Skip to main content

Dipole Squeezing and Spin Squeezed States

  • Chapter
  • First Online:
Quantum-Limit Spectroscopy

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 200))

  • 883 Accesses

Abstract

In the preceding chapters, we have demonstrated how squeezed light applied to optical systems may lead to the prediction of subnatural linewidths in the radiation spectra and the possibility to improve the precision of measurements beyond the standard quantum limit . The reason for this was that squeezed light is an example of a nonclassical state of the electromagnetic field with quantum fluctuations in one of the two field quadrature components reduced below the limit set by the vacuum or shot-noise fluctuations. The concept of squeezed states of light was introduced in the context of the field observables, the quadrature components of the electromagnetic field, which can be measured and which are represented by Hermitian operators given in terms of the boson creation and annihilation operators. As we have seen, two-photon correlations in the field modes or between modes are required in order to reduce quantum fluctuations in one of the quadrature components below the vacuum level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The dependence of the right-hand side of (10.3) on the state involved means that an equality in (10.3) can be achieved for two distinct states. The equality can be achieved with or without of both sides reaching a local or absolute minimum value. States for which an equality is achieved with both sides reaching a local or absolute minimum are called the minimum uncertainty states. States for which only an equality is achieved are called the intelligent states [1–3].

References

  1. C. Aragone, G. Guerri, S. Salamo, J.L. Tani: J. Phys. A 15, L149 (1974)

    Google Scholar 

  2. K. WĂłdkiewicz, J.H. Eberly: J. Opt. Soc. Am. B 2, 458 (1985)

    Google Scholar 

  3. M.A. Dupertuis, A.N. Kireev: Quantum Opt. 2, 119 (1990)

    Google Scholar 

  4. C.H.H. Schulte, J. Hansom, A.E. Jones, C. Matthiesen, C. Le Gall, M. AtatĂŒre: Nature 525, 222 (2015)

    Google Scholar 

  5. S.M. Barnett: Optics Commun. 61, 432 (1987)

    Google Scholar 

  6. K. WĂłdkiewicz, P.L. Knight, S.J. Buckle, S.M. Barnett: Phys. Rev. A 35, 2567 (1987)

    Google Scholar 

  7. S.M. Barnett, P.L. Knight: Phys. Scr. 21, 5 (1988)

    Google Scholar 

  8. B.J. Dalton, Z. Ficek, P.L. Knight: Phys. Rev. A 50, 2646 (1994)

    Google Scholar 

  9. Z. Ficek, R. Tanaƛ, S. Kielich: Phys. Rev. A 29, 2004 (1984)

    Google Scholar 

  10. Z. Ficek, R. Tanaƛ, S. Kielich: Acta Phys. Pol. A67, 583 (1985)

    Google Scholar 

  11. Q.Y. He, S.G. Peng, P.D. Drummond, M.D. Reid: Phys. Rev. A 84, 022107 (2011)

    Google Scholar 

  12. Q.Y. He, T.G. Vaughan, P.D. Drummond, M.D. Reid: New J. Phys. 14, 093012 (2012)

    Google Scholar 

  13. J. Ma, X.-G. Wang, C.P. Sun, F. Nori: Physics Rep. 509, 89 (2011)

    Google Scholar 

  14. B. Dalton, J. Goold, B. Garraway, M. Reid: arXiv:1506.06892 (2015)

  15. M. Kitagawa, M. Ueda: Phys. Rev. A 47, 5138 (1993)

    Google Scholar 

  16. T. Holstein, H. Primakoff: Phys. Rev. 58, 1098 (1940)

    Google Scholar 

  17. A. Peres: Phys. Rev. Lett. 77, 1413 (1996)

    Google Scholar 

  18. P. Horodecki: Phys. Lett. A 232, 333 (1997)

    Google Scholar 

  19. A. Messikh, Z. Ficek, M.R.B. Wahiddin: Phys. Rev. A 68, 064301 (2003)

    Google Scholar 

  20. D.J. Wineland, J.J. Bollinger, W.M. Itano, D.J. Heinzen: Phys. Rev. A 46, R6797 (1992); 50, 67 (1994)

    Google Scholar 

  21. K. Hammerer, A.S. Sorensen, E.S. Polzik: Rev. Mod. Phys. 82 1041 (2010)

    Google Scholar 

  22. C.F. Ockeloen, R. Schmied, M.F. Riedel, P. Treutlein: Phys. Rev. Lett. 111, 143001 (2013)

    Google Scholar 

  23. C. Gross, T. Zibold, E. Nicklas, J. Estéve, M.K. Oberthaler: Nature 464, 1165 (2010)

    Google Scholar 

  24. M.F. Riedel, P. Boehi, Y. Li, T.W. Haensch, A. Sinatra, P. Treutlein: Nature 464, 1170 (2010)

    Google Scholar 

  25. W. Muessel, H. Strobel, D. Linnemann, D. B. Hume, M. K. Oberthaler: Phys. Rev. Lett. 113, 103004 (2014)

    Google Scholar 

  26. D. Leibfried, M. Barrett, T. Schaetz, J. Britton, J. Chiaverini, W. Itano, J. Jost, C. Langer, D. Wineland: Science 304,1476 (2004)

    Google Scholar 

  27. L. Pezze, L.A. Collins, A. Smerzi, G.P. Berman, A.R. Bishop: Phys Rev A 72, 043612 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zbigniew Ficek .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Ficek, Z., Tanaƛ, R. (2017). Dipole Squeezing and Spin Squeezed States. In: Quantum-Limit Spectroscopy. Springer Series in Optical Sciences, vol 200. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3740-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3740-0_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3738-7

  • Online ISBN: 978-1-4939-3740-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics