Skip to main content

Male Fruit Fly’s Courtship and Its Double Control by the Fruitless and Doublesex Genes

  • Chapter
  • First Online:
Animal Models of Behavior Genetics

Part of the book series: Advances in Behavior Genetics ((AIBG))

  • 1019 Accesses

Abstract

This chapter reviews progress in the study of courtship behavior in male Drosophila melanogaster, an outstanding model organism in genetics. Emphasis is given on the successful identification of neurons that are involved in the decision to court, and of the sensory and motor pathways associated with this central command system. The power of the single gene–single cell approach in this model organism will be documented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, M. D., Celniker, S. E., Holt, R. A., Evans, C. A., Gocayne, J. D., Amanatides, P. G., et al. (2000). The genome sequence of Drosophila melanogaster. Science, 287, 2185–2195.

    Article  PubMed  Google Scholar 

  • Agrawal, S., Safarik, S., & Dickinson, M. (2014). The relative roles of vision and chemosensation in mate recognition of Drosophila melanogaster. Journal of Experimental Biology, 217, 2796–2805.

    Article  PubMed  Google Scholar 

  • Bartelt, R. J., Schaner, A. M., & Jackson, L. L. (1985). cis-Vaccenyl acetate as an aggregation pheromone in Drosophila melanogaster. Journal of Chemical Ecology, 11, 1747–1756.

    Article  CAS  PubMed  Google Scholar 

  • Bath, D. E., Stowers, J. R., Hormann, D., Poehlmann, A., Dickson, B. J., & Straw, A. D. (2014). FlyMAD: Rapid thermogenetic control of neuronal activity in freely walking Drosophila. Nature Methods, 11, 756–762.

    Article  CAS  PubMed  Google Scholar 

  • Benton, R., Vannice, K. S., & Vosshall, L. B. (2007). An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature, 450, 289–293.

    Article  CAS  PubMed  Google Scholar 

  • Billeter, J. C., Atallah, J., Krupp, J. J., Millar, J. G., & Levine, J. D. (2009). Specialized cells tag sexual and species identity in Drosophila melanogaster. Nature, 461, 987–991.

    Article  CAS  PubMed  Google Scholar 

  • Billeter, J. C., Rideout, E. J., Dornan, A. J., & Goodwin, S. F. (2006). Control of male sexual behavior in Drosophila by the sex determination pathway. Current Biology, 16, R766–R776.

    Article  CAS  PubMed  Google Scholar 

  • Brand, A. H., & Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development, 118, 401–415.

    CAS  PubMed  Google Scholar 

  • Bray, S., & Amrein, H. (2003). A putative Drosophila pheromone receptor expressed in male-specific taste neurons is required for efficient courtship. Neuron, 39, 1019–1029.

    Article  CAS  PubMed  Google Scholar 

  • Broughton, S. J., Kitamoto, T., & Greenspan, R. J. (2004). Excitatory and inhibitory switches for courtship in the brain of Drosophila melanogaster. Current Biology, 14, 538–547.

    Article  CAS  PubMed  Google Scholar 

  • Butterworth, F. M. (1969). Lipids of Drosophila: A newly detected lipid in the male. Science, 163, 1356–1357.

    Article  CAS  PubMed  Google Scholar 

  • Cachero, S., Ostrovsky, A. D., Yu, J. Y., Dickson, B. J., & Jefferis, G. S. (2010). Sexual dimorphism in the fly brain. Current Biology, 20, 1589–1601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cande, J., Stern, D. L., Morita, T., Prud’homme, B., & Gompel, N. (2014). Looking under the lamp post: Neither fruitless nor doublesex has evolved to generate divergent male courtship in Drosophila. Cell Reports, 8, 363–370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang, A. S., Lin, C. Y., Chuang, C. C., Chang, H. M., Hsieh, C. H., Yeh, C. W., et al. (2011). Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Current Biology, 21, 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Clyne, J. D., & Miesenböck, G. (2008). Sex-specific control tuning of the pattern generator for courtship song in Drosophila. Cell, 133, 354–363.

    Article  CAS  PubMed  Google Scholar 

  • Coen, P., Clemens, J., Weinstein, A. J., Pacheco, D. A., Deng, Y., & Murthy, M. (2014). Dynamic sensory cues shape song structure in Drosophila. Nature, 507, 233–237.

    Article  CAS  PubMed  Google Scholar 

  • Dalton, J. E., Fear, J. M., Knott, S., Baker, B. S., McIntyre, L. M., & Arbeitman, M. N. (2013). Male-specific fruitless isoforms have different regulatory roles conferred by distinct zinc finger DNA binding domains. BMC Genomics, 14, 659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demir, E., & Dickson, B. J. (2005). fruitless splicing specifies male courtship behavior in Drosophila. Cell, 121, 785–794.

    Article  CAS  PubMed  Google Scholar 

  • Dudai, Y., Jan, Y. N., Byers, D., Quinn, W. G., & Benzer, S. (1976). dunce, a mutant of Drosophila deficient in learning. Proceedings of the National Academy of Sciences of the United States of America, 73, 1684–1688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards, A. C., Ayroles, J. F., Stone, E. A., Carbone, M. A., Lyman, R. F., & Mackay, T. F. (2009). A transcriptional network associated with natural variation in Drosophila aggressive behavior. Genome Biology, 10, R76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ejima, A., & Griffith, L. C. (2008). Courtship initiation is stimulated by acoustic signals in Drosophila melanogaster. PLoS ONE, 3, e3246.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fan, P., Manoli, D. S., Ahmed, O. M., Chen, Y., Agarwal, N., Kwong, S., et al. (2013). Genetic and neural mechanisms that inhibit Drosophila from mating with other species. Cell, 154, 89–102.

    Article  CAS  PubMed  Google Scholar 

  • Ferveur, J. F. (1997). The pheromonal role of cuticular hydrocarbons in Drosophila melanogaster. Bioessays, 19, 353–358.

    Article  CAS  PubMed  Google Scholar 

  • Ferveur, J. F., & Greenspan, R. J. (1998). Courtship behavior of brain mosaics in Drosophila. Journal of Neurogenetics, 12, 205–226.

    Article  CAS  PubMed  Google Scholar 

  • Gailey, D. A., & Hall, J. C. (1989). Behavior and cytogenetics of fruitless in Drosophila melanogaster: Different courtship defects caused by separate, closely linked lesions. Genetics, 121, 773–785.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gailey, D. A., Taylor, B. J., & Hall, J. C. (1991). Elements of the fruitless locus regulate development of the muscle of Lawrence, a male-specific structure in the abdomen of Drosophila melanogaster adults. Development, 113, 879–890.

    CAS  PubMed  Google Scholar 

  • Gardiner, A., Barker, D., Butlin, R. K., Jordan, W. C., & Ritchie, M. G. (2008). Evolution of a complex locus: Exon gain, loss and divergence at the Gr39a locus in Drosophila. PLoS One, 3, e1513.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gill, K. S. (1963). A mutation causing abnormal courtship and mating behavior in males of Drosophila melanogaster. American Zoologist, 3, 507.

    Google Scholar 

  • Gleason, J. M., & Ritchie, M. G. (2004). Do quantitative trait loci (QTL) for a courtship song difference between Drosophila simulans and D. sechellia coincide with candidate genes and intraspecific QTL? Genetics, 166, 1303–1311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goto, J., Mikawa, Y., Koganezawa, M., Ito, H., & Yamamoto, D. (2011). Sexually dimorphic shaping of interneuron dendrites involves the Hunchback transcription factor. Journal of Neuroscience, 31, 5454–5459.

    Article  CAS  PubMed  Google Scholar 

  • Ha, T. S., & Smith, D. P. (2006). A pheromone receptor mediates 11-cis-vaccenyl acetate-induced responses in Drosophila. Journal of Neuroscience, 26, 8727–8733.

    Article  CAS  PubMed  Google Scholar 

  • Hall, J. C. (1978). Courtship among males due to a male-sterile mutation in Drosophila melanogaster. Behavior Genetics, 8, 125–141.

    Article  CAS  PubMed  Google Scholar 

  • Hall, J. C. (1979). Control of male reproductive behavior by the central nervous system of Drosophila: Dissection of a courtship pathway by genetic mosaics. Genetics, 92, 437–457.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hamada, F. N., Rosenzweig, M., Kang, K., Pulver, S. R., Ghezzi, A., Jegla, T. J., et al. (2008). An internal thermal sensor controlling temperature preference in Drosophila. Nature, 454, 217–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hotta, Y., & Benzer, S. (1970). Genetic dissection of the Drosophila nervous system by means of mosaics. Proceedings of the National Academy of Sciences of the United States of America, 67, 1156–1163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hotta, Y., & Benzer, S. (1972). Mapping of behaviour in Drosophila mosaics. Nature, 240, 527–535.

    Google Scholar 

  • Ikeda, K., & Kaplan, W. D. (1970a). Patterned neural activity of a mutant Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 66, 765–772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda, K., & Kaplan, W. D. (1970b). Unilaterally patterned neural activity of gynandromorphs, mosaic for a neurological mutant of Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 67, 1480–1487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda, K., Ozawa, S., & Hagiwara, S. (1976). Synaptic transmission reversibly conditioned by single-gene mutation in Drosophila melanogaster. Nature, 259, 489–491.

    Article  CAS  PubMed  Google Scholar 

  • Inagaki, H. K., Jung, Y., Hoopfer, E. D., Wong, A. M., Mishra, N., Lin, J. Y., et al. (2013). Optogenetic control of Drosophila using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship. Nature Methods, 11, 325–332.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Isono, K., & Morita, H. (2010). Molecular and cellular designs of insect taste receptor system. Frontiers in Cellular Neuroscience, 4, 20.

    PubMed  PubMed Central  Google Scholar 

  • Ito, H., Fujitani, K., Usui, K., Shimizu-Nishikawa, K., Tanaka, S., & Yamamoto, D. (1996). Sexual orientation in Drosophila is altered by the satori mutation in the sex-determination gene fruitless that encodes a zinc finger protein with a BTB domain. Proceedings of the National Academy of Sciences of the United States of America, 93, 9687–9692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito, H., Sato, K., Koganezawa, M., Ote, M., Matsumoto, K., Hama, C., et al. (2012). Fruitless recruits two antagonistic chromatin factors to establish single-neuron sexual dimorphism. Cell, 149, 1327–1338.

    Article  CAS  PubMed  Google Scholar 

  • Jallon, J.-M. (1984). A few chemical words exchanged by Drosophila during courtship and mating. Behavior Genetics, 14, 441–478.

    Article  CAS  PubMed  Google Scholar 

  • Jallon, J.-M., Antony, C., & Benamar, O. (1981). Un anti-aphrodisiaque produit par les males Drosophila melanogaster et transfere aux femelles lors de la copulation. Comptes Rendus. Académie des Sciences, 292, 1147–1149.

    Google Scholar 

  • Jefferis, G. S., Potter, C. J., Chan, A. M., Marin, E. C., Rohlfing, T., Maurer, C. R., Jr., et al. (2007). Comprehensive maps of Drosophila higher olfactory centers: Spatially segregated fruit and pheromone representation. Cell, 128, 1187–1203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin, X., Ha, T. S., & Smith, D. P. (2008). SNMP is a signaling component required for pheromone sensitivity in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 105, 10996–11001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamikouchi, A., Shimada, T., & Ito, K. (2006). Comprehensive classification of the auditory sensory projections in the brain of the fruit fly Drosophila melanogaster. Journal of Comparative Neurology, 499, 317–356.

    Article  PubMed  Google Scholar 

  • Kandel, E. R. (1976). Cellular basis of behavior. New York: W. H. F. Freeman and Company.

    Google Scholar 

  • Keleman, K., Vrontou, E., Kruttner, S., Yu, J. Y., Kurtovic-Kozaric, A., & Dickson, B. J. (2012). Dopamine neurons modulate pheromone responses in Drosophila courtship learning. Nature, 489, 145–149.

    Article  CAS  PubMed  Google Scholar 

  • Kim, W. J., Jan, L. Y., & Jan, Y. N. (2013). A PDF/NPF neuropeptide signaling circuitry of male Drosophila melanogaster controls rival-induced prolonged mating. Neuron, 80, 1190–1205.

    Article  CAS  PubMed  Google Scholar 

  • Kimura, K.-I., Hachiya, T., Koganezawa, M., Tazawa, T., & Yamamoto, D. (2008). Fruitless and Doublesex coordinate to generate male-specific neurons that can initiate courtship. Neuron, 59, 759–769.

    Article  CAS  PubMed  Google Scholar 

  • Kimura, K.-I., Ote, M., Tazawa, T., & Yamamoto, D. (2005). fruitless specifies sexually dimorphic neural circuitry in the Drosophila brain. Nature, 438, 229–233.

