Skip to main content

Image Gently: Minimizing Radiation Exposure in Children

  • Chapter
  • First Online:
  • 1310 Accesses

Abstract

In this chapter we review why radiation exposure is more deleterious for children and the various options available to improve the risk/benefit ratio for diagnostic CNS imaging.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Roentgen WC. Eine Neue Art von Strahlen. Sitzungsberichte der Wurzburger Physik-medico Gegellschraft, 1895.

    Google Scholar 

  2. Thomson E. Roentgen rays act strongly on the tissues. Elect Eng. 1896;22:534.

    Google Scholar 

  3. Brecher R, Brecher E. The rays. A history of radiology in the United States and Canada. Baltimore, MD: Williams & Wilkins; 1969.

    Google Scholar 

  4. Rollins W. X-light kills. Boston Med Surg J. 1901;44:173.

    Google Scholar 

  5. Brown P. American martyrs to science through the Roentgen rays. Springfield, IL: Thomas; 1936.

    Google Scholar 

  6. Bruwer AJ. Classic descriptions in diagnostic roentgenology, vol. 1. Springfield, IL: Thomas; 1964.

    Google Scholar 

  7. Muller HJ. The production of mutations by X-rays. Proc Natl Acad Sci U S A. 1928;14(9):714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lederman M. The early history of radiotherapy: 1895–1939. Int J Radiat Oncol Biol Phys. 1981;7:639–48.

    Article  CAS  PubMed  Google Scholar 

  9. Kovarik Bill (Revised 2002). “The Radium Girls.” originally published as chapter eight of Mass Media and Environmental Conflict. RUNet.edu.

  10. http://data.bls.gov/cgi-bin/cpicalc.pl.

  11. Goodman TR. Ionizing radiation effects and their risk to humans. November 2010 Available from: http://www.imagewisely.org.

  12. Brenner DJ, Hall EJ. Computed tomography: an increasing source of radiation exposure. N Engl J Med. 2007;357:2277–84.

    Article  CAS  PubMed  Google Scholar 

  13. National Council on Radiation Protection and Measurements. Ionizing radiation exposure of the population of the United States. NCRP Report No. 160. Bethesda, MD: National Council on Radiation Protection and Measurements; 2009.

    Google Scholar 

  14. Hendee WR. Cross sectional medical imaging: a history. Radiographics. 1989;9(6):1155–80.

    Article  CAS  PubMed  Google Scholar 

  15. Euclid S. Computed tomography: Physical principles, clinical applications, and quality control. St. Louis, MO: Saunders/Elsevier; 2009.

    Google Scholar 

  16. Fritz JV. Neuroimaging trends and future outlook. Neurol Clin. 2014;32(1):1–29.

    Article  PubMed  Google Scholar 

  17. Attix FH. Introduction to radiological physics and radiation dosimetry. Hoboken, NJ: John Wiley & Sons; 2008.

    Google Scholar 

  18. Miglioretti DL, Johnson E, Williams A. The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr. 2013;10:1–8.

    Google Scholar 

  19. Hoshiko S, et al. Trends in CT scan rates in children and pregnant women: teaching, private, public and nonprofit facilities. Pediatr Radiol. 2014;44:522.

    Article  PubMed  Google Scholar 

  20. Brenner DJ, Elliston CD, Hall EJ, Berdon WE. Estimated risks of radiation-induced fatal cancer from pediatric CT. Am J Roentgenol. 2001;176(2):289–96.

    Article  CAS  Google Scholar 

  21. http://www.fda.gov/MedicalDevices/Safety/AlertsandNotices/ucm185898.htm.

  22. Bauhs JA, Vrieze TJ, Primak AN, Bruesewitz MR, McCollough CH. CT dosimetry: comparison of measurement techniques and devices. Radiographics. 2008;28:245–53.

    Article  PubMed  Google Scholar 

  23. McCollough CH, Leng S, Yu L, Cody DD, Boone JM, McNitt-Gray MF. CT dose index and patient dose: they are not the same thing. Radiol Radiol Soc N Am. 2011;259(2):311.

    Google Scholar 

  24. Thomas KE, Wang B. Age-specific effective doses for pediatric MSCT examinations at a large children’s hospital using DLP conversion coefficients: a simple estimation method. Pediatr Radiol. 2008;38(6):645–56.

    Article  PubMed  Google Scholar 

  25. Shrimpton PC, Hillier M, Lewis M, Dunn M. Doses from computed tomography (CT) examinations in the UK-2003 (NRPB-W67). Chilton: National Radiological Protection Board; 2005. Available from: http://www.hpa.org.uk/radiation/publications/w_series_reports/2005/nrpb_w67.htm.

  26. Shrimpton PC, Hillier MC, Lewis MA, Dunn M. National survey of doses from CT in the UK: 2003. Br J Radiol. 2006;79:968–80.

    Article  CAS  PubMed  Google Scholar 

  27. Kleinman PL, Strauss KJ, Zurakowski D, Buckley KS, Taylor GA. Patient size measured on CT images as a function of age at a tertiary care children’s hospital. AJR Am J Roentgenol. 2010;194(6):1611–9.

    Article  PubMed  Google Scholar 

  28. The 2007 recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP. 2007; 37(2-4):1–332.

    Google Scholar 

  29. Deak PD, Smal Y, Kalender WA. Multisection CT protocols: sex-and age-specific conversion factors used to determine effective dose from dose-length product. Radiology. 2010;257(1):158.

    Article  PubMed  Google Scholar 

  30. Kim KP, Berrington de Gonzalez A, Pearce MS, Salotti JA, Parker L, McHugh K, et al. Development of a database of organ doses for pediatric and young adult CT scans in the United Kingdom. Radiat Prot Dosim. 2012;150(4):415–26. doi:10.1093/rpd/ncr429. PubMed PMID: 22228685, PMCID: PMC3400529.

    Article  CAS  Google Scholar 

  31. American Association of Physicists in Medicine [Internet]. College Park (MD): 2011 AAPM report no. 204: size-specific dose estimates (SSDE) in pediatric and adult body CT examinations; [pdf]. Available from: www.aapm.org/pubs/reports/rpt_204.pdf.

  32. Alessio AM, Phillips GS. A pediatric CT dose and risk estimator. Pediatr Radiol. 2010;40:1816–22.

    Article  PubMed  Google Scholar 

  33. Hendee WR, OConnor MK. Radiation risks of medical imaging: separating fact from fantasy. Radiol Radiol Soc N Am. 2012;264(2):312.

    Google Scholar 

  34. Radiation Effects Research Foundation [Internet]. Hiroshima, Japan. Available from: http://www.rerf.or.jp/library/dl_e/index.html.

  35. Pierce DA, Preston DL. Radiation-related cancer risks at low doses among atomic bomb survivors. Radiat Res. 2000;154(2):178–86.

    Article  CAS  PubMed  Google Scholar 

  36. Ron E, Lubin JH, Shore RE, Mabuchi K, Modan B, Pottern LM, et al. Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies. J Radiat Res. 1995;141(3):259–77.

    Article  CAS  Google Scholar 

  37. Doll R, Wakeford R. Risk of childhood cancer from fetal irradiation. Br J Radiol. 1997;70:130–9.

    Article  CAS  PubMed  Google Scholar 

  38. Hoffman DA, Lonstein JE, Morin MM, Visscher W, Harris BS, Boice JD. Breast cancer in women with scoliosis exposed to multiple diagnostic x rays. J Natl Cancer Inst. 1989;81(17):1307–12.

    Article  CAS  PubMed  Google Scholar 

  39. Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet. 2012;380(9840):499–505.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Matthews JD, Forsythe AV, Brady Z, Butler MW, Georgen SK, Byrnes GB, et al. Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescent: data linkage study of 11 million Australians. BMJ. 2013;346:1–18.

    Article  Google Scholar 

  41. Einstein AJ. Beyond the bombs: cancer risks from low-dose medical radiation. Lancet. 2012;380(9840):455.

    Article  PubMed  PubMed Central  Google Scholar 

  42. American College of Radiology. ACR Appropriateness Criteria®. Available from: www.acr.org/ac. Accessed March 5, 2014.

  43. Raissaki M, Perisinakis K, Damilakis J, Gourtsoyiannis N. Eye-lens bismuth shielding in paediatric head CT: artefact evaluation and reduction. Pediatr Radiol. 2010;40(11):1748–54.

    Article  PubMed  Google Scholar 

  44. Strauss KJ, Goske MJ, Kaste SC, Bulas D, Frush DP, Butler P, et al. Image gently: ten steps you can take to optimize image quality and lower CT dose for pediatric patients. Am J Roentgenol. 2010;194(4):868–73.

    Article  Google Scholar 

  45. Rao P, Bekhit E, Ramanauskas F, Kumbla S. CT head in children. Eur J Radiol. 2013;82(7):1050–8.

    Article  PubMed  Google Scholar 

  46. Udayasankar UK, Braithwaite K, Arvaniti M, Tudorascu D, Small WC, Little S, et al. Low-dose nonenhanced head CT protocol for follow-up evaluation of children with ventriculoperitoneal shunt: reduction of radiation and effect on image quality. AJNR Am J Neuroradiol. 2008;29(4):802–6.

    Article  CAS  PubMed  Google Scholar 

  47. Shuaib W, Johnson JO, Pande V, Salastekar N, Kang J, He Q, et al. Ventriculoperitoneal shunt malfunction: cumulative effect of cost, radiation, and turnaround time on the patient and the health care system. Am J Roentgenol. 2014;202(1):13–7.

    Article  Google Scholar 

  48. Cohen JS, Jamal N, Dawes C, Chamberlain JM, Atabaki SM. Cranial computed tomography utilization for suspected ventriculoperitoneal shunt malfunction in a Pediatric Emergency Department. J Emerg Med. 2014;46(4):449–55.

    Article  PubMed  Google Scholar 

  49. Patel DM, Tubbs RS, Pate G, Johnston Jr JM, Blount JP. Fast-sequence MRI studies for surveillance imaging in pediatric hydrocephalus. J Neurosurg Pediatr. 2014;13:440.

    Article  PubMed  Google Scholar 

  50. Kuppermann N, Holmes JF, Dayan PS, Hoyle Jr JD, Atabaki SM, Holubkov R. Pediatric Emergency Care Applied Research Network (PECARN). Identification of children at very low risk of clinically-important brain injuries after head trauma: a prospective cohort study. Lancet. 2009;374:1160–70.

    Article  PubMed  Google Scholar 

  51. Mannix R, Meehan WP, Monuteaux MC, Bachur RG. Computed tomography for minor head injury: variation and trends in major United States pediatric emergency departments. J Pediatr. 2012;160:136–9.

    Article  PubMed  Google Scholar 

  52. Osmond MH, Klassen TP, Wells GA, Correll R, Jarvis A, Joubert G, et al. CATCH: a clinical decision rule for the use of computed tomography in children with minor head injury. Can Med Assoc J. 2010;182(4):341–8.

    Article  Google Scholar 

  53. Easter JS, Bakes K, Dhaliwal J, Miller M, Caruso E, Haukoos JS. Comparison of PECARN, CATCH, and CHALICE rules for children with minor head injury: a prospective cohort study. Ann Emerg Med. 2014;64:145.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kadom N, Khademian Z, Vezina G, Shalaby-Rana E, Rice A, Hinds T. Usefulness of MRI detection of cervical spine and brain injuries in the evaluation of abusive head trauma. Pediatr Radiol. 2014;44:839.

    Article  PubMed  Google Scholar 

  55. Zuccoli G, Panigrahy A, Haldipur A, Willaman D, Squires J, Wolford J, et al. Susceptibility weighted imaging depicts retinal hemorrhages in abusive head trauma. Neuroradiology. 2013;55(7):889–93.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Silva CT, Doria AS, Traubici J, Moineddin R, Davila J, Shroff M. Do additional views improve the diagnostic performance of cervical spine radiography in pediatric trauma? AJR Am J Roentgenol. 2010;194(2):500–8.

    Article  PubMed  Google Scholar 

  57. Daffner RH, Weissman BN, Wippold II FJ, Angtuaco EJ, Appel M, Berger KL et al. ACR Appropriateness Criteria® Suspected Spine Trauma. Available from: http://www.acr.org/~/media/ACR/Documents/AppCriteria/Diagnostic/SuspectedSpineTrauma.pdf. American College of Radiology. Accessed March 5, 2014.

  58. Richard CE, Anderson MD, Peter K, Vanaman M, Rubsam J, Hansen KW, et al. Utility of a cervical spine clearance protocol after trauma in children between 0 and 3 years of age. J Neurosurg Pediatr. 2010;5:292–6.

    Article  Google Scholar 

  59. Sempere AP, Porta-Etessam J, Medrano V, Garcia-Morales I, Concepcion L, Ramos A, et al. Neuroimaging in the evaluation of patients with non-acute headache. Cephalalgia. 2005;25(1):30–5.

    Article  CAS  PubMed  Google Scholar 

  60. Hayes LL, Coley BD, Karmazyn B, Dempsey-Robertson ME, Dillman JR, Dory CE, et al. ACR Appropriateness Criteria® Headache-Child. Available from: http://www.acr.org/~/media/ACR/Documents/AppCriteria/Diagnostic/HeadacheChild.pdf. American College of Radiology. Accessed March 5, 2014.

  61. DiMario Jr FJ. Children presenting with complex febrile seizures do not routinely need computed tomography scanning in the emergency department. Pediatrics. 2006;117(2):528–30.

    Article  PubMed  Google Scholar 

  62. Dory CE, Coley BD, Karmazyn B, Charron M, Dempsey ME, Dillman JR, et al. ACR Appropriateness Criteria® Seizures-Child. Available from: http://www.acr.org/~/media/ACR/Documents/AppCriteria/Diagnostic/ Seizures-Child.pdf. American College of Radiology. Accessed March 5, 2014.

  63. Deistung A, Schweser F, Wiestler B, Abello M, Roethke M, Sahm F, et al. Quantitative susceptibility mapping differentiates between blood depositions and calcifications in patients with glioblastoma. PLoS One. 2013;8(3):e57924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda A. Heier M.D., F.R.C.P.(C) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Heier, L.A., Pinto, S.N. (2017). Image Gently: Minimizing Radiation Exposure in Children. In: Greenfield, J., Long, C. (eds) Common Neurosurgical Conditions in the Pediatric Practice. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3807-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3807-0_20

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3805-6

  • Online ISBN: 978-1-4939-3807-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics