Skip to main content

Imaging of the Fetal Brain and Spine

  • Chapter
  • First Online:
Common Neurosurgical Conditions in the Pediatric Practice

Abstract

This chapter reviews the indications for prenatal imaging of the central nervous system (CNS) and illustrates the complementary roles of ultrasound (US) and magnetic resonance imaging (MRI). The techniques employed by each modality and their respective strengths and weaknesses are presented. The normal CNS anatomy identified by each modality is discussed and we review the appearance of the most common pathologic CNS conditions investigated during pregnancy including ventriculomegaly, neural tube defects, agenesis of the corpus callosum, and malformations of the posterior fossa and cortical development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramowicz JS, Kossoff G, Marsal K, Ter Haar G. Safety statement, 2000 (reconfirmed 2003). International Society of Ultrasound in Obstetrics and Gynecology (ISUOG). Ultrasound Obstet Gynecol. 2003;21:100.

    Article  CAS  PubMed  Google Scholar 

  2. Barnewolt CE, Estroff JA. Sonography of the fetal central nervous system. Neuroimaging Clin N Am. 2004;14:255–71.

    Article  PubMed  Google Scholar 

  3. Levine D, Hatabu H, Gaa J, Atkinson MW, Edelman RR. Fetal anatomy revealed with fast MR sequences. AJR Am J Roentgenol. 1996;167:905–8.

    Article  CAS  PubMed  Google Scholar 

  4. Breysem L, Bosmans H, Dymarkowski S, et al. The value of fast MR imaging as an adjunct to ultrasound in prenatal diagnosis. Eur Radiol. 2003;13:1538–48.

    Article  CAS  PubMed  Google Scholar 

  5. Frates MC, Kumar AJ, Benson CB, Ward VL, Tempany CM. Fetal anomalies: comparison of MR imaging and US for diagnosis. Radiology. 2004;232:398–404.

    Article  PubMed  Google Scholar 

  6. Levine D, Barnes PD, Madsen JR, Abbott J, Mehta T, Edelman RR. Central nervous system abnormalities assessed with prenatal magnetic resonance imaging. Obstet Gynecol. 1999;94:1011–9.

    CAS  PubMed  Google Scholar 

  7. Quinn TM, Hubbard AM, Adzick NS. Prenatal magnetic resonance imaging enhances fetal diagnosis. J Pediatr Surg. 1998;33:553–8.

    Article  CAS  PubMed  Google Scholar 

  8. Twickler DM, Magee KP, Caire J, Zaretsky M, Fleckenstein JL, Ramus RM. Second-opinion magnetic resonance imaging for suspected fetal central nervous system abnormalities. Am J Obstet Gynecol. 2003;188:492–6.

    Article  PubMed  Google Scholar 

  9. Dietrich RB, Cohen I. Fetal MR imaging. Magn Reson Imaging Clin N Am. 2006;14(4):503–22.

    Article  PubMed  Google Scholar 

  10. Simon EM, Goldstein RB, Coakley FV, et al. Imaging of fetal CNS anomalies in utero. AJNR Am J Neuroradiol. 2000;21:1688–98.

    CAS  PubMed  Google Scholar 

  11. Pooh RK, Kurjak A. 3D and 4D sonography and magnetic resonance in the assessment of normal and abnormal CNS development: alternative or complementary. J Perinat Med. 2011;39:3–13.

    Article  PubMed  Google Scholar 

  12. Goncalves LF, Lee W, Espinoza J, et al. Three- and 4-dimensional ultrasound in obstetric practice: does it help? J Ultrasound Med. 2005;24:1599–624.

    PubMed  Google Scholar 

  13. Malinger G, Ben-Sira L, Lev D, Ben-Aroya Z, Kidron D, Lerman-Sagie T. Fetal brain imaging: a comparison between magnetic resonance imaging and dedicated neurosonography. Ultrasound Obstet Gynecol. 2004;23:333–40.

    Article  CAS  PubMed  Google Scholar 

  14. Behairy NH, Talaat S, Saleem SN, El-Raouf MA. Magnetic resonance imaging in fetal anomalies: what does it add to 3D and 4D US? Eur J Radiol. 2010;74(1):250–5.

