Skip to main content

NMR Quantum Information Processing

  • Chapter
  • First Online:

Part of the book series: Biological Magnetic Resonance ((BIMR,volume 31))

Abstract

Quantum computing exploits fundamentally new models of computation based on quantum mechanical properties instead of classical physics, and it is believed that quantum computers are able to dramatically improve computational power for particular tasks. At present, nuclear magnetic resonance (NMR) has been one of the most successful platforms amongst all current implementations. It has demonstrated universal controls on the largest number of qubits, and many advanced techniques developed in NMR have been adopted to other quantum systems successfully. In this review, we show how NMR quantum processors can satisfy the general requirements of a quantum computer, and describe advanced techniques developed towards this target. Additionally, we review some recent NMR quantum processor experiments. These experiments include benchmarking protocols, quantum error correction, demonstrations of algorithms exploiting quantum properties, exploring the foundations of quantum mechanics, and quantum simulations. Finally we summarize the concepts and comment on future prospects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For simplicity, we only consider spin ½ systems in this chapter.

  2. 2.

    The Clifford group is the group of unitary operations that leave take Pauli operators to Pauli operators.

  3. 3.

    In general, a protected space does not necessarily encode a single qubit, and single qubit gates are often not transversal.

  4. 4.

    The argument regarding the number of elements to be summed is somewhat simplistic, since we only require an estimate. Nevertheless, there is good reason to expect the computation scale exponentially with n [78].

  5. 5.

    Strictly speaking, it should also be scalable.

References

  1. G. Moore, Electronics 38, 114 (1965)

    Google Scholar 

  2. R. Landauer, IBM J. Res. Dev. 5, 183 (1961)

    Article  MathSciNet  Google Scholar 

  3. M. Hilbert, P. López, Science 332, 60 (2011)

    Article  Google Scholar 

  4. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (2011), p. 702

    Google Scholar 

  5. C.H. Bennett, IBM J. Res. Dev. 17, 525 (1973)

    Article  Google Scholar 

  6. T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O’Brien, Nature 464, 45 (2010)

    Article  Google Scholar 

  7. I. Buluta, S. Ashhab, F. Nori, Rep. Prog. Phys. 74, 104401 (2011)

    Article  Google Scholar 

  8. L.M.K. Vandersypen, Rev. Mod. Phys. 76, 1037 (2005)

    Article  Google Scholar 

  9. J.A. Jones, Prog. Nucl. Magn. Reson. Spectrosc. 59, 91 (2011)

    Article  Google Scholar 

  10. D.P. DiVincenzo, Fortschritte Der Phys. 48, 771 (2000)

    Article  Google Scholar 

  11. D.G. Cory, A.F. Fahmy, T.F. Havel, Proc. Natl. Acad. Sci. 94, 1634 (1997)

    Article  Google Scholar 

  12. N.A. Gershenfeld, I.L. Chuang, Science 275, 350 (1997)

    Article  MathSciNet  Google Scholar 

  13. E. Knill, I. Chuang, R. Laflamme, Phys. Rev. A 57, 3348 (1998)

    Article  MathSciNet  Google Scholar 

  14. E. Knill, R. Laflamme, R. Martinez, C. Tseng, Nature 404, 21 (2000)

    Article  Google Scholar 

  15. W.S. Warren, Science 277, 1688 (1997)

    Article  Google Scholar 

  16. C.A. Ryan, C. Negrevergne, M. Laforest, E. Knill, R. Laflamme, Phys. Rev. A 78, 12328 (2008)

    Article  Google Scholar 

  17. N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, S.J. Glaser, J. Magn. Reson. 172, 296 (2005)

    Article  Google Scholar 

  18. I.L. Chuang, L.M.K. Vandersypen, X. Zhou, D.W. Leung, S. Lloyd, Nature 393, 143 (1998)

    Article  Google Scholar 

  19. I.L. Chuang, N. Gershenfeld, M. Kubinec, Phys. Rev. Lett. 80, 3408 (1998)

    Article  Google Scholar 

  20. J. Preskill, Proc. R. Soc. A Math. Phys. Eng. Sci. 454, 385 (1998)

    Article  MathSciNet  Google Scholar 

  21. I.L. Chuang, M.A. Nielsen, J. Mod. Opt. 44, 2455 (1997)

    Article  Google Scholar 

  22. J. Poyatos, J. Cirac, P. Zoller, Phys. Rev. Lett. 78, 390 (1997)

    Article  Google Scholar 

  23. R.C. Bialczak, M. Ansmann, M. Hofheinz, E. Lucero, M. Neeley, A.D. O’Connell, D. Sank, H. Wang, J. Wenner, M. Steffen, A.N. Cleland, J.M. Martinis, Nat. Phys. 6, 409 (2010)

    Article  Google Scholar 

  24. A. Childs, I. Chuang, D. Leung, Phys. Rev. A 64, 012314 (2001)

    Article  Google Scholar 

  25. Y.S. Weinstein, T.F. Havel, J. Emerson, N. Boulant, M. Saraceno, S. Lloyd, D.G. Cory, J. Chem. Phys. 121, 6117 (2004)

    Article  Google Scholar 

  26. J. O’Brien, G. Pryde, A. Gilchrist, D. James, N. Langford, T. Ralph, A. White, Phys. Rev. Lett. 93, 080502 (2004)

    Article  Google Scholar 

  27. M. Riebe, K. Kim, P. Schindler, T. Monz, P. Schmidt, T. Körber, W. Hänsel, H. Häffner, C. Roos, R. Blatt, Phys. Rev. Lett. 97, 220407 (2006)

    Article  Google Scholar 

  28. J. Chow, J. Gambetta, L. Tornberg, J. Koch, L. Bishop, A. Houck, B. Johnson, L. Frunzio, S. Girvin, R. Schoelkopf, Phys. Rev. Lett. 102, 090502 (2009)

    Article  Google Scholar 

  29. J. Emerson, M. Silva, O. Moussa, C. Ryan, M. Laforest, J. Baugh, D.G. Cory, R. Laflamme, Science 317, 1893 (2007)

    Article  Google Scholar 

  30. C. Dankert, R. Cleve, J. Emerson, E. Livine, Phys. Rev. A 80, 012304 (2009)

    Article  Google Scholar 

  31. O. Moussa, M.P. da Silva, C.A. Ryan, R. Laflamme, Phys. Rev. Lett. 109, 070504 (2012)

    Article  Google Scholar 

  32. J. Emerson, R. Alicki, K. Życzkowski, J. Opt. B Quantum Semiclassical Opt. 7, S347 (2005)

    Article  Google Scholar 

  33. E. Knill, D. Leibfried, R. Reichle, J. Britton, R. Blakestad, J. Jost, C. Langer, R. Ozeri, S. Seidelin, D. Wineland, Phys. Rev. A 77, 012307 (2008)

    Article  Google Scholar 

  34. C.A. Ryan, M. Laforest, R. Laflamme, New J. Phys. 11, 013034 (2009)

    Article  Google Scholar 

  35. S.T. Flammia, Y.-K. Liu, Phys. Rev. Lett. 106, 230501 (2011)

    Article  Google Scholar 

  36. M.P. da Silva, O. Landon-Cardinal, D. Poulin, Phys. Rev. Lett. 107, 210404 (2011)

    Article  Google Scholar 

  37. D. Lu, H. Li, D. Trottier, J. Li, A. Brodutch, A. P. Krismanich, A. Ghavami, G. I. Dmitrienko, G. Long, J. Baugh, R. Laflamme, Phys. Rev. Lett. 114, 140505 (2015)

    Google Scholar 

  38. D.G. Cory, J.B. Miller, A.N. Garroway, J. Magn. Reson. 90, 205 (1990)

    Google Scholar 

  39. S. Bravyi, A. Kitaev, Phys. Rev. A 71, 022316 (2005)

    Article  MathSciNet  Google Scholar 

  40. S.L. Braunstein, arXiv:quant-ph/9603024v1 (1996)

    Google Scholar 

  41. J. Preskill, Proc. R. Soc. A 454, 385 (1998)

    Article  MathSciNet  Google Scholar 

  42. D. Aharonov, M. Ben-Or, in Proceedings of the 29th Annual ACM Symposium on Theory of Computing, El Paso, 1997 (ACM, New York, 1997), p. 176

    Google Scholar 

  43. E. Knill, R. Laflamme, W. Zurek, Science 279, 342 (1998)

    Article  Google Scholar 

  44. E. Knill, R. Laflamme, R. Martinez, C. Negrevergne, Phys. Rev. Lett. 86, 5811 (2001)

    Article  Google Scholar 

  45. P.W. Shor, Phys. Rev. A 52, R2493(R) (1995)

    Article  Google Scholar 

  46. D.G. Cory, M.D. Price, W. Maas, E. Knill, R. Laflamme, W.H. Zurek, T.F. Havel, S.S. Somaroo, Phys. Rev. Lett. 81, 2152 (1998)

    Article  Google Scholar 

  47. J. Zhang, D. Gangloff, O. Moussa, R. Laflamme, Phys. Rev. A 84, 034303 (2011)

    Article  Google Scholar 

  48. R. Laflamme, C. Miquel, J.P. Paz, W.H. Zurek, Phys. Rev. Lett. 77, 198 (1996)

    Article  Google Scholar 

  49. M. Ben-Or, D. Gottesman, R. Gan, arXiv:1301.1995 (2013)

    Google Scholar 

  50. J. Zhang, R. Laflamme, D. Suter, Phys. Rev. Lett. 109, 100503 (2012)

    Article  Google Scholar 

  51. D. Gottesman, arXiv:quant-ph/0507174 (2005)

    Google Scholar 

  52. E. Knill, Nature 434, 39 (2005)

    Article  Google Scholar 

  53. B. Eastin, E. Knill, Phys. Rev. Lett. 102, 110502 (2009)

    Article  Google Scholar 

  54. E.T. Campbell, D.E. Browne, Phys. Rev. Lett. 104, 030503 (2010)

    Article  Google Scholar 

  55. E.T. Campbell, D.E. Browne, in Lecture Notes in Computer Science (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) (2009), pp. 20–32

    Google Scholar 

  56. W. Van Dam, M. Howard, Phys. Rev. Lett. 103, 170504 (2009)

    Article  Google Scholar 

  57. M. Howard, J. Wallman, V. Veitch, J. Emerson, Nature 509, 351 (2014)

    Google Scholar 

  58. T. Jochym-O’Connor, R. Laflamme, Phys. Rev. Lett. 112, 010505 (2014)

    Article  Google Scholar 

  59. A. Paetznick, B.W. Reichardt, Phys. Rev. Lett. 111, 090505 (2013)

    Article  Google Scholar 

  60. J. Anderson, G. Duclos-Cianci, D. Poulin, Phys. Rev. Lett. 113, 080501 (2014)

    Article  Google Scholar 

  61. A.M. Souza, J. Zhang, C.A. Ryan, R. Laflamme, Nat. Commun. 2, 169 (2011)

    Article  Google Scholar 

  62. J.K. Pachos, Introduction to Topological Quantum Computation (Cambridge University Press, Cambridge, 2012)

    Book  MATH  Google Scholar 

  63. A.Y. Kitaev, Ann. Phys. (N. Y). 303, 2 (2003)

    Google Scholar 

  64. F. Wilczek, Phys. Rev. Lett. 49, 957 (1982)

    Article  MathSciNet  Google Scholar 

  65. A. Kitaev, Ann. Phys. (N. Y). 321, 2 (2006)

    Google Scholar 

  66. F. Camino, W. Zhou, V. Goldman, Phys. Rev. B 72, 155313 (2005)

    Article  Google Scholar 

  67. R.L. Willett, C. Nayak, K. Shtengel, L.N. Pfeiffer, K.W. West, Phys. Rev. Lett. 111, 186401 (2013)

    Article  Google Scholar 

  68. G. Feng, G. Long, R. Laflamme, Phys. Rev. A 88, 022305 (2013)

    Article  Google Scholar 

  69. Y. Han, R. Raussendorf, L. Duan, Phys. Rev. Lett. 98, 150404 (2007)

    Article  MathSciNet  Google Scholar 

  70. C.Y. Lu, W.B. Gao, O. Gühne, X.Q. Zhou, Z.B. Chen, J.W. Pan, Phys. Rev. Lett. 102, 030502 (2009)

    Article  Google Scholar 

  71. J.K. Pachos, W. Wieczorek, C. Schmid, N. Kiesel, R. Pohlner, H. Weinfurter, New J. Phys. 11, 083010 (2009)

    Article  Google Scholar 

  72. S.L. Braunstein, C.M. Caves, R. Jozsa, N. Linden, S. Popescu, R. Schack, Phys. Rev. Lett. 83, 1054 (1999)

    Article  Google Scholar 

  73. E. Schrödinger, Die Naturwissenschaften 23, 823 (1935)

    Article  Google Scholar 

  74. E. Knill, R. Laflamme, Phys. Rev. Lett. 81, 5672 (1998)

    Article  Google Scholar 

  75. R. Laflamme, D.G. Cory, C. Negrevergne, L. Viola, arXiv:quant-ph/0110029 (2001)

    Google Scholar 

  76. G. Passante, O. Moussa, C.A. Ryan, R. Laflamme, Phys. Rev. Lett. 103, 250501 (2009)

    Article  Google Scholar 

  77. G. Passante, Ph.D. Thesis, University of Waterloo (2012)

    Google Scholar 

  78. A. Datta, S. Flammia, C. Caves, Phys. Rev. A 72, 042316 (2005)

    Article  Google Scholar 

  79. K. Modi, A. Brodutch, H. Cable, T. Paterek, V. Vedral, Rev. Mod. Phys. 84, 1655 (2012)

    Article  Google Scholar 

  80. H. Ollivier, W.H. Zurek, Phys. Rev. Lett. 88, 017901 (2001)

    Article  Google Scholar 

  81. B. Dakić, V. Vedral, Č. Brukner, Phys. Rev. Lett. 105, 190502 (2010)

    Article  Google Scholar 

  82. D. Deutsch, Proc. R. Soc. London A 400, 97 (1985)

    Article  MathSciNet  Google Scholar 

  83. J.S. Bell, Physics 1, 195 (1964)

    Google Scholar 

  84. S. Kochen, E.P. Specker, J. Math. Mech. 17, 59 (1967)

    MathSciNet  Google Scholar 

  85. A. Cabello, Phys. Rev. Lett. 101, 210401 (2008)

    Article  MathSciNet  Google Scholar 

  86. O. Moussa, C.A. Ryan, D.G. Cory, R. Laflamme, Phys. Rev. Lett. 104, 160501 (2010)

    Article  MathSciNet  Google Scholar 

  87. D. Lu, A. Brodutch, J. Li, H. Li, R. Laflamme, New J. Phys. 16, 53015 (2014)

    Article  Google Scholar 

  88. R. Feynman, Int. J. Theor. Phys. 21, 467 (1982)

    Article  MathSciNet  Google Scholar 

  89. I.M. Georgescu, S. Ashhab, F. Nori, Rev. Mod. Phys. 86, 153 (2014)

    Article  Google Scholar 

  90. J. Zhang, M.-H. Yung, R. Laflamme, A. Aspuru-Guzik, J. Baugh, Nat. Commun. 3, 880 (2012)

    Article  Google Scholar 

  91. I. Buluta, F. Nori, Science 326, 108 (2009)

    Article  Google Scholar 

  92. I. Kassal, J.D. Whitfield, A. Perdomo-Ortiz, M.-H. Yung, A. Aspuru-Guzik, Annu. Rev. Phys. Chem. 62, 185 (2011)

    Article  Google Scholar 

  93. B. Altshuler, H. Krovi, J. Roland, Proc. Natl. Acad. Sci. U. S. A. 107, 12446 (2010)

    Article  Google Scholar 

  94. G.H. Wannier, Phys. Rev. 79, 357 (1950)

    Article  MathSciNet  Google Scholar 

  95. M.-H. Yung, D. Nagaj, J.D. Whitfield, A. Aspuru-Guzik, Phys. Rev. A 82, 060302 (2010)

    Article  Google Scholar 

  96. D. Lidar, O. Biham, Phys. Rev. E 56, 3661 (1997)

    Article  Google Scholar 

  97. S. Sachdev, Quantum Phase Transitions, 2nd Edition (Cambridge University Press, Cambridge, 2011), p. 517

    Google Scholar 

  98. O. Gühne, G. Tóth, Phys. Rep. 474, 1 (2009)

    Article  MathSciNet  Google Scholar 

  99. L. Amico, A. Osterloh, V. Vedral, Rev. Mod. Phys. 80, 517 (2008)

    Article  MathSciNet  Google Scholar 

  100. V.E. Korepin, N.M. Bogoliubov, A.G. Izergin, Quantum Inverse Scattering Method and Correlation Functions (Cambridge University Press, Cambridge, 1997)

    MATH  Google Scholar 

  101. T.-C. Wei, P. Goldbart, Phys. Rev. A 68, 042307 (2003)

    Article  Google Scholar 

  102. T.-C. Wei, D. Das, S. Mukhopadyay, S. Vishveshwara, P. Goldbart, Phys. Rev. A 71, 060305 (2005)

    Article  Google Scholar 

  103. J.M. Kosterlitz, D.J. Thouless, J. Phys. C: Solid State Phys. 6, 1181 (2002)

    Article  Google Scholar 

  104. R. Orús, T.-C. Wei, Phys. Rev. B 82, 155120 (2010)

    Article  Google Scholar 

  105. J. Zhang, M. Ditty, D. Burgarth, C.A. Ryan, C.M. Chandrashekar, M. Laforest, O. Moussa, J. Baugh, R. Laflamme, Phys. Rev. A 80, 12316 (2009)

    Article  Google Scholar 

  106. S. Bose, Phys. Rev. Lett. 91, 207901 (2003)

    Article  Google Scholar 

  107. P. Cappellaro, C. Ramanathan, D. Cory, Phys. Rev. Lett. 99, 250506 (2007)

    Article  Google Scholar 

  108. M. Christandl, N. Datta, A. Ekert, A. Landahl, Phys. Rev. Lett. 92, 187902 (2004)

    Article  Google Scholar 

  109. E.B. Fel’dman, A.I. Zenchuk, Phys. Lett. A 373, 1719 (2009)

    Article  MathSciNet  Google Scholar 

  110. T. Mahesh, D. Suter, Phys. Rev. A 74, 062312 (2006)

    Article  Google Scholar 

  111. M. Mehring, J. Mende, W. Scherer, Phys. Rev. Lett. 90, 153001 (2003)

    Article  Google Scholar 

  112. Y. Zhang, C.A. Ryan, R. Laflamme, J. Baugh, Phys. Rev. Lett. 107, 170503 (2011)

    Article  Google Scholar 

Download references

Acknowledgement

We thank Rolf Horn for helpful comments and discussions. This work is supported by Industry Canada, NSERC and CIFAR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawei Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer New York

About this chapter

Cite this chapter

Lu, D., Brodutch, A., Park, J., Katiyar, H., Jochym-O’Connor, T., Laflamme, R. (2016). NMR Quantum Information Processing. In: Takui, T., Berliner, L., Hanson, G. (eds) Electron Spin Resonance (ESR) Based Quantum Computing. Biological Magnetic Resonance, vol 31. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3658-8_7

Download citation

Publish with us

Policies and ethics