Skip to main content

Fractals and Chaos in the Hemodynamics of Intracranial Aneurysms

  • Chapter
  • First Online:
  • 2715 Accesses

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI))

Abstract

Computing the emerging flow in blood vessel sections by means of computational fluid dynamics is an often applied practice in hemodynamics research. One particular area for such investigations is related to the cerebral aneurysms, since their formation, pathogenesis and the risk of a potential rupture may be flow-related. We present a study on the behavior of small advected particles in cerebral vessel sections in the presence of aneurysmal malformations. These malformations cause strong flow disturbances driving the system towards chaotic behavior. Within these flows the particle trajectories can form a fractal structure, the properties of which are measurable by quantitative techniques. The measurable quantities are well established chaotic properties, such as the Lyapunov exponent, escape rate and information dimension. Based on these findings, we propose that chaotic flow within blood vessels in the vicinity of the aneurysm might be relevant for the pathogenesis and development of this malformation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aref H. Stirring by chaotic advection. J Fluid Mech. 1984;143:1–21.

    Article  Google Scholar 

  2. Campo-Deaño L, Oliveira MS, Pinho FT. A review of computational hemodynamics in middle cerebral aneurysms and rheological models for blood flow. Appl Mech Rev. 2015;67(3):030801.

    Article  Google Scholar 

  3. Castro MA, Olivares MCA, Putman CM, Cebral JR. Unsteady wall shear stress analysis from image-based computational fluid dynamic aneurysm models under Newtonian and Casson rheological models. Med Biol Eng Comput. 2014;52(10):827–39.

    Article  PubMed  Google Scholar 

  4. Cebral JR, Castro M, Appanaboyina S, Putman CM, Millan D, Frangi AF, et al. Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. Med Imag IEEE Trans. 2005;24(4):457–67.

    Article  Google Scholar 

  5. Cebral JR, Castro MA, Burgess JE, Pergolizzi RS, Sheridan MJ, Putman CM. Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. Am J Neuroradiol. 2005;26(10):2550–9.

    PubMed  Google Scholar 

  6. Guglielmi G, Viñuela F, Dion J, Duckwiler G. Electrothrombosis of saccular aneurysms via endovascular approach: part 2: preliminary clinical experience. J Neurosurg. 1991;75(1):8–14.

    Article  CAS  PubMed  Google Scholar 

  7. Kantz H, Grassberger P. Repellers, semi-attractors, and long-lived chaotic transients. Physica D Nonlinear Phenom. 1985;17(1):75–86.

    Article  Google Scholar 

  8. Károlyi G, Péntek Á, Scheuring I, Tél T, Toroczkai Z. Chaotic flow: the physics of species coexistence. Proc Natl Acad Sci. 2000;97(25):13661–5.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Károlyi G, Péntek Á, Toroczkai Z, Tél T, Grebogi C. Chemical or biological activity in open chaotic flows. Phys Rev E. 1999;59(5):5468.

    Article  Google Scholar 

  10. Károlyi G, Tél T. Chaotic tracer scattering and fractal basin boundaries in a blinking vortex-sink system. Phys Rep. 1997;290(1):125–47.

    Article  Google Scholar 

  11. Károlyi G, Tél T. Chemical transients in closed chaotic flows: the role of effective dimensions. Phys Rev Lett. 2005;95(26):264501.

    Article  PubMed  Google Scholar 

  12. Kelly P, Stein J, Shafqat S, Eskey C, Doherty D, Chang Y, et al. Functional recovery after rehabilitation for cerebellar stroke. Stroke. 2001;32(2):530–4.

    Article  CAS  PubMed  Google Scholar 

  13. Lasheras JC. The biomechanics of arterial aneurysms. Annu Rev Fluid Mech. 2007;39:293–319.

    Article  Google Scholar 

  14. Oubel E, De Craene M, Putman CM, Cebral JR, Frangi AF. Analysis of intracranial aneurysm wall motion and its effects on hemodynamic patterns. In: Medical imaging. San Diego: International Society for Optics and Photonics; 2007. p. 65112A.

    Google Scholar 

  15. Paál G, Ugron A, Szikora I, Bojtár I. Flow in simplified and real models of intracranial aneurysms. Int J Heat Fluid Flow. 2007;28(4):653–64.

    Article  Google Scholar 

  16. Ropper AH, Zervas NT. Outcome 1 year after SAH from cerebral aneurysm: management morbidity, mortality, and functional status in 112 consecutive good-risk patients. J Neurosurg. 1984;60(5):909–15.

    Article  CAS  PubMed  Google Scholar 

  17. Schelin AB, Károlyi G, De Moura A, Booth N, Grebogi C. Chaotic advection in blood flow. Phys Rev E. 2009;80(1):016213.

    Article  CAS  Google Scholar 

  18. Schelin AB, Károlyi G, De Moura AP, Booth NA, Grebogi C. Fractal structures in stenoses and aneurysms in blood vessels. Philos Trans R Soc Lond A: Math Phys Eng Sci. 2010;368(1933):5605–17.

    Article  Google Scholar 

  19. Schelin AB, Károlyi G, De Moura AP, Booth N, Grebogi C. Are the fractal skeletons the explanation for the narrowing of arteries due to cell trapping in a disturbed blood flow? Comput Biol Med. 2012;42(3):276–81.

    Article  PubMed  Google Scholar 

  20. Scheuring I, Károlyi G, Toroczkai Z, Tél T, Péntek Á. Competing populations in flows with chaotic mixing. Theor Popul Biol. 2003;63(2):77–90.

    Article  PubMed  Google Scholar 

  21. Sforza DM, Putman CM, Cebral JR. Hemodynamics of cerebral aneurysms. Annu Rev Fluid Mech. 2009;41:91.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Szikora I, Berentei Z, Kulcsar Z, Marosfoi M, Vajda Z, Lee W, et al. Treatment of intracranial aneurysms by functional reconstruction of the parent artery: the Budapest experience with the pipeline embolization device. Am J Neuroradiol. 2010;31(6):1139–47.

    Article  CAS  PubMed  Google Scholar 

  23. Szikora I, Paal G, Ugron A, Nasztanovics F, Marosfoi M, Berentei Z, et al. Impact of aneurysmal geometry on intraaneurysmal flow: a computerized flow simulation study. Neuroradiology. 2008;50(5):411–21.

    Article  PubMed  Google Scholar 

  24. Taylor CA, Draney MT. Experimental and computational methods in cardiovascular fluid mechanics. Annu Rev Fluid Mech. 2004;36:197–231.

    Article  Google Scholar 

  25. Tél T. Fractals, multifractals, and thermodynamics. Z Naturforsch A. 1988;43(12):1154–74.

    Article  Google Scholar 

  26. Tél T, de Moura A, Grebogi C, Károlyi G. Chemical and biological activity in open flows: a dynamical system approach. Phys Rep. 2005;413(2):91–196.

    Article  Google Scholar 

  27. Tél T, Gruiz M. Chaotic dynamics: an introduction based on classical mechanics. Cambridge, UK: Cambridge University Press; 2006.

    Google Scholar 

  28. Toroczkai Z, Károlyi G, Péntek Á, Tél T, Grebogi C. Advection of active particles in open chaotic flows. Phys Rev Lett. 1998;80(3):500.

    Article  CAS  Google Scholar 

  29. Ugron Á, Paál G. On the boundary conditions of cerebral aneurysm simulations. Mech Eng. 2014;58(1):37–45.

    Google Scholar 

  30. Ugron Á, Szikora I, Paál G. Haemodynamic changes induced by intrasaccular packing on intracranial aneurysms: a computational fluid dynamic study. Interv Med Appl Sci. 2012;4(2):78–84.

    Google Scholar 

  31. Ugron Á, Szikora I, Paál G. Measurement of flow diverter hydraulic resistance to model flow modification in and around intracranial aneurysms. Interv Med Appl Sci. 2014;6(2):61–8.

    PubMed  PubMed Central  Google Scholar 

  32. Vlak MH, Algra A, Brandenburg R, Rinkel GJ. Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol. 2011;10(7):626–36.

    Article  PubMed  Google Scholar 

  33. Wiebers DO, Torner JC, Meissner I. Impact of unruptured intracranial aneurysms on public health in the United States. Stroke. 1992;23(10):1416–9.

    Article  CAS  PubMed  Google Scholar 

  34. Závodszky G, Károlyi G, Paál G. Emerging fractal patterns in a real 3D cerebral aneurysm. J Theor Biol. 2015;368:95–101.

    Article  PubMed  Google Scholar 

  35. Závodszky G, Paál G. Validation of a lattice Boltzmann method implementation for a 3D transient fluid flow in an intracranial aneurysm geometry. Int J Heat Fluid Flow. 2013;44:276–83.

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from OTKA no. K 100894 and NK 100296, as well as from the KTIA_NAP_13-1-2013-0001 Hungarian Brain Research Program is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gábor Závodszky or György Paál .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Závodszky, G., Károlyi, G., Szikora, I., Paál, G. (2016). Fractals and Chaos in the Hemodynamics of Intracranial Aneurysms. In: Di Ieva, A. (eds) The Fractal Geometry of the Brain. Springer Series in Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3995-4_17

Download citation

Publish with us

Policies and ethics