Skip to main content

Exploiting Quantum Effects in Electron-Nuclear Coupled Molecular Spin Systems

  • Chapter
  • First Online:
Electron Spin Resonance (ESR) Based Quantum Computing

Part of the book series: Biological Magnetic Resonance ((BIMR,volume 31))

Abstract

Molecular spin systems coupled with nuclear spins are introduced as promising matter spin qubits in quantum information processing and quantum computing (QC). Introductory remarks are given for nonspecialists. For this purpose, NMR-based QC is described and an approach to QC exploiting electron-nuclear coupled molecular systems is given. Requisites for qubits are described as DiVincenzo’s criteria. Since Shor’s quantum algorithm appeared, the first successful QC experiment was carried out by highly sophisticated pulsed NMR techniques, and this very attempt brought quantum computers down to earth. It has been claimed, nevertheless, that quantum entanglement as the heart of QC has not been established in any experiments in solution. Thus, advantages of QC experiments with molecular spins over the counterparts of NMR QC are described. Quantum computing (QC) experiments with molecular spins are exemplified for a few qubits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.E. Moore, Electron. Mag. 38(8), 114 (1965)

    Google Scholar 

  2. R.P. Peering, Nature 406, 1023 (2000)

    Article  Google Scholar 

  3. A.M. Turing, Proc. Lond. Math. Soc. 2 42, 230 (1936)

    MathSciNet  Google Scholar 

  4. A. Church, Am. J. Math. 58, 345 (1936)

    Article  MathSciNet  Google Scholar 

  5. M.D. Davis, The undecidable (Raven Press, New York, 1965)

    Google Scholar 

  6. R.P. Feynman, Int. J. Theor. Phys. 21, 467 (1982)

    Article  MathSciNet  Google Scholar 

  7. D.P. DiVincenzo, Fortschr. Phys. 9, 771 (2000)

    Article  Google Scholar 

  8. R.R. Ernst, G. Bodenhausen, A. Wokaun, Nuclear Magnetic Resonance in One and Two Dimensions (Oxford University Press, Oxford, 1994)

    Google Scholar 

  9. A. Abragam, The Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961)

    Google Scholar 

  10. M. Golden, Quantum Description of High-Resolution NMR in Liquids (Oxford Scientific Publication, London, 1998)

    Google Scholar 

  11. C.P. Slichter, Principles of Magnetic Resonance (Springer, Berlin, 1996)

    Google Scholar 

  12. X. Fang, X. Zhu, M. Feng, X. Mao, F. Du, Phys. Rev. A 61, 022307 (2000)

    Article  Google Scholar 

  13. R. Rahimi, K. Takeda, M. Ozawa, M. Kitagawa, J. Phys. A: Math. Gen. 39, 2151 (2006)

    Article  MathSciNet  Google Scholar 

  14. J.A. Jones, M. Mosca, R.H. Hansen, Nature 393, 344 (1998)

    Article  Google Scholar 

  15. I.L. Chuang, L.M.K. Vandersypen, X. Zhou, D.W. Leung, S. Lloyd, Nature 393, 143 (1998)

    Article  Google Scholar 

  16. M.A. Nielsen, E. Knill, R. Lafflamme, Nature 396, 52 (1998)

    Article  Google Scholar 

  17. L.M.K. Vandersypen, M. Steffen, G. Breyta, C.S. Yannoni, M.H. Sherwood, I.L. Chuang, Nature 414, 883 (2001)

    Article  Google Scholar 

  18. I.L. Chuang, N. Gershenfeld, M.G. Kubinec, D.W. Leung, Proc. R. Soc. Lond. A. 454, 447 (1998)

    Article  Google Scholar 

  19. D.G. Cory, R. Lafflamme, E. Knill, L. Viola, T.F. Havel, N. Boulant, G. Boutis, E. Fortunato, S. Lloyd, R. Martinez, C. Negrevergne, M. Pravia, Y. Sharif, G. Teklemariam, Y.S. Weinstein, W.H. Zurek, Fortschr. Phys. 48, 875 (2000)

    Article  Google Scholar 

  20. D.G. Cory, M.D. Price, T.F. Havel, Physica D 120, 82 (1998)

    Article  Google Scholar 

  21. D.G. Cory, A.F. Fahmy, T.F. Havel, Proc. Natl. Acad. Sci. U. S. A. 94, 1634 (1997)

    Article  Google Scholar 

  22. S. Lloyd, Science 273, 1073 (1996)

    Article  MathSciNet  Google Scholar 

  23. G. Vidal, Phys. Rev. Lett. 83, 1046 (1999)

    Article  Google Scholar 

  24. K. Zyczkowski, P. Horodecki, A. Sanpera, M. Lewenstein, Phys. Rev. A 58, 883 (1999)

    Article  MathSciNet  Google Scholar 

  25. S.L. Braunstein, C.M. Caves, R. Jozsa, N. Linden, S. Popescu, R. Schack, Phys. Rev. Lett. 83, 1054 (1999)

    Article  Google Scholar 

  26. R. Schack, C.M. Caves, Phys. Rev. A 60, 4354 (1999)

    Article  Google Scholar 

  27. B. Criger, O. Moussa, R. Laflamme, Phys. Rev. A 85, 044302 (2012)

    Article  Google Scholar 

  28. H.K. Lo, S. Popescu, T. Spiller, Introduction to Quantum Computation and Information (World Scientific Publication, Singapore, 1998)

    Book  MATH  Google Scholar 

  29. L.M.K. Vandersypen, PhD Dissertation arXiv:quant-ph/0205193, 2002

    Google Scholar 

  30. K. Takeda, K. Takegoshi, T. Terao, J. Phys. Soc. Jpn. 73, 2313 (2004)

    Article  Google Scholar 

  31. D. Park, G. Feng, R. Rahimi, T. Shibata, T. Takui, J. Baugh, R. Laflamme, to be published

    Google Scholar 

  32. R. Bergene, T.B. Melø, Biophysik 9, 1 (1972)

    Article  Google Scholar 

  33. H.M. McConnell, C. Heller, T. Cole, R.W. Fessenden, J. Am. Chem. Soc. 82, 766 (1960)

    Article  Google Scholar 

  34. M. McConnell, W. Fessenden, J. Chem. Phys. 31, 1688 (1959)

    Article  Google Scholar 

  35. T. Cole, C. Heller, J. Chem. Phys. 34, 1085 (1960)

    Article  Google Scholar 

  36. R. Rahimi, PhD thesis, Osaka University, Japan, arXiv: 0609063

    Google Scholar 

  37. K. Sato, S. Nakazawa, S. Nishida, R. Rahimi, T. Yohsino, Y. Morita, K. Toyota, D. Shiomi, M. Kitagawa, T. Takui, Novel applications of ESR/EPR: quantum computing/quantum information processing, in EPR of Free Radicals in Solids II: Trends in Methods and Applications, ed. by A. Lund, M. Shiotani (Springer, Dordrecht, 2013). ISBN 978-94-007-4886-6

    Google Scholar 

  38. Y. Deguchi, Bull. Chem. Soc. Jpn. 34, 910 (1961); Y. Deguchi, Bull. Chem. Soc. Jpn. 35, 260 (1962)

    Google Scholar 

  39. J. Yamauchi, H. Nishiguchi, K. Mukai, Y. Deguchi, Bull. Chem. Soc. Jpn. 40, 2512 (1967)

    Article  Google Scholar 

  40. T.-S. Lin, J. Chem. Phys. 57, 2260 (1972)

    Article  Google Scholar 

  41. A.L. Maniero, M. Brustolon, J. Chem. Soc. Faraday Trans. 1 84, 2875 (1988)

    Article  Google Scholar 

  42. J. Yamauchi, K. Okada, Y. Deguchi, Bull. Chem. Soc. Jpn. 60, 483 (1987)

    Article  Google Scholar 

  43. T. Yoshino, S. Nishida, K. Sato, S. Nakazawa, R. Rahimi, K. Toyota, D. Shiomi, Y. Morita, M. Kitagawa, T. Takui, J. Phys. Chem. Lett. 2, 449 (2011)

    Article  Google Scholar 

  44. M. Mehring, J. Mende, W. Scherer, Phys. Rev. Lett. 90, 153001 (2003)

    Article  Google Scholar 

  45. R. Rahimi, A. SaiToh, Phys. Rev. A 82, 022314 (2010)

    Article  Google Scholar 

  46. M. Mehring, P. Hoefer, A. Grupp, Phys. Rev. A 33, 3523 (1986)

    Article  Google Scholar 

  47. S. Nakazawa, S. Nishida, T. Ise, T. Yoshino, N. Mori, D.R. Rahimi, K. Sato, Y. Morita, K. Toyota, D. Shiomi, M. Kitagawa, H. Hara, P. Carl, P. Höfer, T. Takui, Angew. Chem. 124, 9998 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Prof. Lawrence Berliner for proofreading the manuscript. We have appreciated the synthetic work on DPNOs by Shinsuke Nishida and Yasushi Morita, Osaka University. This work has been supported by Grants-in-Aid for Scientific Research on Innovative Areas “Quantum Cybernetics” and Scientific Research (B) from MEXT, Japan. The support for the present work by the FIRST project on “Quantum Information Processing” from JSPS, Japan and by the AOARD project on “Quantum Properties of Molecular Nanomagnets” (Award No. FA2386-13-1-4030) is also acknowledged. RRD would like to thank Howard Halpern and members of the Center for EPR Imaging in Vivo Physiology, for warm hospitality while the last stage of this work was conducted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robabeh Rahimi Darabad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer New York

About this chapter

Cite this chapter

Darabad, R.R., Sato, K., Carl, P., Höfer, P., Laflamme, R., Takui, T. (2016). Exploiting Quantum Effects in Electron-Nuclear Coupled Molecular Spin Systems. In: Takui, T., Berliner, L., Hanson, G. (eds) Electron Spin Resonance (ESR) Based Quantum Computing. Biological Magnetic Resonance, vol 31. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3658-8_2

Download citation

Publish with us

Policies and ethics