Skip to main content

Pathophysiology and Diagnosis of Concussion

  • Chapter
  • First Online:
Common Neurosurgical Conditions in the Pediatric Practice

Abstract

Concussion is one of the most common neurological conditions to occur during childhood. Since 1997, the incidence of concussion has doubled, likely due to increased reporting of events by parents, schools, and team officials. Concussion occurs after an impact to the body or head causes a rotational force on the brain sufficient to disturb consciousness. A complex neurochemical cascade ensues, sometimes accompanied by physical damage to neuronal structures. Patients can suffer from a multitude of somatic and cognitive complaints, although they resolve in the majority of cases after 7–10 days. There is no proven treatment, and the most commonly prescribed remedy is a combination of physical and cognitive rest. Children should only return to playing sports when symptoms have resolved, and this return should occur in a stepwise manner from light exercise, to sports-specific exercise, to noncontact drills, and finally to full-contact practice and return to play after clearance by a licensed medical professional. The management of chronic symptoms and likely temporary cognitive deficits should be dealt with on a case-by-case basis, and academic accommodation should be utilized when necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CDC :

Centers for Disease Control and Prevention

CT:

Computed tomography

DTI :

Diffusion tensor imaging

ER:

Emergency room

GCS :

Glasgow Coma Scale

LTP :

Long-term potentiation

MRI :

Magnetic resonance imaging

PET :

Positron emission tomography

SPECT :

Single-photon emission computed tomography

TBI :

Traumatic brain injury

References

  1. Arbogast K, McGinley A, Master C, et al. Cognitive rest and school-based recommendations following pediatric concussion: the need for primary care support tools. Clin Pediatr. 2013;52:397–402.

    Article  Google Scholar 

  2. Aubry M, Cantu R, Dvorak J, et al. Summary and agreement statement of the First International Conference on Concussion in Sport, Vienna 2001. Phys Sportsmed. 2002;30(3):57.

    Article  PubMed  Google Scholar 

  3. Bakhos L, Lockhart G, Myers R, Linakis J. Emergency department visits for concussion in young child athletes. Pediatrics. 2010;126:e550–6.

    Article  PubMed  Google Scholar 

  4. Barkhoudarian G, Hovda D, Giza C. The molecular pathophysiology of concussive brain injury. Clin Sports Med. 2011;30:33–48.

    Article  PubMed  Google Scholar 

  5. Bayly PV, Cohen TS, Leister EP, et al. Deformation of the human brain induced by mild acceleration. J Neurotrauma. 2005;22:845–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bayly PV, Black EE, Pedersen RC, et al. In vivo imaging of rapid deformation and strain in an animal model of traumatic brain injury. J Biomech. 2006;39:1086–95.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bergsneider M, Hovda DA, Shalmon E, et al. Cerebral hyperglycolysis following severe traumatic brain injury in humans: a positron emission tomography study. J Neurosurg. 1997;86(2):241–51.

    Article  CAS  PubMed  Google Scholar 

  8. Bodin D, Yeates K, Klamar K. Definition and classification of concussion. In: Apps J, Walter K, editors. Pediatric and adolescent concussion: diagnosis, management and outcomes (9-19). New York, NY: Springer Science + Business Media, LLC.; 2012.

    Google Scholar 

  9. Cantu RC. Posttraumatic retrograde and anterograde amnesia: pathophysiology and implications in grading and safe return to play. J Athl Train. 2001;36:244–8.

    PubMed  PubMed Central  Google Scholar 

  10. Cantu RC. Second-impact syndrome. Clin Sports Med. 1998;17:37–44.

    Article  CAS  PubMed  Google Scholar 

  11. Cantu R, Voy R. Second impact syndrome: a risk in any sport. Phys Sportsmed. 1995;23:27–36.

    Google Scholar 

  12. Cassidy JD, Carroll LJ, Peloso PM, et al. Incidence, risk factors, and prevention of mild traumatic brain injury: results of the WHO collaborating centre task force on mild traumatic brain injury. J Rehabil Med. 2004;43:28–60.

    Article  PubMed  Google Scholar 

  13. Castile L, Collins C, McIlvain N, Comstock R. The epidemiology of new versus recurrent sports concussions among high school athletes, 2005-2010. Br J Sports Med. 2012;46:603–10.

    Article  PubMed  Google Scholar 

  14. Choe M, Babikian T, DiFiori J, et al. A pediatric perspective on concussion pathophysiology. Curr Opin Pediatr. 2012;24:689–95.

    Article  PubMed  Google Scholar 

  15. Collins MW, Iverson GL, Lovell MR, et al. On-field predictors of neuropsychological and symptom deficit following sports-related concussion. Clin J Sport Med. 2003;13:222–9.

    Article  PubMed  Google Scholar 

  16. Collins M, Loevell M, Iverson G, et al. Cumulative effects of concussion in high school athletes. Neurosurgery. 2002;51(5):1175–9.

    Article  PubMed  Google Scholar 

  17. Corner JP, Whitney CW, O’Rourke NO, et al. Motorcycle and bicycle protective helmets: requirement resulting from a post crash study and experimental research, Vol 3, 1979-1987. Canberra ACT: Australian Transport Safety Bureau; 1987.

    Google Scholar 

  18. Dyall S, Michael-Titus A. Neurological benefits of omega-3 fatty acids. Neuromolecular Med. 2008;10:219–35.

    Article  CAS  PubMed  Google Scholar 

  19. Echemendia RJ, Putukian M, Makin RS, et al. Neuropsychological test performance prior to and following sports-related mild traumatic brain injury. Clin J Sport Med. 2001;11:23–31.

    Article  CAS  PubMed  Google Scholar 

  20. Erlanger D, Kaushik T, Cantu R, et al. Symptom-based assessment of the severity of a concussion. J Neurosurg. 2003;98:477–84.

    Article  PubMed  Google Scholar 

  21. Faden AI, Demediuk P, Panter SS, et al. The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science. 1989;244(4906):798–800.

    Article  CAS  PubMed  Google Scholar 

  22. Farkas O, Lifshitz J, Povlishock JT. Mechanoporation induced by diffuse traumatic brain injury: an irreversible or reversible response to injury? J Neurosci. 2006;26(12):3130–40.

    Article  CAS  PubMed  Google Scholar 

  23. Faul M, Xu L, Wald MM, Coronado VG. Traumatic brain injury in the united states: emergency department visits, hospitalizations and deaths 2002–2006. Atlanta, GA: Centers for Disease Control and Prevention, National Center for Injury Prevention and Control; 2010.

    Google Scholar 

  24. Fazio VC, Lovell MR, Pardini JE, et al. The relation between post concussion symptoms and neurocognitive performance in concussed athletes. NeuroRehabilitation. 2007;22:207–16.

    PubMed  Google Scholar 

  25. Giza CC, Maria NS, Hovda DA. N-methyl-D-aspartate receptor subunit changes after traumatic injury to the developing brain. J Neurotrauma. 2006;23(6):950–61.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gomez-Pinilla F. The combined effects of exercise and foods in preventing neurological and cognitive disorders. Prev Med. 2011;52:S75–80.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Guskiewicz KM, Weaver NL, Padua DA, et al. Epidemiology of concussion in collegiate and high school football players. Am J Sports Med. 2000;28:643–50.

    CAS  PubMed  Google Scholar 

  28. Harad FT, Kerstein MD. Inadequacy of bedside clinical indicators in identifying significant intracranial injury in trauma patients. J Trauma. 1992;32:359–61.

    Article  CAS  PubMed  Google Scholar 

  29. Haydel MJ, Preston CA, Mills TJ, et al. Indications for computed tomography in patients with minor head injury. N Engl J Med. 2000;343:100–5.

    Article  CAS  PubMed  Google Scholar 

  30. Iverson GL, Gaetz M, Lovell MR, et al. Cumulative effects of concussion in amateur athletes. Brain Inj. 2004;18:433–43.

    Article  PubMed  Google Scholar 

  31. Iverson GL, Brooks BL, Lovell MR, et al. No cumulative effects of one or two prior concussions. Br J Sports Med. 2006;40:72–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jantzen KJ, Anderson B, Steinberg FL, et al. A prospective functional MR imaging study of mild traumatic brain injury in college football players. AJNR Am J Neuroradiol. 2004;25(5):738–45.

    PubMed  Google Scholar 

  33. Jeret JS, Mandell M, Anziska B, et al. Clinical predictors of abnormality disclosed by computed tomography after mild head trauma. Neurosurgery. 1993;32:9–15.

    Article  CAS  PubMed  Google Scholar 

  34. Johnson GV, Greenwood JA, Costello AC, et al. The regulatory role of calmodulin in the proteolysis of individual neurofilament proteins by calpain. Neurochem Res. 1991;16(8):869–73.

    Article  CAS  PubMed  Google Scholar 

  35. Jordan BD, Relkin NR, Ravdin LD. Apolipoprotein E4 associated with chronic traumatic brain injury in boxing. JAMA. 1997;278:136–40.

    Article  CAS  PubMed  Google Scholar 

  36. Kalimo H, Rehncrona S, Soderfeldt B. The role of lactic acidosis in the ischemic nerve cell injury. Acta Neuropathol Suppl. 1981;7:20–2.

    Article  CAS  PubMed  Google Scholar 

  37. Katayama Y, Becker DP, Tamura T, et al. Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. J Neurosurg. 1990;73(6):889–900.

    Article  CAS  PubMed  Google Scholar 

  38. Kawamata T, Katayama Y, Hovda DA, et al. Lactate accumulation following concussive brain injury: the role of ionic fluxes induced by excitatory amino acids. Brain Res. 1995;674(2):196–204.

    Article  CAS  PubMed  Google Scholar 

  39. Kay T, Harrington DE, Adams R, et al. Definition of mild traumatic brain injury. J Head Trauma Rehabil. 1993;8:86–7.

    Article  Google Scholar 

  40. Kirkwood M, Yeates K, Wilson P. Pediatric sports-related concussion: a review of the clinical management of an Oft-neglected population. Pediatrics. 2006;117:1359–71.

    Article  PubMed  Google Scholar 

  41. Kissick J, Johnston KM. Return to play after concussion: principles and practice. Clin J Sport Med. 2005;15(6):426–31.

    Article  PubMed  Google Scholar 

  42. Lewis M, Bailes J. Neuroprotection for the warrior: dietary supplementation with omega-3 fatty acids. Mil Med. 2011;176(10):1120–7.

    Article  PubMed  Google Scholar 

  43. Lifshitz J, Sullivan PG, Hovda DA, et al. Mitochondrial damage and dysfunction in traumatic brain injury. Mitochondrion. 2004;4(5–6):705–13.

    Article  CAS  PubMed  Google Scholar 

  44. Longhi L, Saatman KE, Fujimoto S, et al. Temporal window of vulnerability to repetitive experimental concussive brain injury. Neurosurgery. 2005;56(2):364–74. discussion: 364-74.

    Article  PubMed  Google Scholar 

  45. Lovell MR, Pardini JE, Welling J, et al. Functional brain abnormalities are related to clinical recovery and time to return-to-play in athletes. Neurosurgery. 2007;61(2):352–9. discussion: 359–60.

    Article  PubMed  Google Scholar 

  46. Marar M, McIlvain N, Fields S, Comstock R. Epidemiology of concussion among united states high school athletes in 20 sports. Am J Sports Med. 2012;40:747–55.

    Article  PubMed  Google Scholar 

  47. Maruta J, Suh M, Niogi S, et al. Visual tracking synchronization as a metric for concussion screening. J Head Trauma Rehabil. 2010;25(4):293–305.

    Article  PubMed  Google Scholar 

  48. Matser EJT, Kessels AG, Lezak MD, et al. Neuropsychological impairment in amateur soccer players. JAMA. 1999;282:971–3.

    Article  CAS  PubMed  Google Scholar 

  49. Maxwell WL, Povlishock JT, Graham DL. A mechanistic analysis of nondisruptive axonal injury: a review. J Neurotrauma. 1997;14(7):419–40.

    Article  CAS  PubMed  Google Scholar 

  50. McAllister TW, Sparling MB, Flashman LA, et al. Neuroimaging findings in mild traumatic brain injury. J Clin Exp Neuropsychol. 2001;23(6):775–91.

    Article  CAS  PubMed  Google Scholar 

  51. McCrea M, Kelly JP, Kluge J, et al. Standardized assessment of concussion in football players. Neurology. 1997;48:586–8.

    Article  CAS  PubMed  Google Scholar 

  52. McCrory P, Johnston K, Meeuwisse W, et al. Summary and agreement statement of the 2nd international conference on concussion in sport, Prague, 2004. Clin J Sport Med. 2005;15:48–57.

    Article  PubMed  Google Scholar 

  53. McCrory P, Meeuwisse W, Aubry M, et al. Consensus statement on concussion in sport: the 4th International Conference on Concussion in Sport held in Zurich, November 2012. Br J Sports Med. 2013;47:250–8.

    Article  PubMed  Google Scholar 

  54. McGrath N. Supporting the student-athlete’s return to the classroom after a sport-related concussion. J Athl Train. 2010;45:492–8.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Meares S, Shores EA, Taylor AJ, et al. Mild traumatic brain injury does not predict acute post-concussion syndrome. J Neurol Neurosurg Psychiatry. 2008;79:300–6.

    Article  CAS  PubMed  Google Scholar 

  56. Miller EC, Holmes JF, Derlet RW. Utilizing clinical factors to reduce head CT scan ordering for minor head trauma patients. J Emerg Med. 1997;15:453–7.

    Article  CAS  PubMed  Google Scholar 

  57. Miller EC, Derlet RW, Kinser D. Minor head trauma: is computed tomography always necessary? Ann Emerg Med. 1996;27:290–4.

    Article  CAS  PubMed  Google Scholar 

  58. Moen K, Skandsen T, Folvik M, et al. A longitudinal MRI study of traumatic axonal injury in patients with moderate and severe traumatic brain injury. J Neurol Neurosurg Psychiatry. 2012;83:1193–200.

    Article  PubMed  Google Scholar 

  59. Moser R, Glatts C, Schatz P. Efficacy of immediate and delayed cognitive and physical rest for treatment of sports-related concussion. J Pediatr. 2012;161:922–6.

    Article  PubMed  Google Scholar 

  60. Mower WR, Hoffman JR, Herbert M, Wolfson AB, Pollack Jr CV, Zucker MI. Developing a decision instrument to guide computed tomographic imaging of blunt head injury patients. J Trauma. 2005;59:954–9.

    Article  PubMed  Google Scholar 

  61. Niogi SN, Mukherjee P, Ghajar J, et al. Extent of microstructural white matter injury in postconcussive syndrome correlates with impaired cognitive reaction time: a 3T diffusion tensor imaging study of mild traumatic brain injury. AJNR Am J Neuroradiol. 2008;29(5):967–73.

    Article  CAS  PubMed  Google Scholar 

  62. Niogi SN, Mukherjee P, Ghajar J, et al. Structural dissociation of attentional control and memory in adults with and without mild traumatic brain injury. Brain. 2008;131(Pt 12):3209–21.

    Article  PubMed  Google Scholar 

  63. Niogi S, Mukherjee P. Diffusion tensor imaging of mild traumatic brain injury. J Head Trauma Rehabil. 2010;25(4):241–55.

    Article  PubMed  Google Scholar 

  64. Ommaya AK, Gennarelli TA. Cerebral concussion and traumatic unconsciousness: correlation of experimental and clinical observations on blunt head injuries. Brain. 1974;97:633–54.

    Article  CAS  PubMed  Google Scholar 

  65. Ommaya AK, Goldsmith W, Thibault L. Biomechanics and neuropathology of adult and pediatric head injury. Br J Neurosurg. 2002;16:220–42.

    Article  CAS  PubMed  Google Scholar 

  66. Pellman EJ, Lovell MR, Viano DC, et al. Concussion in professional football: neuropsychological testing—part 6. Neurosurgery. 2004;55:1290–305.

    Article  PubMed  Google Scholar 

  67. Petraglia A, Maroon J, Bailes J. From the field of play to the field of combat: a review of the pharmacological management of concussion. Neurosurgery. 2012;70:1520–33.

    Article  PubMed  Google Scholar 

  68. Pettus EH, Povlishock JT. Characterization of a distinct set of intra-axonal ultrastructural changes associated with traumatically induced alteration in axolemmal permeability. Brain Res. 1996;722(1–2):1–11.

    Article  CAS  PubMed  Google Scholar 

  69. Ponsford J, Willmott C, Rothwell A, et al. Factors influencing outcome following mild traumatic brain injury in adults. J Int Neuropsychol Soc. 2000;6:568–79.

    Article  CAS  PubMed  Google Scholar 

  70. Ptito A, Chen JK, Johnston KM. Contributions of functional magnetic resonance imaging (fmri) to sport concussion evaluation. NeuroRehabilitation. 2007;22:217–27.

    PubMed  Google Scholar 

  71. Putukian M. Repeat mild traumatic brain injury: how to adjust return to play guidelines. Curr Sports Med Rep. 2006;5(1):15–22.

    Article  PubMed  Google Scholar 

  72. Reddy CC, Collins MW. Sports concussion: management and predictors of outcome. Curr Sports Med Rep. 2009;8(1):10–5.

    Article  PubMed  Google Scholar 

  73. Reeves TM, Lyeth BG, Povlishock JT. Long-term potentiation deficits and excitability changes following traumatic brain injury. Exp Brain Res. 1995;106(2):248–56.

    Article  CAS  PubMed  Google Scholar 

  74. Roberts GW, Allsop B, Bruton C. The occult aftermath of boxing. J Neurol Neurosurg Psychiatry. 1990;53:373–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Robertson CL, Saraswati M, Fiskum G. Mitochondrial dysfunction early after traumatic brain injury in immature rats. J Neurochem. 2007;101(5):1248–57.

    Article  CAS  PubMed  Google Scholar 

  76. Ropper A, Gorson K. Concussion. N Engl J Med. 2007;356:166–72.

    Article  CAS  PubMed  Google Scholar 

  77. Rosengren D, Rothwell S, Brown AF, Chu K. The application of North American CT scan criteria to an Australian population with minor head injury. Emerg Med Australas. 2004;16:195–200.

    Article  PubMed  Google Scholar 

  78. Saatman KE, Abai B, Grosvenor A, et al. Traumatic axonal injury results in biphasic calpain activation and retrograde transport impairment in mice. J Cereb Blood Flow Metab. 2003;23(1):34–42.

    Article  CAS  PubMed  Google Scholar 

  79. Sanders MJ, Sick TJ, Perez-Pinzon MA, et al. Chronic failure in the maintenance of long-term potentiation following fluid percussion injury in the rat. Brain Res. 2000;861(1):69–76.

    Article  CAS  PubMed  Google Scholar 

  80. Saunders RL, Harbaugh RE. The second impact in catastrophic contact-sports head trauma. JAMA. 1984;252:538–9.

    Article  CAS  PubMed  Google Scholar 

  81. Schatz P, Pardini JE, Lovell MR, et al. Sensitivity and specificity of the ImPACT test battery for concussion in athletes. Arch Clin Neuropsychol. 2006;21:91–9.

    Article  PubMed  Google Scholar 

  82. Schulz MR, Marshall SW, Mueller FO, et al. Incidence and risk factors for concussion in high school athletes, North Carolina, 1996-1999. Am J Epidemiol. 2004;160:937–44.

    Article  PubMed  Google Scholar 

  83. Scorza K, Raleigh M, O’Connor F. Current concepts in concussion: evaluation and management. Am Fam Physician. 2012;85(2):123–32.

    PubMed  Google Scholar 

  84. Sick TJ, Perez-Pinzon MA, Feng ZZ. Impaired expression of long-term potentiation in hippocampal slices 4 and 48 h following mild fluid-percussion brain injury in vivo. Brain Res. 1998;785(2):287–92.

    Article  CAS  PubMed  Google Scholar 

  85. Shin S, Dixon C. Oral fish oil restores striatal dopamine release after traumatic brain injury. Neurosci Lett. 2011;496:168–71.

    Article  CAS  PubMed  Google Scholar 

  86. Slobounov SM, Zhang K, Pennell D, et al. Functional abnormalities in normally appearing athletes following mild traumatic brain injury: a functional MRI study. Exp Brain Res. 2010;202:341–54.

    Article  PubMed  Google Scholar 

  87. Smits M, Dippel DW, de Haan GG, et al. External validation of the Canadian CT Head Rule and the New Orleans Criteria for CT scanning in patients with minor head injury. JAMA. 2005;294:1519–25.

    Article  CAS  PubMed  Google Scholar 

  88. Spain A, Daumas S, Lifshitz J, et al. Mild fluid percussion injury in mice produces evolving selective axonal pathology and cognitive deficits relevant to human brain injury. J Neurotrauma. 2010;27(8):1429–38.

    Article  PubMed  Google Scholar 

  89. Stein SC, Fabbri A, Servadei F, Glick HA. A critical comparison of clinical decision instruments for computed tomographic scanning in mild closed traumatic brain injury in adolescents and adults. Ann Emerg Med. 2009;53:180–8.

    Article  PubMed  Google Scholar 

  90. Stein SC, Ross SE. The value of computed tomographic scans in patients with low-risk head injuries. Neurosurgery. 1990;26:638–40.

    Article  CAS  PubMed  Google Scholar 

  91. Stein SC, Ross SE. Mild head injury: a plea for routine early CT scanning. J Trauma. 1992;33:11–3.

    Article  CAS  PubMed  Google Scholar 

  92. Sternberger NH, Sternberger LA. Neurotypy: the heterogeneity of brain proteins. Ann N Y Acad Sci. 1983;420:90–9.

    Article  CAS  PubMed  Google Scholar 

  93. Stiell IG, Wells GA, Vandenheem K, et al. The Canadian CT Head Rule for patients with minor head injury. Lancet. 2001;357:1391–6.

    Article  CAS  PubMed  Google Scholar 

  94. Stiell IG, Clement CM, Rowe BH, et al. Comparison of the Canadian CT head rule and the New Orleans Criteria in patients with minor head injury. JAMA. 2005;294:1511–8.

    Article  CAS  PubMed  Google Scholar 

  95. Tavazzi B, Vagnozzi R, Signoretti S, et al. Temporal window and metabolic brain vulnerability to concussions: oxidative and nitrosative stresses—part II. Neurosurgery. 2007;61:390–6.

    Article  PubMed  Google Scholar 

  96. Teasdale TW, Engberg AW. Cognitive dysfunction in young men following head injury in childhood and adolescence: a population study. J Neurol Neurosurg Psychiatry. 2003;74:933–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Vagnozzi R, Tavazzi B, Signoretti S, et al. Temporal window of metabolic brain vulnerability to concussions: mitochondrial-related impairment–part I. Neurosurgery. 2007;61(2):379–88. discussion: 88–9.

    Article  PubMed  Google Scholar 

  98. van Kampen DA, Lovell MR, Pardini JE, et al. The value added of neurocognitive testing following sports-related concussion. Am J Sports Med. 2006;34:1630–5.

    Article  PubMed  Google Scholar 

  99. Vagnozzi R, Signoretti S, Tavazzi B, et al. Hypothesis of the postconcussive vulnerable brain: experimental evidence of its metabolic occurrence. Neurosurgery. 2005;57(1):164–71. discussion: 164-71.

    Article  PubMed  Google Scholar 

  100. Verweij BH, Muizelaar JP, Vinas FC, et al. Mitochondrial dysfunction after experimental and human brain injury and its possible reversal with a selective N-type calcium channel antagonist (SNX-111). Neurol Res. 1997;19(3):334–9.

    Article  CAS  PubMed  Google Scholar 

  101. Wilde EA, McCauley SR, Hunter JV, et al. Diffusion tensor imaging of acute mild traumatic brain injury in adolescents. Neurology. 2008;70(12):948–55.

    Article  CAS  PubMed  Google Scholar 

  102. Williams W, Potter S, Ryland H. Mild traumatic brain injury and Postconcussion Syndrome: a neuropsychological perspective. J Neurol Neurosurg Psychiatry. 2010;81:1116–22.

    Article  PubMed  Google Scholar 

  103. Wu A, Ying Z, Gomez-Pinilla F. The salutary effects of DHA dietary supplementation on cognition, neuroplasticity, and membrane homeostasis after brain trauma. J Neurotrauma. 2011;28:2113–22.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Xiong Y, Gu Q, Peterson PL, et al. Mitochondrial dysfunction and calcium perturbation induced by traumatic brain injury. J Neurotrauma. 1997;14(1):23–34.

    Article  CAS  PubMed  Google Scholar 

  105. Yoshino A, Hovda DA, Kawamata T, et al. Dynamic changes in local cerebral glucose utilization following cerebral conclusion in rats: evidence of a hyper and subsequent hypometabolic state. Brain Res. 1991;561(1):106–19.

    Article  CAS  PubMed  Google Scholar 

  106. Nagy KK, Joseph KT, Krosner SM, et al. The utility of head computed tomography after minimal head injury. J Trauma. 1999;46:268–73.

    Article  CAS  PubMed  Google Scholar 

  107. Lovell M, Collins MW. Neuropsychological assessment of the college football player. J Head Trauma Rehabil. 1998;13(2):9–26.

    Article  CAS  PubMed  Google Scholar 

  108. Gronwall D. Rehabilitation programs for patients with mild head injury: components, problems, and evaluation. J Head Trauma Rehab. 1986;1:53–62.

    Article  Google Scholar 

  109. Harmon KG, et al. American Medical Society for Sports Medicine position statement: concussion in sport. Br J Sports Med. 2013;47:15–26.

    Article  PubMed  Google Scholar 

  110. Giza CC, Kutcher JS, Ashwal S, et al. Summary of evidence-based guideline update: evaluation and management of concussion in sports: Report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology. 2013;80:2250–7.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baxter B. Allen M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Allen, B.B. (2017). Pathophysiology and Diagnosis of Concussion. In: Greenfield, J., Long, C. (eds) Common Neurosurgical Conditions in the Pediatric Practice. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3807-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3807-0_29

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3805-6

  • Online ISBN: 978-1-4939-3807-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics