Skip to main content

The Fractal Geometry of the Brain: An Overview

  • Chapter
  • First Online:
The Fractal Geometry of the Brain

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI))

Abstract

The first chapter of this book introduces some history, philosophy, and basic concepts of fractal geometry and discusses how the neurosciences can benefit from applying computational fractal-based analyses. Further, it compares fractal with Euclidean approaches to analyzing and quantifying the brain in its entire physiopathological spectrum and presents an overview of the first section of the book as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abry P, Baraniuk R, Flandrin P, Riedi R, Veitch R, Veitch D. Multiscale nature of network traffic. IEEE Signal Proc Mag. 2002;3:28–46.

    Article  Google Scholar 

  2. Baish JW, Jain RK. Fractals and cancer. Cancer Res. 2000;60:3683–8.

    CAS  PubMed  Google Scholar 

  3. Barnsley MF. Fractals everywhere. New York: Academic Press; 1988.

    Google Scholar 

  4. Brown JH, Gupta VK, Li BL, Milne BT, Restrepo C, West GB. The fractal nature of nature: power laws, ecological complexity and biodiversity. Philos Trans R Soc Lond B Biol Sci. 2002;357:619–26.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cross SS. Fractals in pathology. J Pathol. 1997;182:1–8.

    Article  CAS  PubMed  Google Scholar 

  6. Cross SS. The application of fractal geometric analysis to microscopic images. Micron. 1994;25:101–13.

    Article  CAS  PubMed  Google Scholar 

  7. Di Ieva A. Memetics in neurosurgery and neuroscience. NeuroQuantology. 2008;6:182–93.

    Google Scholar 

  8. Di Ieva A, Grizzi F, Jelinek H, Pellionisz AJ, Losa GA. Fractals in the neurosciences, part I: general principles and basic neurosciences. Neuroscientist. 2013;20:403–17.

    Article  PubMed  Google Scholar 

  9. Di Ieva A, Esteban FJ, Grizzi F, Klonowski W, Martin-Landrove M. Fractals in the neurosciences, part II: clinical applications and future perspectives. Neuroscientist. 2015;21:30–43.

    Article  PubMed  Google Scholar 

  10. Gazit Y, Berk DA, Leunig M, Baxter LT, Jain RK. Scale-invariant behavior and vascular network formation in normal and tumor tissue. Phys Rev Lett. 1995;75:2428–31.

    Article  CAS  PubMed  Google Scholar 

  11. Goldberger AL. Fractals and the birth of gothic: reflections on the biologic basis of creativity. Mol Psychiatry. 1996;1:99–104.

    CAS  PubMed  Google Scholar 

  12. Grizzi F, Chiriva-Internati M. The complexity of anatomical systems. Theor Biol Med Model. 2005;2:26.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hermansen TD, Ventegodt S, Rald E, Clausen B, Nielsen ML, Merrick J. Human development I: twenty fundamental problems of biology, medicine, and neuro-psychology related to biological information. Sci World J. 2006;6:747–59.

    Article  Google Scholar 

  14. Hofman MA. The fractal geometry of convoluted brains. J Hirnforsch. 1991;32:103–11.

    CAS  PubMed  Google Scholar 

  15. Keipes M, Ries F, Dicato M. Of the british coastline and the interest of fractals in medicine. Biomed Pharmacother. 1993;47:409–15.

    Article  CAS  PubMed  Google Scholar 

  16. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326:289–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Losa GA. The fractal geometry of life. Riv Biol. 2009;102:29–59.

    PubMed  Google Scholar 

  18. Losa GA. Fractal morphometry of cell complexity. Riv Biol. 2002;95:239–58.

    PubMed  Google Scholar 

  19. Losa GA, Nonnenmacher TF. Self-similarity and fractal irregularity in pathologic tissues. Mod Pathol. 1996;9:174–82.

    CAS  PubMed  Google Scholar 

  20. Mandelbrot BB. Les fractales, les monstres et la beauté. In: Balaubre G, editor. L’irruption des géométries fractales dans les sciences. Paris: Editions de l’Académie Européenne Interdisciplinaire des Sciences (AEIS); 2006. p. 317–41.

    Google Scholar 

  21. Mandelbrot BB. Is nature fractal? Science. 1998;279:783–4.

    Article  CAS  Google Scholar 

  22. Mandelbrot BB. Fractals and scaling in finance: discontinuity, concentration, risk. New York: Springer; 1997.

    Book  Google Scholar 

  23. Mandelbrot BB. The fractal geometry of nature. New York: W.H. Freeman; 1982.

    Google Scholar 

  24. Mandelbrot B. How long is the coast of britain? Statistical self-similarity and fractional dimension. Science. 1967;156:636–8.

    Article  CAS  PubMed  Google Scholar 

  25. Mandelbrot BB. Stochastic models for the earth’s relief, the shape and the fractal dimension of the coastlines, and the number-area rule for islands. Proc Natl Acad Sci U S A. 1975;72:3825–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Murray JD. Use and abuse of fractal theory in neuroscience. J Comp Neurol. 1995;361:369–71.

    Article  CAS  PubMed  Google Scholar 

  27. Najafi E, Darooneh AH. The fractal patterns of words in a text: a method for automatic keyword extraction. PLoS One. 2015;10:e0130617.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Normant F, Tricot C. Method for evaluating the fractal dimension of curves using convex hulls. Phys Rev A. 1991;43:6518–25.

    Article  PubMed  Google Scholar 

  29. Peitgen HO, Richter PH. The beauty of fractals: images of complex dynamical systems. Berlin: Springer; 1986.

    Book  Google Scholar 

  30. Pellionisz AJ. The principle of recursive genome function. Cerebellum. 2008;7:348–59.

    Article  CAS  PubMed  Google Scholar 

  31. Peng CK, Buldyrev SV, Goldberger AL, Havlin S, Mantegna RN, Simons M, et al. Statistical properties of DNA sequences. Phys A. 1995;221:180–92.

    Article  CAS  Google Scholar 

  32. Prigogine I. Les lois du chaos. Paris: Flammarion; 1997.

    Google Scholar 

  33. Rigaut JP. An empirical formulation relating boundary lengths to resolution in specimens showing “non-ideally fractal” dimensions. J Microsc. 1984;133:41–54.

    Article  Google Scholar 

  34. Sernetz M, Gelleri B, Hofmann J. The organism as bioreactor. Interpretation of the reduction law of metabolism in terms of heterogeneous catalysis and fractal structure. J Theor Biol. 1985;117:209–30.

    Article  CAS  PubMed  Google Scholar 

  35. Strogatz SH. Exploring complex networks. Nature. 2001;410:268–76.

    Article  CAS  PubMed  Google Scholar 

  36. Tolle CR, McJunkin TR, Rohrbaugh DT, LaViolette RA. Lacunarity definition for ramified data sets based on optimal cover. Phys A. 2003;179:129–52.

    Google Scholar 

  37. Ventegodt S, Hermansen TD, Nielsen ML, Clausen B, Merrick J. Human development II: we need an integrated theory for matter, life and consciousness to understand life and healing. Sci World J. 2006;6:760–6.

    Article  Google Scholar 

  38. Weibel ER. Design of biological organisms and fractal geometry. In: Nonnenmacher TF, Losa GA, Weibel ER, editors. Fractals in biology and medicine, vol. I. Basel: Birkhäuser Press; 1994.

    Google Scholar 

  39. West BJ, Scafetta N. Nonlinear dynamical model of human gait. Phys Rev E Stat Nonlin Soft Matter Phys. 2003;67:051917.

    Article  PubMed  Google Scholar 

  40. West GB, Brown JH, Enquist BJ. The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science. 1999;284:1677–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Di Ieva MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Di Ieva, A. (2016). The Fractal Geometry of the Brain: An Overview. In: Di Ieva, A. (eds) The Fractal Geometry of the Brain. Springer Series in Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3995-4_1

Download citation

Publish with us

Policies and ethics