Skip to main content

Engineering Collective and Squeezed Field Interactions

  • Chapter
  • First Online:
Quantum-Limit Spectroscopy

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 200))

  • 855 Accesses

Abstract

In this chapter, we shall consider methods of engineering collective interactions between atoms and a squeezed field-type damping of an atom. The concept of the collective behavior of atoms discussed in Chap. 4 was based on the assumption that distances between the atoms are smaller or comparable to the resonant wavelength. At such small distances, the atoms can behave collectively and we have seen that the collective effects are manifested in the presence of the collective damping , which alters the damping rates of the transitions, and the dipole–dipole interaction which shifts the energies of the atomic single-excitation levels. However, it is not easy in practice to bring trapped atoms into very small distances and keep the interacting atoms at fixed positions. The current experimental schemes can trap atoms at distances much larger than their resonant wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Q.A. Turchette, C.S. Wood, B.E. King, C.J. Myatt, D. Leibfried, W.M. Itano, C. Monroe, D.J. Wineland: Phys. Rev. Lett. 81, 3631 (1998)

    Article  ADS  Google Scholar 

  2. S.-B. Zheng, G.-C. Guo: Phys. Rev. Lett. 85, 2392 (2000)

    Article  ADS  Google Scholar 

  3. S. Natali, Z. Ficek: Phys. Rev. A 75, 042307 (2007)

    Article  ADS  Google Scholar 

  4. R.H. Lehmberg: Phys. Rev. A 2, 883, 889 (1970)

    Article  ADS  Google Scholar 

  5. Z. Ficek, R. Tanaś: Phys. Rep. 372, 369 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  6. S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J.M. Raimond, S. Haroche: Phys. Rev. Lett. 87, 037902 (2001)

    Article  ADS  Google Scholar 

  7. P.R. Rice, H.J. Carmichael: J. Opt. Soc. Am. B 5, 1661 (1988)

    Article  ADS  Google Scholar 

  8. L. Florescu, S. John, T. Quang, R.Z. Wang: Phys. Rev. A 69, 013816 (2004)

    Article  ADS  Google Scholar 

  9. L. Florescu: Phys. Rev. A 74, 063828 (2006)

    Article  ADS  Google Scholar 

  10. R. Tan, G.X. Li, Z. Ficek: Phys. Rev. A 78, 023833 (2008).

    Article  ADS  Google Scholar 

  11. M. Lax: Phys. Rev. 172, 350 (1968)

    Article  ADS  Google Scholar 

  12. R. Vyas, S. Singh: Phys: Rev. A45, 8095 (1992)

    Article  ADS  Google Scholar 

  13. Z. Ficek, J. Seke: Physica A 258, 477 (1998)

    Article  ADS  Google Scholar 

  14. P.L. Knight, P.W. Milonni: Phys. Rep. 66, 21 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  15. M.G. Raymer, J. Cooper: Phys. Rev. A20, 2238 (1979)

    Article  ADS  Google Scholar 

  16. N. Lütkenhaus, J.I. Cirac, P. Zoller: Phys. Rev. A 57, 548 (1998)

    Article  ADS  Google Scholar 

  17. M. Kiffrer, J. Evers, C.H. Keitel: Phys. Rev. A 73, 063814 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zbigniew Ficek .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Ficek, Z., Tanaś, R. (2017). Engineering Collective and Squeezed Field Interactions. In: Quantum-Limit Spectroscopy. Springer Series in Optical Sciences, vol 200. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3740-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3740-0_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3738-7

  • Online ISBN: 978-1-4939-3740-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics