Skip to main content

Using Mouse Genetics to Investigate Thyroid Hormone Signaling in the Developing and Adult Brain

  • Chapter
  • First Online:
  • 735 Accesses

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

The developing and adult brain is a main target organ of thyroid hormones (including the prohormone thyroxine and its active derivative tri-iodo-thyronine or T3). Mouse genetics offers a number of promising possibilities to study their pleiotropic influence on the central nervous system, and to distinguish it from their peripheral function. In the following, we review recent advances brought by mouse genetics in our understanding of thyroid hormone signaling in the brain, both during development and in the adult. We particularly emphasize on the latest findings about thyroid hormone transporters and synthesis pathway which bring a new view on the regulation of thyroid hormone levels sensed by brain cells. Roles of the thyroid hormone receptors, which have been reviewed elsewhere are only briefly discussed.

This is a preview of subscription content, log in via an institution.

References

  • Abel ED, Ahima RS et al (2001) Critical role for thyroid hormone receptor beta2 in the regulation of paraventricular thyrotropin-releasing hormone neurons. J Clin Invest 107(8):1017–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alkemade A, Friesema EC et al (2011) Expression of thyroid hormone transporters in the human hypothalamus. J Clin Endocrinol Metab 96(6):E967–E971

    Article  CAS  PubMed  Google Scholar 

  • Balu DT, Lucki I (2009) Adult hippocampal neurogenesis: regulation, functional implications, and contribution to disease pathology. Neurosci Biobehav Rev 33(3):232–252

    Article  PubMed  Google Scholar 

  • Barca-Mayo O, Liao XH et al (2011) Thyroid hormone receptor alpha and regulation of type 3 deiodinase. Mol Endocrinol 25(4):575–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer M, Goetz T et al (2008) The thyroid-brain interaction in thyroid disorders and mood disorders. J Neuroendocrinol 20(10):1101–1114

    Article  CAS  PubMed  Google Scholar 

  • Beydoun MA, Beydoun HA et al (2013) Thyroid hormones are associated with cognitive function: moderation by sex, race and depressive symptoms. J Clin Endocrinol Metab 98(8):3470–3481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bochukova E, Schoenmakers N et al (2012) A mutation in the thyroid hormone receptor alpha gene. N Engl J Med 366(3):243–249

    Article  CAS  PubMed  Google Scholar 

  • Boelen A, Kwakkel J et al (2011) Beyond low plasma T3: local thyroid hormone metabolism during inflammation and infection. Endocr Rev 32(5):670–693

    Article  CAS  PubMed  Google Scholar 

  • Boukhtouche F, Brugg B et al (2010) Induction of early Purkinje cell dendritic differentiation by thyroid hormone requires RORalpha. Neural Dev 5:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradley DJ, Young WS III et al (1989) Differential expression of alpha and beta thyroid hormone receptor genes in rat brain and pituitary. Proc Natl Acad Sci U S A 86(18):7250–7254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun D, Kinne A et al (2011a) Developmental and cell type-specific expression of thyroid hormone transporters in the mouse brain and in primary brain cells. Glia 59(3):463–471

    Article  PubMed  Google Scholar 

  • Braun D, Wirth EK et al (2011b) Aminoaciduria, but normal thyroid hormone levels and signalling, in mice lacking the amino acid and thyroid hormone transporter Slc7a8. Biochem J 439(2):249–255

    Article  CAS  PubMed  Google Scholar 

  • Ceballos A, Belinchon MM et al (2009) Importance of monocarboxylate transporter 8 for the blood-brain barrier-dependent availability of 3,5,3′-triiodo-L-thyronine. Endocrinology 150(5):2491–2496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan S, McCabe CJ et al (2003) Thyroid hormone responsiveness in N-Tera-2 cells. J Endocrinol 178(1):159–167

    Article  CAS  PubMed  Google Scholar 

  • Chassande O, Fraichard A et al (1997) Identification of transcripts initiated from an internal promoter in the c-erbA alpha locus that encode inhibitors of retinoic acid receptor-alpha and triiodothyronine receptor activities. Mol Endocrinol 11(9):1278–1290

    CAS  PubMed  Google Scholar 

  • Chatonnet F, Guyot R et al (2012) Genome-wide search reveals the existence of a limited number of thyroid hormone receptor alpha target genes in cerebellar neurons. PLoS One 7(5):e30703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coppola A, Liu ZW et al (2007) A central thermogenic-like mechanism in feeding regulation: an interplay between arcuate nucleus T3 and UCP2. Cell Metab 5(1):21–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Decherf S, Seugnet I et al (2010) Thyroid hormone exerts negative feedback on hypothalamic type 4 melanocortin receptor expression. Proc Natl Acad Sci U S A 107(9):4471–4476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumitrescu AM, Refetoff S (2013) The syndromes of reduced sensitivity to thyroid hormone. Biochim Biophys Acta 1830(7):3987–4003

    Article  CAS  PubMed  Google Scholar 

  • Durand B, Raff M (2000) A cell-intrinsic timer that operates during oligodendrocyte development. Bioessays 22(1):64–71

    Article  CAS  PubMed  Google Scholar 

  • Fauquier T, Romero E et al (2011) Severe impairment of cerebellum development in mice expressing a dominant-negative mutation inactivating thyroid hormone receptor alpha1 isoform. Dev Biol 356(2):350–358

    Article  CAS  PubMed  Google Scholar 

  • Ferrara AM, Liao XH et al (2013) Changes in thyroid status during perinatal development of MCT8-deficient male mice. Endocrinology 154(7):2533–2541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flamant F, Poguet AL et al (2002) Congenital hypothyroid Pax8(-/-) mutant mice can be rescued by inactivating the TRalpha gene. Mol Endocrinol 16(1):24–32

    CAS  PubMed  Google Scholar 

  • Fliers E, Klieverik LP et al (2009) Novel neural pathways for metabolic effects of thyroid hormone. Trends Endocrinol Metab 21(4):230–236

    Article  PubMed  Google Scholar 

  • Fonseca TL, Correa-Medina M et al (2013) Coordination of hypothalamic and pituitary T3 production regulates TSH expression. J Clin Invest 123(4):1492–1500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galton VA, Wood ET et al (2007) Thyroid hormone homeostasis and action in the type 2 deiodinase-deficient rodent brain during development. Endocrinology 148(7):3080–3088

    Article  CAS  PubMed  Google Scholar 

  • Galton VA, Schneider MJ et al (2009) Life without thyroxine to 3,5,3′-triiodothyronine conversion: studies in mice devoid of the 5′-deiodinases. Endocrinology 150(6):2957–2963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gan EH, Pearce SH (2012) Clinical review: the thyroid in mind: cognitive function and low thyrotropin in older people. J Clin Endocrinol Metab 97(10):3438–3449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gil-Ibanez P, Morte B et al (2013) Role of thyroid hormone receptor subtypes alpha and beta on gene expression in the cerebral cortex and striatum of postnatal mice. Endocrinology 154(5):1940–1947

    Article  PubMed  Google Scholar 

  • Grijota-Martinez C, Diez D et al (2011) Lack of action of exogenously administered T3 on the fetal rat brain despite expression of the monocarboxylate transporter 8. Endocrinology 152(4):1713–1721

    Article  CAS  PubMed  Google Scholar 

  • Guadano-Ferraz A, Benavides-Piccione R et al (2003) Lack of thyroid hormone receptor alpha1 is associated with selective alterations in behavior and hippocampal circuits. Mol Psychiatry 8(1):30–38

    Article  CAS  PubMed  Google Scholar 

  • Hadjab-Lallemend S, Wallis K et al (2010) A mutant thyroid hormone receptor alpha1 alters hippocampal circuitry and reduces seizure susceptibility in mice. Neuropharmacology 58(7):1130–1139

    Article  CAS  PubMed  Google Scholar 

  • Hage MP, Azar ST (2012) The link between thyroid function and depression. J Thyroid Res 2012:590648

    Article  PubMed  Google Scholar 

  • Hashimoto K, Curty FH et al (2001) An unliganded thyroid hormone receptor causes severe neurological dysfunction. Proc Natl Acad Sci U S A 98(7):3998–4003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinrich TW, Grahm G (2003) Hypothyroidism presenting as psychosis: myxedema madness revisited. Prim Care Companion J Clin Psychiatry 5(6):260–266

    PubMed  PubMed Central  Google Scholar 

  • Hernandez A, Quignodon L et al (2010) Type 3 deiodinase deficiency causes spatial and temporal alterations in brain T3 signaling that are dissociated from serum thyroid hormone levels. Endocrinology 151(11):5550–5558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez A, Morte B et al (2012) Critical role of types 2 and 3 deiodinases in the negative regulation of gene expression by T3 in the mouse cerebral cortex. Endocrinology 153(6):2919–2928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herwig A, Wilson D et al (2009) Photoperiod and acute energy deficits interact on components of the thyroid hormone system in hypothalamic tanycytes of the Siberian hamster. Am J Physiol Regul Integr Comp Physiol 296(5):R1307–R1315

    Article  CAS  PubMed  Google Scholar 

  • Herwig A, de Vries EM et al (2013) Hypothalamic ventricular ependymal thyroid hormone deiodinases are an important element of circannual timing in the Siberian hamster (Phodopus sungorus). PLoS One 8(4):e62003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heuer H, Mason CA (2003) Thyroid hormone induces cerebellar Purkinje cell dendritic development via the thyroid hormone receptor alpha1. J Neurosci 23(33):10604–10612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heuer H, Visser TJ (2013) The pathophysiological consequences of thyroid hormone transporter deficiencies: insights from mouse models. Biochim Biophys Acta 1830(7):3974–3978

    Article  CAS  PubMed  Google Scholar 

  • Howdeshell KL (2002) A model of the development of the brain as a construct of the thyroid system. Environ Health Perspect 110(Suppl 3):337–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapoor R, Ghosh H et al (2011) Loss of thyroid hormone receptor beta is associated with increased progenitor proliferation and NeuroD positive cell number in the adult hippocampus. Neurosci Lett 487(2):199–203

    Article  CAS  PubMed  Google Scholar 

  • Kinne A, Kleinau G et al (2010) Essential molecular determinants for thyroid hormone transport and first structural implications for monocarboxylate transporter 8. J Biol Chem 285(36):28054–28063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koibuchi N (2013) The role of thyroid hormone on functional organization in the cerebellum. Cerebellum 12(3):304–306

    Article  CAS  PubMed  Google Scholar 

  • Lang MF, Salinin S et al (2011) A transgenic approach to identify thyroxine transporter-expressing structures in brain development. J Neuroendocrinol 23(12):1194–1203

    Article  CAS  PubMed  Google Scholar 

  • Lauder JM, Altman J et al (1974) Some mechanisms of cerebellar foliation: effects of early hypo- and hyperthyroidism. Brain Res 76(1):33–40

    Article  CAS  PubMed  Google Scholar 

  • Lemkine GF, Raj A et al (2005) Adult neural stem cell cycling in vivo requires thyroid hormone and its alpha receptor. FASEB J 19(7):863–865

    Article  CAS  PubMed  Google Scholar 

  • Liao XH, Di Cosmo C et al (2011) Distinct roles of deiodinases on the phenotype of Mct8 defect: a comparison of eight different mouse genotypes. Endocrinology 152(3):1180–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez M, Varela L et al (2010) Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat Med 16(9):1001–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Juarez A, Remaud S et al (2012) Thyroid hormone signaling acts as a neurogenic switch by repressing Sox2 in the adult neural stem cell niche. Cell Stem Cell 10(5):531–543

    Article  CAS  PubMed  Google Scholar 

  • Mayerl S, Visser TJ et al (2012) Impact of Oatp1c1 deficiency on thyroid hormone metabolism and action in the mouse brain. Endocrinology 153(3):1528–1537

    Article  CAS  PubMed  Google Scholar 

  • McDonald MP, Wong R et al (1998) Hyperactivity and learning deficits in transgenic mice bearing a human mutant thyroid hormone beta1 receptor gene [In Process Citation]. Learn Mem 5(4–5):289–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendes-de-Aguiar CB, Alchini R et al (2008) Thyroid hormone increases astrocytic glutamate uptake and protects astrocytes and neurons against glutamate toxicity. J Neurosci Res 86(14):3117–3125

    Article  CAS  PubMed  Google Scholar 

  • Mittag J, Davis B et al (2010) Adaptations of the autonomous nervous system controlling heart rate are impaired by a mutant thyroid hormone receptor-alpha1. Endocrinology 151(5):2388–2395

    Article  CAS  PubMed  Google Scholar 

  • Mittag J, Lyons DJ et al (2013) Thyroid hormone is required for hypothalamic neurons regulating cardiovascular functions. J Clin Invest 123(1):509–516

    Article  CAS  PubMed  Google Scholar 

  • Montero-Pedrazuela A, Bernal J et al (2003) Divergent expression of type 2 deiodinase and the putative thyroxine-binding protein p29, in rat brain, suggests that they are functionally unrelated proteins. Endocrinology 144(3):1045–1052

    Article  CAS  PubMed  Google Scholar 

  • Montero-Pedrazuela A, Venero C et al (2006) Modulation of adult hippocampal neurogenesis by thyroid hormones: implications in depressive-like behavior. Mol Psychiatry 11(4):361–371

    Article  CAS  PubMed  Google Scholar 

  • Moran C, Schoenmakers N et al (2013) An adult female with resistance to thyroid hormone mediated by defective thyroid hormone receptor alpha. J Clin Endocrinol Metab 98(11):4254–4261

    Article  CAS  PubMed  Google Scholar 

  • Morte B, Manzano J et al (2002) Deletion of the thyroid hormone receptor alpha 1 prevents the structural alterations of the cerebellum induced by hypothyroidism. Proc Natl Acad Sci U S A 99(6):3985–3989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morte B, Diez D et al (2010) Thyroid hormone regulation of gene expression in the developing rat fetal cerebral cortex: prominent role of the Ca2+/calmodulin-dependent protein kinase IV pathway. Endocrinology 151(2):810–820

    Article  CAS  PubMed  Google Scholar 

  • Navarro D, Alvarado M et al (2014) Late maternal hypothyroidism alters the expression of Camk4 in neocortical subplate neurons: a comparison with Nurr1 labeling. Cereb Cortex 24(10):2694–2706

    Article  CAS  PubMed  Google Scholar 

  • Palha JA, Fernandes R et al (2000) Transthyretin regulates thyroid hormone levels in the choroid plexus, but not in the brain parenchyma: study in a transthyretin-null mouse model. Endocrinology 141(9):3267–3272

    Article  CAS  PubMed  Google Scholar 

  • Peeters RP, Hernandez A et al (2013) Cerebellar abnormalities in mice lacking type 3 deiodinase and partial reversal of phenotype by deletion of thyroid hormone receptor alpha1. Endocrinology 154(1):550–561

    Article  CAS  PubMed  Google Scholar 

  • Picou F, Fauquier T et al (2012) A bimodal influence of thyroid hormone on cerebellum oligodendrocyte differentiation. Mol Endocrinol 26(4):608–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilhatsch M, Winter C et al (2010) Increased depressive behaviour in mice harboring the mutant thyroid hormone receptor alpha 1. Behav Brain Res 214(2):187–192

    Article  CAS  PubMed  Google Scholar 

  • Pinna G, Brodel O et al (2002) Concentrations of seven iodothyronine metabolites in brain regions and the liver of the adult rat. Endocrinology 143(5):1789–1800

    Article  CAS  PubMed  Google Scholar 

  • Portella AC, Carvalho F et al (2010) Thyroid hormone receptor beta mutation causes severe impairment of cerebellar development. Mol Cell Neurosci 44(1):68–77

    Article  CAS  PubMed  Google Scholar 

  • Quignodon L, Legrand C et al (2004) Thyroid hormone signaling is highly heterogeneous during pre- and postnatal brain development. J Mol Endocrinol 33(2):467–476

    Article  CAS  PubMed  Google Scholar 

  • Sait Gonen M, Kisakol G et al (2004) Assessment of anxiety in subclinical thyroid disorders. Endocr J 51(3):311–315

    Article  PubMed  Google Scholar 

  • Sanchez E, Vargas MA et al (2009) Tanycyte pyroglutamyl peptidase II contributes to regulation of the hypothalamic-pituitary-thyroid axis through glial-axonal associations in the median eminence. Endocrinology 150(5):2283–2291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schweizer U, Kohrle J (2013) Function of thyroid hormone transporters in the central nervous system. Biochim Biophys Acta 1830(7):3965–3973

    Article  CAS  PubMed  Google Scholar 

  • Siesser WB, Zhao J et al (2006) Transgenic mice expressing a human mutant beta1 thyroid receptor are hyperactive, impulsive, and inattentive. Genes Brain Behav 5(3):282–297

    Article  CAS  PubMed  Google Scholar 

  • Sousa JC, de Escobar GM et al (2005) Transthyretin is not necessary for thyroid hormone metabolism in conditions of increased hormone demand. J Endocrinol 187(2):257–266

    Article  CAS  PubMed  Google Scholar 

  • Suzuki S, Suzuki N et al (2007) micro-Crystallin as an intracellular 3,5,3′-triiodothyronine holder in vivo. Mol Endocrinol 21(4):885–894

    Article  CAS  PubMed  Google Scholar 

  • Tanti A, Belzung C (2013) Hippocampal neurogenesis: a biomarker for depression or antidepressant effects? Methodological considerations and perspectives for future research. Cell Tissue Res 354(1):203–219

    Article  CAS  PubMed  Google Scholar 

  • Tinnikov A, Nordstrom K et al (2002) Retardation of post-natal development caused by a negatively acting thyroid hormone receptor alpha1. EMBO J 21(19):5079–5087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trajkovic M, Visser TJ et al (2007) Abnormal thyroid hormone metabolism in mice lacking the monocarboxylate transporter 8. J Clin Invest 117(3):627–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vallortigara J, Chassande O et al (2009) Thyroid hormone receptor alpha plays an essential role in the normalisation of adult-onset hypothyroidism-related hypoexpression of synaptic plasticity target genes in striatum. J Neuroendocrinol 21(1):49–56

    Article  CAS  PubMed  Google Scholar 

  • van Mullem A, van Heerebeek R et al (2012) Clinical phenotype and mutant TRα1. N Engl J Med 366(15):1451–1453

    Article  PubMed  Google Scholar 

  • van Mullem AA, Chrysis D et al (2013) Clinical phenotype of a new type of thyroid hormone resistance caused by a mutation of the TRalpha1 receptor: consequences of LT4 treatment. J Clin Endocrinol Metab 98(7):3029–3038

    Article  PubMed  Google Scholar 

  • Varela L, Martinez-Sanchez N et al (2012) Hypothalamic mTOR pathway mediates thyroid hormone-induced hyperphagia in hyperthyroidism. J Pathol 227(2):209–222

    Article  CAS  PubMed  Google Scholar 

  • Vasudevan N, Morgan M et al (2013) Distinct behavioral phenotypes in male mice lacking the thyroid hormone receptor alpha1 or beta isoforms. Horm Behav 63(5):742–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venero C, Guadano-Ferraz A et al (2005) Anxiety, memory impairment, and locomotor dysfunction caused by a mutant thyroid hormone receptor {alpha}1 can be ameliorated by T3 treatment. Genes Dev 19(18):2152–2163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallis K, Dudazy S et al (2010) The thyroid hormone receptor alpha1 protein is expressed in embryonic postmitotic neurons and persists in most adult neurons. Mol Endocrinol 24(10):1904–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilcoxon JS, Nadolski GJ et al (2007) Behavioral inhibition and impaired spatial learning and memory in hypothyroid mice lacking thyroid hormone receptor alpha. Behav Brain Res 177(1):109–116

    Article  CAS  PubMed  Google Scholar 

  • Williams GR (2008) Neurodevelopmental and neurophysiological actions of thyroid hormone. J Neuroendocrinol 20(6):784–794

    Article  CAS  PubMed  Google Scholar 

  • Wirth EK, Roth S et al (2009) Neuronal 3′,3,5-triiodothyronine (T3) uptake and behavioral phenotype of mice deficient in Mct8, the neuronal T3 transporter mutated in Allan-Herndon-Dudley syndrome. J Neurosci 29(30):9439–9449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yilmazer-Hanke DM, Hantsch M et al (2004) Neonatal thyroxine treatment: changes in the number of corticotropin-releasing-factor (CRF) and neuropeptide Y (NPY) containing neurons and density of tyrosine hydroxylase positive fibers (TH) in the amygdala correlate with anxiety-related behavior of Wistar rats. Neuroscience 124(2):283–297

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura T (2013) Thyroid hormone and seasonal regulation of reproduction. Front Neuroendocrinol 34(3):157–166

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Beatriz Morte for critical reading of the manuscript. Work in our laboratory is supported by Agence Nationale de la Recherche (Thyrogenomic2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Flamant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chatonnet, F., Richard, S., Flamant, F. (2016). Using Mouse Genetics to Investigate Thyroid Hormone Signaling in the Developing and Adult Brain. In: Koibuchi, N., Yen, P.M. (eds) Thyroid Hormone Disruption and Neurodevelopment. Contemporary Clinical Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3737-0_8

Download citation

Publish with us

Policies and ethics