    Article  CAS  PubMed  Google Scholar 

  • Kitamoto, T. (2002). Conditional disruption of synaptic transmission induces male-male courtship behavior in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 99, 13232–13237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koganezawa, M., Haba, D., Matsuo, T., & Yamamoto, D. (2010). The shaping of male courtship posture by lateralized gustatory inputs to male-specific interneurons. Current Biology, 20, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Koh, T. W., He, Z., Gorur-Shandilya, S., Menuz, K., Larter, N. K., Stewart, S., et al. (2014). The Drosophila IR20a clade of ionotropic receptors are candidate taste and pheromone receptors. Neuron, 83, 850–865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohatsu, S., Koganezawa, M., & Yamamoto, D. (2011). Female contact activates male-specific interneurons that trigger stereotypic courtship behavior in Drosophila. Neuron, 69, 498–508.

    Article  CAS  PubMed  Google Scholar 

  • Kohatsu, S., & Yamamoto, D. (2015). Visually induced initiation of Drosophila innate courtship-like following pursuit is mediated by central excitatory state. Nature Communications, 6, 6457.

    Article  CAS  PubMed  Google Scholar 

  • Kohl, J., Ostrovsky, A. D., Frechter, S., & Jefferis, G. S. (2013). A bidirectional circuit switch reroutes pheromone signals in male and female brains. Cell, 155, 1610–1623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondoh, Y., Kaneshiro, K. Y., Kimura, K.-I., & Yamamoto, D. (2003). Evolution of sexual dimorphism in the olfactory brain of Hawaiian Drosophila. Proceedings of the Biological Sciences, 270, 1005–1013.

    Article  Google Scholar 

  • Konopka, R., & Benzer, S. (1971). Clock mutants of Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 68, 2112–2116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krstic, D., Boll, W., & Noll, M. (2009). Sensory integration regulating male courtship behavior in Drosophila. PLoS ONE, 4, e4457.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kurtovic, A., Widmer, A., & Dickson, B. J. (2007). A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone. Nature, 446, 542–546.

    Article  CAS  PubMed  Google Scholar 

  • Kyriacou, C. P., & Hall, J. C. (1980). Circadian rhythm mutations in Drosophila melanogaster affect short-term fluctuations in the male’s courtship song. Proceedings of the National Academy of Sciences of the United States of America, 77, 6729–6733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyriacou, C. P., & Hall, J. C. (1984). Learning and memory mutations impair acoustic priming of mating behaviour in Drosophila. Nature, 308, 62–65.

    Article  CAS  PubMed  Google Scholar 

  • Kyriacou, C. P., & Hall, J. C. (1986). Interspecific genetic control of courtship song production and reception in Drosophila. Science, 232, 494–497.

    Article  CAS  PubMed  Google Scholar 

  • Lacaille, F., Hiroi, M., Twele, R., Inoshita, T., Umemoto, D., Manière, G., et al. (2007). An inhibitory sex pheromone tastes bitter for Drosophila males. PLoS ONE, 2, e661.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Laughlin, J. D., Ha, T. S., Jones, D. N., & Smith, D. P. (2008). Activation of pheromone-sensitive neurons is mediated by conformational activation of pheromone-binding protein. Cell, 133, 1255–1265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrence, P. A., & Johnston, P. (1984). The genetic specification of pattern in a Drosophila muscle. Cell, 36, 775–782.

    Article  CAS  PubMed  Google Scholar 

  • Lawrence, P. A., & Johnston, P. (1986). The muscle pattern of a segment of Drosophila may be determined by neurons and not by contributing myoblasts. Cell, 45, 505–513.

    Article  CAS  PubMed  Google Scholar 

  • Lebreton, S., Grabe, V., Omondi, A. B., Ignell, R., Becher, P. G., Hansson, B. S., et al. (2014). Love makes smell blind: Mating suppresses pheromone attraction in Drosophila females via Or65a olfactory neurons. Scientific Reports, 4, 7119.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, G., Foss, M., Goodwin, S. F., Carlo, T., Taylor, B. J., & Hall, J. C. (2000). Spatial, temporal, and sexually dimorphic expression patterns of the fruitless gene in the Drosophila central nervous system. Journal of Neurobiology, 43, 404–426.

    Article  CAS  PubMed  Google Scholar 

  • Lee, G., Hall, J. C., & Park, J. H. (2002). doublesex gene expression in the central nervous system of Drosophila melanogaster. Journal of Neurogenetics, 16, 229–248.

    Article  CAS  PubMed  Google Scholar 

  • Lee, T., & Luo, L. (1999). Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron, 22, 451–461.

    Article  CAS  PubMed  Google Scholar 

  • Lin, H., Mann, K. J., Starostina, E., Kinser, R. D., & Pikielny, C. W. (2005). A Drosophila DEG/ENaC channel subunit is required for male response to female pheromones. Proceedings of the National Academy of Sciences of the United States of America, 102, 12831–12836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, W., Liang, X., Gong, J., Yang, Z., Zhang, Y. H., Zhang, J. X., et al. (2011). Social regulation of aggression by pheromonal activation of Or65a olfactory neurons in Drosophila. Nature Neuroscience, 14, 896–902.

    Article  CAS  PubMed  Google Scholar 

  • Liu, T., Starostina, E., Vijayan, V., & Pikielny, C. W. (2012). Two Drosophila DEG/ENaC channel subunits have distinct functions in gustatory neurons that activate male courtship. Journal of Neuroscience, 32, 11879–11889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, B., LaMora, A., Sun, Y., Welsh, M. J., & Ben-Shahar, Y. (2012). ppk23-Dependent chemosensory functions contribute to courtship behavior in Drosophila melanogaster. PLoS Genetics, 8, e1002587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manoli, D. S., Foss, M., Villella, A., Taylor, B. J., Hall, J. C., & Baker, B. S. (2005). Male-specific fruitless specifies the neural substrates of Drosophila courtship behaviour. Nature, 436, 395–400.

    CAS  PubMed  Google Scholar 

  • Marín, I., & Baker, B. S. (1998). The evolutionary dynamics of sex determination. Science, 281, 1990–1994.

    Article  PubMed  Google Scholar 

  • Masuyama, K., Zhang, Y., Rao, Y., & Wang, J. W. (2012). Mapping neural circuits with activity-dependent nuclear import of a transcription factor. Journal of Neurogenetics, 26, 89–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mellert, D. J., Knapp, J. M., Manoli, D. S., Meissner, G. W., & Baker, B. S. (2010). Midline crossing by gustatory receptor neuron axons is regulated by fruitless, doublesex and the Roundabout receptors. Development, 137, 323–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyamoto, T., & Amrein, H. (2008). Suppression of male courtship by a Drosophila pheromone receptor. Nature Neuroscience, 11, 874–876.

    Article  CAS  PubMed  Google Scholar 

  • Moon, S. J., Lee, Y., Jiao, Y., & Montell, C. (2009). A Drosophila gustatory receptor essential for aversive taste and inhibiting male-to-male courtship. Current Biology, 19, 1623–1627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan, T. H. (1910). Sex limited inheritance in Drosophila. Science, 32, 120–122.

    Article  CAS  PubMed  Google Scholar 

  • Neville, M. C., Nojima, T., Ashley, E., Parker, D. J., Walker, J., Southall, T., et al. (2014). Male-specific fruitless isoforms target neurodevelopmental genes to specify a sexually dimorphic nervous system. Current Biology, 24, 229–241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nojima, T., Kimura, K., Koganezawa, M., & Yamamoto, D. (2010). Neuronal synaptic outputs determine the sexual fate of postsynaptic targets. Current Biology, 20, 836–840.

    Article  CAS  PubMed  Google Scholar 

  • Pan, Y., & Baker, B. S. (2014). Genetic identification and separation of innate and experience-dependent courtship behaviors in Drosophila. Cell, 156, 236–248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan, Y., Meissner, G. W., & Baker, B. S. (2012). Joint control of Drosophila male courtship behavior by motion cues and activation of male-specific P1 neurons. Proceedings of the National Academy of Sciences of the United States of America, 109, 10065–10070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan, Y., Robinett, C. C., & Baker, B. S. (2011). Turning males on: Activation of male courtship behavior in Drosophila melanogaster. PLoS ONE, 6, e21144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, S. K., Mann, K. J., Lin, H., Starostina, E., Kolski-Andreaco, A., & Pikielny, C. W. (2006). A Drosophila protein specific to pheromone-sensing gustatory hairs delays males’ copulation attempts. Current Biology, 16, 1154–1159.

    Article  CAS  PubMed  Google Scholar 

  • Possidente, D. R., & Murphey, R. K. (1989). Genetic control of sexually dimorphic axon morphology in Drosophila sensory neurons. Developmental Biology, 132, 448–457.

    Article  CAS  PubMed  Google Scholar 

  • Riabinina, O., Dai, M., Duke, T., & Albert, J. T. (2011). Active process mediates species-specific tuning of Drosophila ears. Current Biology, 21, 658–664.

    Article  CAS  PubMed  Google Scholar 

  • Rideout, E. J., Billeter, J. C., & Goodwin, S. F. (2007). The sex-determination genes fruitless and doublesex specify a neural substrate required for courtship song. Current Biology, 17, 1473–1478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rideout, E. J., Dornan, A. J., Neville, M. C., Eadie, S., & Goodwin, S. F. (2010). Control of sexual differentiation and behavior by the doublesex gene in Drosophila melanogaster. Nature Neuroscience, 13, 458–466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinett, C. C., Vaughan, A. G., Knapp, J. M., & Baker, B. S. (2010). Sex and the single cell. II. There is a time and place for sex. PLoS Biology, 8, e1000365.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rubinstein, C. D., Rivlin, P. K., & Hoy, R. R. (2010). Genetic feminization of the thoracic nervous system disrupts courtship song in male Drosophila melanogaster. Journal of Neurogenetics, 24, 234–245.

    Article  CAS  PubMed  Google Scholar 

  • Ruta, V., Datta, S. R., Vasconcelos, M. L., Freeland, J., Looger, L. L., & Axel, R. (2010). A dimorphic pheromone circuit in Drosophila from sensory input to descending output. Nature, 468, 686–690.

    Article  CAS  PubMed  Google Scholar 

  • Ryner, L. C., Goodwin, S. F., Castrillon, D. H., Anand, A., Villella, A., Baker, B. S., et al. (1996). Control of male sexual behavior and sexual orientation in Drosophila by the fruitless gene. Cell, 87, 1079–1089.

    Article  CAS  PubMed  Google Scholar 

  • Sakurai, A., Koganezawa, M., Yasunaga, K., Emoto, K., & Yamamoto, D. (2013). Select interneuron clusters determine female sexual receptivity in Drosophila. Nature Communications, 4, 1825.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sato, K., Pellegrino, M., Nakagawa, T., Vosshall, L. B., & Touhara, K. (2008). Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature, 452, 1002–1006.

    Article  CAS  PubMed  Google Scholar 

  • Schneiderman, A. M., Matsumoto, S. G., & Hidebrand, J. G. (1982). Trans-sexually grafted antennae influence development of sexually dimorphic neurons in moth brain. Nature, 298, 844–846.

    Article  Google Scholar 

  • Shirangi, T. R., Stern, D. L., & Truman, J. W. (2013). Motor control of Drosophila courtship song. Cell Reports, 5, 678–686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirangi, T. R., Taylor, B. J., & McKeown, M. (2006). A double-switch system regulates male courtship behavior in male and female Drosophila melanogaster. Nature Genetics, 38, 1435–1439.

    Article  CAS  PubMed  Google Scholar 

  • Siegel, R. W., & Hall, J. C. (1979). Conditioned responses in courtship behavior of normal and mutant Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 76, 3430–3434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, H. J., Billeter, J. C., Reynaud, E., Carlo, T., Spana, E. P., Perrimon, N., et al. (2002). The fruitless gene is required for the proper formation of axonal tracts in the embryonic central nervous system of Drosophila. Genetics, 162, 1703–1724.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spieth, H. T. (1952). Mating behavior within the genus Drosophila (Diptera). Bulletin of the American Museum of Natural History, 99, 399–474.

    Google Scholar 

  • Starostina, E., Liu, T., Vijayan, V., Zheng, Z., Siwicki, K. K., & Pikielny, C. W. (2012). A Drosophila deg/ENaC subunit functions specifically in gustatory neurons required for male courtship behavior. Journal of Neuroscience, 32, 4665–4674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stern, D. L. (2014). Reported Drosophila courtship song rhythms are artifacts of data analysis. BMC Biology, 12, 38.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stockinger, P., Kvitsiani, D., Rotkopf, S., Tirián, L., & Dickson, B. J. (2005). Neural circuitry that governs Drosophila male courtship behavior. Cell, 121, 795–807.

    Article  CAS  PubMed  Google Scholar 

  • Sturtevant, A. H. (1915). Experiments on sex recognition and the problem of sexual selection in Drosophila. Journal of Animal Behavior, 5, 351–366.

    Article  Google Scholar 

  • Taylor, B. J. (1992). Differentiation of a male-specific muscle in Drosophila melanogaster does not require the sex-determining genes doublesex or intersex. Genetics, 132, 179–191.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor, B. J., Villella, A., Ryner, L. C., Baker, B. S., & Hall, J. C. (1994). Behavioral and neurobiological implications of sex-determining factors in Drosophila. Developmental Genetics, 15, 275–296.

    Article  CAS  PubMed  Google Scholar 

  • Thistle, R., Cameron, P., Ghorayshi, A., Dennison, L., & Scott, K. (2012). Contact chemoreceptors mediate male-male repulsion and male-female attraction during Drosophila courtship. Cell, 149, 1140–1151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toda, H., Zhao, X., & Dickson, B. J. (2012). The Drosophila female aphrodisiac pheromone activates pp k23(+) sensory neurons to elicit male courtship behavior. Cell Reports, 1, 599–607.

    Article  CAS  PubMed  Google Scholar 

  • Tompkins, L. (1984). Genetic analysis of sex appeal in Drosophila. Behavior Genetics, 14, 411–440.

    Article  CAS  PubMed  Google Scholar 

  • Tompkins, L., & Hall, J. C. (1983). Identification of brain sites controlling female receptivity in mosaics of Drosophila melanogaster. Genetics, 103, 179–195.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tompkins, L., Hall, J. C., & Hall, L. M. (1980). Courtship-stimulating volatile compounds from normal and mutant Drosophila. Journal of Insect Physiology, 26, 689–697.

    Article  CAS  Google Scholar 

  • Tootoonian, S., Coen, P., Kawai, R., & Murthy, M. (2012). Neural representations of courtship song in the Drosophila brain. Journal of Neuroscience, 32, 787–798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trott, A. R., Donelson, N. C., Griffith, L. C., & Ejima, A. (2012). Song choice is modulated by female movement in Drosophila males. PLoS One, 7, e46025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Usui-Aoki, K., Ito, H., Ui-Tei, K., Takahashi, K., Lukacsovich, T., Awano, W., et al. (2000). Formation of the male-specific muscle in female Drosophila by ectopic fruitless expression. Nature Cell Biology, 2, 500–506.

    Article  CAS  PubMed  Google Scholar 

  • van der Goes van Naters, W., & Carlson, J. R. (2007). Receptors and neurons for fly odors in Drosophila. Current Biology, 17, 606–612.

    Article  CAS  Google Scholar 

  • Vaughan, A. G., Zhou, C., Manoli, D. S., & Baker, B. S. (2014). Neural pathways for the detection and discrimination of conspecific song in D. melanogaster. Current Biology, 24, 1039–1049.

    Article  CAS  PubMed  Google Scholar 

  • Vernes, S. C. (2014). Genome wide identification of fruitless targets suggests a role in upregulating genes important for neural circuit formation. Scientific Reports, 4, 4412.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Villela, A., Gailey, D. A., Berwald, B., Ohshima, S., Barnes, P. T., & Hall, J. C. (1997). Extended reproductive roles of the fruitless gene in Drosophila melanogaster revealed by behavioral analysis of new fru mutants. Genetics, 147, 1107–1130.

    Google Scholar 

  • Villella, A., & Hall, J. C. (1996). Courtship anomalies caused by doublesex mutations in Drosophila melanogaster. Genetics, 143, 331–344.

    CAS  PubMed  PubMed Central  Google Scholar 

  • von Philipsborn, A. C., Liu, T., Yu, J. Y., Masser, C., Bidaye, S. S., & Dickson, B. J. (2011). Neuronal control of Drosophila courtship song. Neuron, 69, 509–522.

    Article  CAS  Google Scholar 

  • von Schilcher, F. (1976). The role of auditory stimuli in the courtship of Drosophila melanogaster. Animal Behaviour, 24, 18–26.

    Article  Google Scholar 

  • von Schilcher, F., & Hall, J. C. (1979). Neural topography of courtship song in sex mosaics of Drosophila melanogaster. Journal of Comparative Physiology, 129, 85–95.

    Article  Google Scholar 

  • Vosshall, L. B. (2008). Scent of a fly. Neuron, 59, 685–689.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., & Anderson, D. J. (2010). Identification of an aggression-promoting pheromone and its receptor neurons in Drosophila. Nature, 463, 227–231.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., Han, X., Mehren, J., Hiroi, M., Billeter, J. C., Miyamoto, T., et al. (2011). Hierarchical chemosensory regulation of male-male social interactions in Drosophila. Nature Neuroscience, 14, 757–762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe, H., Nishino, H., Nishikawa, M., Mizunami, M., & Yokohari, F. (2010). Complete mapping of glomeruli based on sensory nerve branching pattern in the primary olfactory center of the cockroach Periplaneta americana. Journal of Comparative Neurology, 518, 3907–3930.

    Article  PubMed  Google Scholar 

  • Watanabe, K., Toba, G., Koganezawa, M., & Yamamoto, D. (2011). Gr39a, a highly diversified gustatory receptor in Drosophila, has a role in sexual behavior. Behavior Genetics, 41, 746–753.

    Article  PubMed  Google Scholar 

  • Weiss, L. A., Dahanukar, A., Kwon, J. Y., Banerjee, D., & Carlson, J. R. (2011). The molecular and cellular basis of bitter taste in Drosophila. Neuron, 69, 258–272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheeler, D. A., Kyriacou, C. P., Greenacre, M. L., Yu, Q., Rutila, J. E., Rosbash, M., et al. (1991). Molecular transfer of a species-specific behavior from Drosophila simulans to Drosophila melanogaster. Science, 251, 1082–1085.

    Article  CAS  PubMed  Google Scholar 

  • Wu, C.-F., Ganetzky, B., Haugland, F. N., & Liu, A.-X. (1983). Potassium currents in Drosophila: Different components affected by mutations of two genes. Science, 220, 1076–1078.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto, D., & Koganezawa, M. (2013). Genes and circuits of courtship behaviour in Drosophila males. Nature Reviews Neuroscience, 14, 681–692.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto, D., Sano, Y., Ueda, R., Togashi, S., Tsurumura, S., & Sato, K. (1991). Newly isolated mutants of Drosophila melanogaster defective in mating behavior. Journal of Neurogenetics, 7, 152.

    Google Scholar 

  • Yew, J. Y., Dreisewerd, K., Luftmann, H., Müthing, J., Pohlentz, G., & Kravitz, E. A. (2009). A new male sex pheromone and novel cuticular cues for chemical communication in Drosophila. Current Biology, 19, 1245–1254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yorozu, S., Wong, A., Fischer, B. J., Dankert, H., Kernan, M. J., Kamikouchi, A., et al. (2009). Distinct sensory representations of wind and near-field sound in the Drosophila brain. Nature, 458, 201–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, Q., Colot, H. V., Kyriacou, C. P., Hall, J. C., & Rosbash, M. (1987). Behaviour modification by in vitro mutagenesis of a variable region within the period gene of Drosophila. Nature, 326, 765–769.

    Article  CAS  PubMed  Google Scholar 

  • Yu, J. Y., Kanai, M. I., Demir, E., Jefferis, G. S., & Dickson, B. J. (2010). Cellular organization of the neural circuit that drives Drosophila courtship behavior. Current Biology, 20, 1602–1614.

    Article  CAS  PubMed  Google Scholar 

  • Zawistowski, S. (1988). A replication demonstrating reduced courtship of Drosophila-melanogaster by associative learning. Journal of Comparative Psychology, 102, 174–176.

    Article  Google Scholar 

Download references

Acknowledgements

I thank Masa Koganezawa for critical reading of the manuscript, and Mayura Suyama and Hiromi Sato for secretarial assistance. Our studies were supported by Grants-in-Aid for Scientific Research from the Japanese Government Ministry of Education, Culture, Sports, Science and Technology (26113702, 26114502, 24113502 and 23220007) to D.Y., the Japan-France Bilateral Joint Research Project Grant from Japan Society for the Promotion of Science to D.Y. and the Life Science Grant from the Takeda Science Foundation to D. Y.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Yamamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yamamoto, D. (2016). Male Fruit Fly’s Courtship and Its Double Control by the Fruitless and Doublesex Genes. In: Gewirtz, J., Kim, YK. (eds) Animal Models of Behavior Genetics. Advances in Behavior Genetics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3777-6_1

Download citation

Publish with us

Policies and ethics