    Article  PubMed  Google Scholar 

  15. Revel MP, Pons JC, Lelaidier C, et al. Magnetic resonance imaging of the fetus: a study of 20 cases performed without curarization. Prenat Diagn. 1993;13:775–99.

    Article  CAS  PubMed  Google Scholar 

  16. Fitzmorris-Glass R, Mattrey RF, Cantrell CJ. Magnetic resonance imaging as an adjunct to ultrasound in oligohydramnios. Detection of sirenomelia. J Ultrasound Med. 1989;8:159–62.

    CAS  PubMed  Google Scholar 

  17. Brunel H, Girard N, Confort-Gouny S, et al. Fetal brain injury. J Neuroradiol. 2004;31:123–37.

    Article  CAS  PubMed  Google Scholar 

  18. Girard N, Raybaud C, Gambarelli D, et al. Fetal brain MR imaging. Magn Reson Imaging Clin N Am. 2001;9(1):19–56.

    CAS  PubMed  Google Scholar 

  19. Beuls EA, Vanormelingen L, van Aalst J, et al. In vitro high-field magnetic resonance imaging-documented anatomy of a fetal myelomeningocele at 20 weeks’ gestation. A contribution to the rationale of intrauterine surgical repair of spina bifida. J Neurosurg. 2003;98:210–4.

    PubMed  Google Scholar 

  20. Hedrick HL, Flake AW, Crombleholme TM, et al. Sacrococcygeal teratoma: prenatal assessment, fetal intervention, and outcome. J Pediatr Surg. 2004;39:430–8. discussion 430-438.

    Article  PubMed  Google Scholar 

  21. Coakley FV. Role of magnetic resonance imaging in fetal surgery. Top Magn Reson Imaging. 2001;12:39–51.

    Article  CAS  PubMed  Google Scholar 

  22. Shellock FG, Crues JV. MR procedures: biologic effects, safety, and patient care. Radiology. 2004;232:635–52.

    Article  PubMed  Google Scholar 

  23. Kanal E, Gillen J, Evans JA, Savitz DA, Shellock FG. Survey of reproductive health among female MR workers. Radiology. 1993;187:395–9.

    Article  CAS  PubMed  Google Scholar 

  24. Chew S, Ahmadi A, Goh PS, Foong LC. The effects of 1.5T magnetic resonance imaging on early murine in-vitro embryo development. J Magn Reson Imaging. 2001;13:417–20.

    Article  CAS  PubMed  Google Scholar 

  25. Baker PN, Johnson IR, Harvey PR, Gowland PA, Mansfield P. A three-year follow-up of children imaged in utero with echo-planar magnetic resonance. Am J Obstet Gynecol. 1994;170:32–3.

    Article  CAS  PubMed  Google Scholar 

  26. Clements H, Duncan KR, Fielding K, Gowland PA, Johnson IR, Baker PN. Infants exposed to MRI in utero have a normal paediatric assessment at 9 months of age. Br J Radiol. 2000;73:190–4.

    Article  CAS  PubMed  Google Scholar 

  27. Kok RD, de Vries MM, Heerschap A, van den Berg PP. Absence of harmful effects of magnetic resonance exposure at 1.5 T in utero during the third trimester of pregnancy: a follow-up study. Magn Reson Imaging. 2004;22:851–4.

    Article  PubMed  Google Scholar 

  28. Levine D, Zuo C, Faro CB, Chen Q. Potential heating effect in the gravid uterus during MR HASTE imaging. J Magn Reson Imaging. 2001;13:856–61.

    Article  CAS  PubMed  Google Scholar 

  29. Glover P, Hykin J, Gowland P, Wright J, Johnson I, Mansfield P. An assessment of the intrauterine sound intensity level during obstetric echo-planar magnetic resonance imaging. Br J Radiol. 1995;68:1090–4.

    Article  CAS  PubMed  Google Scholar 

  30. Vadeyar SH, Moore RJ, Strachan BK, Gowland PA, Shakespeare SA, James DK, Johnson IR, Baker PN. Effect of fetal magnetic resonance imaging on fetal heart rate patterns. Am J Obstet Gynecol. 2000;182(3):666–9.

    Article  CAS  PubMed  Google Scholar 

  31. Wald NJ. Prenatal screening for open neural tube effects and Down syndrome: three decades of progress. Prenatal Diagn. 2010;30(7):619–21.

    Article  Google Scholar 

  32. Pooh RK, Kurjak A. 3D/4D sonography moved prenatal diagnosis of fetal anomalies from the second to the first trimester of pregnancy. J Matern Fetal Neonatal Med. 2012;25:433–55.

    Article  PubMed  Google Scholar 

  33. Angtuaco TL. Ultrasound imaging of fetal brain abnormalities: three essential anatomical levels. Ultrasound Q. 2005;21:287–94.

    Article  PubMed  Google Scholar 

  34. Glenn OA, Barkovich AJ. Magnetic resonance imaging of the fetal brain and spine: an increasingly important tool in prenatal diagnosis—Part 1. AJNR Am J Neuroradiol. 2006;27:1604–11.

    CAS  PubMed  Google Scholar 

  35. Baldoli C, Righini A, Parazzini C, Scotti G, Triulzi F. Demonstration of acute ischemic lesions in the fetal brain by diffusion magnetic resonance imaging. Ann Neurol. 2002;52:243–6.

    Article  PubMed  Google Scholar 

  36. Brugger PC, Stuhr F, Lindner C, Prayer D. Methods of fetal MR: beyond T2-weighted imaging. Eur J Radiol. 2006;57:172–81.

    Article  PubMed  Google Scholar 

  37. Volpe JJ. Overview: normal and abnormal human brain development. Ment Retard Dev Disabil Res Rev. 2000;6(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  38. Winter TC, Kennedy AM, Byrne J, et al. The cavum septi pellucidi: why is it important? J Ultrasound Med. 2010;29:427–44.

    PubMed  Google Scholar 

  39. Monteagudo A, Timor-Tritsch IE. Development of fetal gyri, sulci and fissures: a transvaginal sonography study. Ultrasound Obstet Gynecol. 1997;9:222–8.

    Article  CAS  PubMed  Google Scholar 

  40. Ghai S, Fong KW, Toi A, et al. Prenatal US and MR imaging findings of lissencephaly: review of fetal cerebral sulcal development. Radiographics. 2006;26:389–405.

    Article  PubMed  Google Scholar 

  41. Serhatlioglu S, Kocakoc E, Kiris A, et al. Sonographic measurement of the fetal cerebellum, cisterna magna, and cavum septum pellucidum in normal fetuses in the second and third trimesters of pregnancy. J Clin Ultrasound. 2003;31:194–200.

    Article  PubMed  Google Scholar 

  42. Babcook CJ, Chong BW, Salamat MS, et al. Sonographic anatomy of the developing cerebellum: normal embryology can resemble pathology. AJR Am J Roentgenol. 1996;166:427–33.

    Article  CAS  PubMed  Google Scholar 

  43. Monteaguodo A, Timor-Tritsch IE. Ultrasound of the fetal brain. Ultrasound Clin. 2007;2:1–34.

    Article  Google Scholar 

  44. Benacerraf B, Shipp T, Bromley B. Three dimensional US of the fetus; volume imaging. Radiology. 2006;238:988–96.

    Article  PubMed  Google Scholar 

  45. Budorick NE, Pretorius DH, Grafe MR, et al. Ossification of the fetal spine. Radiology. 1991;181:561–5.

    Article  CAS  PubMed  Google Scholar 

  46. Fogliarini C, Chaumoitre K, Chapon F, et al. Assessment of cortical maturation with prenatal MRI: Part 1—normal cortical maturation. Eur Radiol. 2005;15:1671–85.

    Article  PubMed  Google Scholar 

  47. Kostovic I, Judas M, Rados M, et al. Laminar organization of the human fetal cerebrum revealed by histochemical markers and magnetic resonance imaging. Cereb Cortex. 2002;12:536–44.

    Article  PubMed  Google Scholar 

  48. Girard N, Raybaud C, Poncet M. In vivo MR study of brain maturation in normal fetuses. AJNR Am J Neuroradiol. 1995;16:407–13.

    CAS  PubMed  Google Scholar 

  49. Levine D, Barnes PD. Cortical maturation in normal and abnormal fetuses as assessed with prenatal MR imaging. Radiology. 1999;210:751–8.

    Article  CAS  PubMed  Google Scholar 

  50. Garel C. The role of MRI in the evaluation of the fetal brain with an emphasis on biometry, gyration and parenchyma. Pediatr Radiol. 2004;34:694–9.

    Article  PubMed  Google Scholar 

  51. Huisman TAG. Fetal magnetic resonance imaging. Semin Roentgenol. 2008;43:314–36.

    Article  PubMed  Google Scholar 

  52. Robinson AJ, Goldstein R. The cisterna magna septa vestigial remnants of Blake’s pouch and a potential new marker for normal development of the rhombencephalon. Am Inst Ultrasound Med. 2007;26:83–95.

    Google Scholar 

  53. Adamsbaum C, Moutard ML, Andre C, et al. MRI of the fetal posterior fossa. Pediatr Radiol. 2005;35:124–40.

    Article  PubMed  Google Scholar 

  54. Robinson AJ, Blaser S, Toi A, et al. The fetal cerebellar vermis assessment for abnormal development by ultrasonography and magnetic resonance imaging. Ultrasound Q. 2007;23:211–23.

    Article  PubMed  Google Scholar 

  55. Reichel TF, Ramus RM, Caire JT, et al. Fetal central nervous system biometry on MR imaging. AJR Am J Roentgenol. 2003;180:1155–8.

    Article  PubMed  Google Scholar 

  56. Garel C. Fetal cerebral biometry: normal parenchymal findings and ventricular size. Eur Radiol. 2005;15(4):809–13.

    Article  CAS  PubMed  Google Scholar 

  57. Parazzini C, et al. Prenatal magnetic resonance imaging: brain normal linear biometric values below 24 gestational weeks. Neuroradiology. 2008;50(10):877–83.

    Article  CAS  PubMed  Google Scholar 

  58. Moreira NC, et al. Measurements of the normal fetal brain at gestation weeks 17 to 23: a MRI study. Neuroradiology. 2011;53(1):43–8.

    Article  PubMed  Google Scholar 

  59. Tortori-Donati P, Rossi A, Cama A. Spinal dysraphism: a review of neuroradiological features with embryological correlations and proposal for a new classification. Neuroradiology. 2000;42:471–91.

    Article  CAS  PubMed  Google Scholar 

  60. Achiron R, Schimmel M, Achiron A, et al. Fetal mild idiopathic lateral ventriculomegaly: is there a correlation with fetal trisomy? Ultrasound Obstet Gynecol. 1993;3(2):89–92.

    Article  CAS  PubMed  Google Scholar 

  61. Goldstein RB, La Pidus AS, Filly RA, et al. Mild lateral cerebral ventricular dilatation in utero: clinical significance and prognosis. Radiology. 1990;176:237–42.

    Article  CAS  PubMed  Google Scholar 

  62. Weichert J, Hartge D, Krapp M, Germer U, Gembruch U, Axt-Fliedner R. Prevalence, characteristics and perinatal outcome of fetal ventriculomegaly in 29,000 pregnancies followed at a single institution. Fetal Diagn Ther. 2010;27(3):142–8.

    Article  PubMed  Google Scholar 

  63. Bloom SL, Bloom DD, DellaNebbia C, et al. The developmental outcome of children with antenatal mild isolated ventriculomegaly. Obstet Gynecol. 1997;90(1):93–7.

    Article  CAS  PubMed  Google Scholar 

  64. Cochrane DD, Myles ST, Nimrod C, et al. Intrauterine hydrocephalus and ventriculomegaly: associated abnormalities and fetal outcome. Can J Neurol Sci. 1985;12:51–9.

    Article  CAS  PubMed  Google Scholar 

  65. Gaglioti P, Oberto M, Todros T. The significance of fetal ventriculomegaly: etiology, short- and long-term outcomes. Prenat Diagn. 2009;29(4):381–8.

    Article  PubMed  Google Scholar 

  66. Benacerraf BR, Shipp TD, Bromley B, Levine D. What does magnetic resonance imaging add to the prenatal sonographic diagnosis of ventriculomegaly? J Ultrasound Med. 2007;26:1513–22.

    PubMed  PubMed Central  Google Scholar 

  67. Wagenvoort AM, Bekker MN, Go AT, et al. Ultrafast scan magnetic resonance in prenatal diagnosis. Fetal Diagn Ther. 2000;15:364–72.

    Article  CAS  PubMed  Google Scholar 

  68. Levine D, Barnes PD, Edelman RR. Obstetric MR imaging. Radiology. 1999;211:609–17.

    Article  CAS  PubMed  Google Scholar 

  69. Gupta JK, Bryce FC, Lilford RJ. Management of apparently isolated fetal ventriculomegaly. Obstet Gynecol Surv. 1994;49:716–21.

    Article  CAS  PubMed  Google Scholar 

  70. Nyberg DA, McGahan JP, Pretorius DH, et al. Diagnostic imaging of fetal anomalies. Philadelphia, PA: Lippincott Williams & Wilkins; 2003. p. 293–4.

    Google Scholar 

  71. Aubry MC, Aubry JP, Dommergues M. Sonographic prenatal diagnosis of central nervous system abnormalities. Childs Nerv Syst. 2003;19:391–402.

    Article  CAS  PubMed  Google Scholar 

  72. Ando K, Ishikura R, Ogawa M, Shakudo M, Tanaka H, Minagawa K, et al. MRI tight posterior fossa sign for prenatal diagnosis of Chiari type II malformation. Neuroradiology. 2007;49(12):1033–9.

    Article  PubMed  Google Scholar 

  73. Aicardi J, Chevrie JJ, Baraton J. Agenesis of the corpus callosum. In: Vinken PJ, Bruyn GW, Klawans HL, editors. Handbook of clinical neurology, revised series, vol. 6. New York, NY: Elsevier Science; 1987. p. 149–73.

    Google Scholar 

  74. Gupta JK, Lilford RJ. Assessment and management of fetal agenesis of the corpus callosum. Prenat Diagn. 1995;15:310–2.

    Article  Google Scholar 

  75. Barkovich AJ, Norman D. Anomalies of the corpus callosum: correlation with further anomalies of the brain. AJNR Am J Neuroradiol. 1988;9:493–501.

    Google Scholar 

  76. Glenn OA, Norton ME, Goldstein RB, Barkovich AJ. Prenatal diagnosis of polymicrogyria by fetal magnetic resonance imaging in monochorionic co twin death. J Ultrasound Med. 2005;24:711–6.

    PubMed  Google Scholar 

  77. Sonigo PA, Rypens FF, Carteret M, et al. MR imaging of fetal cerebral anomalies. Pediatr Radiol. 1998;28:212–22.

    Article  CAS  PubMed  Google Scholar 

  78. Klein O, Pierre-Kahn A, Broddaret N, et al. Dandy-Walker malformation: prenatal diagnosis and prognosis. Childs Nerv Syst. 2003;19:484–9.

    Article  CAS  PubMed  Google Scholar 

  79. Malinger G, Lev D, Lerman-Sagie T. Normal and abnormal fetal brain development during the third trimester as demonstrated by neurosonography. Eur J Radiol. 2006;57:226–32.

    Article  CAS  PubMed  Google Scholar 

  80. Pistorius LR, Hellman PM, Visser GH, et al. Fetal neuroimaging: ultrasound, MRI or both? Obstet Gynecol Surv. 2008;63:733–45.

    Article  PubMed  Google Scholar 

  81. Okamura K, Murotsuki J, Sakai T, Matsumoto K, Shirane R, Yajima A. Prenatal diagnosis of lissencephaly by magnetic resonance image. Fetal Diagn Ther. 1993;8:56–9.

    Article  CAS  PubMed  Google Scholar 

  82. Tao G, Yew DT. Magnetic resonance imaging of fetal brain abnormalities. Neuroembryol Aging. 2008;5:49–55.

    Article  Google Scholar 

  83. Hu LS, Caire J, Twickler DM. MR findings of complicated multifetal gestations. Pediatr Radiol. 2006;36:76–81.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda A. Heier M.D., F.R.C.P.(C) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pinto, S.N., Chasen, S.T., Heier, L.A. (2017). Imaging of the Fetal Brain and Spine. In: Greenfield, J., Long, C. (eds) Common Neurosurgical Conditions in the Pediatric Practice. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3807-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3807-0_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3805-6

  • Online ISBN: 978-1-4939-3807-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics