. 2000;60:3683–8.

    CAS  PubMed  Google Scholar 

  5. Birner P, Piribauer M, Fischer I, et al. Vascular patterns in glioblastoma influence clinical outcome and associate with variable expression of angiogenic proteins: Evidence for distinct angiogenic subtypes. Brain Pathol. 2003;13:133–43.

    Article  CAS  PubMed  Google Scholar 

  6. Brem S, Cotran R, Folkman J. Tumor angiogenesis: a quantitative method for histologic grading. J Natl Cancer Inst. 1972;48:347–56.

    CAS  PubMed  Google Scholar 

  7. Caserta F, Eldred WD, Fernandez E, et al. Determination of fractal dimension of physiologically characterized neurons in two and three dimensions. J Neurosci Methods. 1995;56:133–44.

    Article  CAS  PubMed  Google Scholar 

  8. Cassot F, Lauwers F, Fouard C, et al. A novel three-dimensional computer-assisted method for a quantitative study of microvascular networks of the human cerebral cortex. Microcirculation. 2006;13:1–18.

    Article  CAS  PubMed  Google Scholar 

  9. Cross SS, Start RD, Silcocks PB, et al. Quantitation of the renal arterial tree by fractal analysis. J Pathol. 1993;170:479–84.

    Article  CAS  PubMed  Google Scholar 

  10. Cross SS. The application of fractal geometric analysis to microscopic images. Micron. 1994;25:101–13.

    Article  CAS  PubMed  Google Scholar 

  11. Di Ieva A, Tschabitscher M. Fractal-based classification of brain tumors angioarchitecture. In: Murray SR, Mitchell EW, editors. Classification and applications of fractals: new research. New York: Nova Science Publishers; 2012. p. 205–16.

    Google Scholar 

  12. Di Ieva A, Grizzi F, Ceva-Grimaldi G, et al. Fractal dimension as a quantitator of the microvasculature of normal and adenomatous pituitary tissue. J Anat. 2007;211:673–80.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Di Ieva A, Grizzi F, Gaetani P, et al. Euclidean and fractal geometry of microvascular networks in normal and neoplastic pituitary tissue. Neurosurg Rev. 2008;31:271–81.

    Article  PubMed  Google Scholar 

  14. Di Ieva A. Angioarchitectural morphometrics of brain tumors: are there any potential histopathological biomarkers? Microvasc Res. 2010;80:522–33.

    Article  PubMed  Google Scholar 

  15. Di Ieva A, Grizzi F. Microvessel density. J Neurosurg Pediatr. 2010;6:304–6; author reply 306.

    Article  PubMed  Google Scholar 

  16. Di Ieva A, Grizzi F, Ceva-Grimaldi G, et al. The microvascular network of the pituitary gland: a model for the application of fractal geometry to the analysis of angioarchitecture and angiogenesis of brain tumors. J Neurosurg Sci. 2010;54:49–54.

    PubMed  Google Scholar 

  17. Di Ieva A, Grizzi F, Tschabitscher M, et al. Correlation of microvascular fractal dimension with positron emission tomography [(11)C]-methionine uptake in glioblastoma multiforme: preliminary findings. Microvasc Res. 2010;80:267–73.

    Article  PubMed  Google Scholar 

  18. Di Ieva A, Grizzi F, Sherif C, et al. Angioarchitectural heterogeneity in human glioblastoma multiforme: a fractal-based histopathological assessment. Microvasc Res. 2011;81:222–30.

    Article  PubMed  Google Scholar 

  19. Di Ieva A. Fractal analysis of microvascular networks in malignant brain tumors. Clin Neuropathol. 2012;31:342–51.

    Article  PubMed  Google Scholar 

  20. Di Ieva A, Bruner E, Widhalm G, et al. Computer-assisted and fractal-based morphometric assessment of microvascularity in histological specimens of gliomas. Sci Rep. 2012;2:429.

    PubMed  PubMed Central  Google Scholar 

  21. Di Ieva A, Weckman A, Di Michele J, et al. Microvascular morphometrics of the hypophysis and pituitary tumors: from bench to operating theatre. Microvasc Res. 2013;89:7–14.

    Article  PubMed  Google Scholar 

  22. Duvernoy HM, Delon S, Vannson JL. Cortical blood vessels of the human brain. Brain Res Bull. 1981;7:519–79.

    Article  CAS  PubMed  Google Scholar 

  23. Duvernoy HM. Vascularization of the cerebral cortex. Rev Neurol (Paris). 1999;155:684–7.

    CAS  Google Scholar 

  24. Duvernoy HM. Comments on the microvascularization of the brain. Cerebrovasc Dis. 2006;21:423–4.

    Article  PubMed  Google Scholar 

  25. Gazit Y, Baish JW, Safabakhsh N, et al. Fractal characteristics of tumor vascular architecture during tumor growth and regression. Microcirculation. 1997;4:395–402.

    Article  CAS  PubMed  Google Scholar 

  26. Goldberger AL, West BJ. Fractals in physiology and medicine. Yale J Biol Med. 1987;60:421–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Grasman J, Brascamp JW, Van Leeuwen JL, et al. The multifractal structure of arterial trees. J Theor Biol. 2003;220:75–82.

    Article  CAS  PubMed  Google Scholar 

  28. Grizzi F, Russo C, Colombo P, et al. Quantitative evaluation and modeling of two-dimensional neovascular network complexity: the surface fractal dimension. BMC Cancer. 2005;5:14.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Grizzi F, Colombo P, Taverna G, et al. Geometry of human vascular system: is it an obstacle for quantifying antiangiogenic therapies? Appl Immunohistochem Mol Morphol. 2007;15:134–9.

    Article  PubMed  Google Scholar 

  30. Hainfellner JA, Heinzl H. Neuropathological biomarker candidates in brain tumors: key issues for translational efficiency. Clin Neuropathol. 2010;29:41–54.

    Article  CAS  PubMed  Google Scholar 

  31. Hlatky L, Hahnfeldt P, Folkman J. Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn’t tell us. J Natl Cancer Inst. 2002;94:883–93.

    Article  PubMed  Google Scholar 

  32. Jain RK. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med. 2001;7:987–9.

    Article  CAS  PubMed  Google Scholar 

  33. Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005;307:58–62.

    Article  CAS  PubMed  Google Scholar 

  34. Jain RK, di Tomaso E, Duda DG, et al. Angiogenesis in brain tumours. Nat Rev Neurosci. 2007;8:610–22.

    Article  CAS  PubMed  Google Scholar 

  35. Kedzia A, Rybaczuk M, Andrzejak R. Fractal dimensions of human brain cortex vessels during the fetal period. Med Sci Monit. 2002;8:MT46–51.

    PubMed  Google Scholar 

  36. Kirchner LM, Schmidt SP, Gruber BS. Quantitation of angiogenesis in the chick chorioallantoic membrane model using fractal analysis. Microvasc Res. 1996;51:2–14.

    Article  CAS  PubMed  Google Scholar 

  37. Korkolopoulou P, Patsouris E, Kavantzas N, et al. Prognostic implications of microvessel morphometry in diffuse astrocytic neoplasms. Neuropathol Appl Neurobiol. 2002;28:57–66.

    Article  CAS  PubMed  Google Scholar 

  38. Lauwers F, Cassot F, Lauwers-Cances V, et al. Morphometry of the human cerebral cortex microcirculation: general characteristics and space-related profiles. Neuroimage. 2008;39:936–48.

    Article  PubMed  Google Scholar 

  39. Lorthois S, Cassot F. Fractal analysis of vascular networks: insights from morphogenesis. J Theor Biol. 2010;262:614–33.

    Article  PubMed  Google Scholar 

  40. Losa GA. The fractal geometry of life. Riv Biol. 2009;102:29–59.

    PubMed  Google Scholar 

  41. Louis DN, Ohgaki H, Wiestler OD, et al. WHO classification of tumours of the central nervous system. Lyon: International Agency for Research on Cancer (IARC); 2007.

    Google Scholar 

  42. Mandelbrot BB. The fractal geometry of nature. New York: W.H. Freeman; 1982.

    Google Scholar 

  43. Preusser M, Heinzl H, Gelpi E, et al. Histopathologic assessment of hot-spot microvessel density and vascular patterns in glioblastoma: poor observer agreement limits clinical utility as prognostic factors: a translational research project of the European organization for research and treatment of cancer brain tumor group. Cancer. 2006;107:162–70.

    Article  PubMed  Google Scholar 

  44. Risser L, Plouraboue F, Steyer A, et al. From homogeneous to fractal normal and tumorous microvascular networks in the brain. J Cereb Blood Flow Metab. 2007;27:293–303.

    Article  PubMed  Google Scholar 

  45. Sharma S, Sharma MC, Gupta DK, et al. Angiogenic patterns and their quantitation in high grade astrocytic tumors. J Neurooncol. 2006;79:19–30.

    Article  PubMed  Google Scholar 

  46. Takahashi T. Microcirculation in fractal branching networks. Tokyo: Springer; 2014.

    Book  Google Scholar 

  47. Vakoc BJ, Lanning RM, Tyrrell JA, et al. Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat Med. 2009;15:1219–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. van den Bent MJ. Interobserver variation of the histopathological diagnosis in clinical trials on glioma: a clinician’s perspective. Acta Neuropathol. 2010;120:297–304.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Vico PG, Kyriacos S, Heymans O, et al. Dynamic study of the extraembryonic vascular network of the chick embryo by fractal analysis. J Theor Biol. 1998;195:525–32.

    Article  CAS  PubMed  Google Scholar 

  50. Zamir M. On fractal properties of arterial trees. J Theor Biol. 1999;197:517–26.

    Article  CAS  PubMed  Google Scholar 

  51. Zamir M. Fractal dimensions and multifractility in vascular branching. J Theor Biol. 2001;212:183–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Di Ieva MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Di Ieva, A., Al-Kadi, O.S. (2016). Computational Fractal-Based Analysis of Brain Tumor Microvascular Networks. In: Di Ieva, A. (eds) The Fractal Geometry of the Brain. Springer Series in Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3995-4_24

Download citation

Publish with us

Policies and ethics