Skip to main content

PTEN

  • Chapter
  • First Online:
Protein Tyrosine Phosphatases in Cancer
  • 1109 Accesses

Abstract

The PTEN tumor suppressor gene is among the most frequently targeted genes in cancer. It inhibits cellular growth, proliferation, and survival functions and is essential for epithelial cell polarity and migration. Mechanistically, PTEN achieves these various functions by antagonizing PI-3 kinase-mediated production of the PIP3 lipid second messenger which in turn leads to differential recruitment of key signaling molecules to the plasma membrane, and to inactivation of the protein kinase AKT.

Modeling of Pten deficiency in mice has firmly established that losing only one copy of the gene is sufficient for the process of tumor initiation, while losing both copies triggers cellular senescence. These two features control tumorigenesis in several tissues, which highlights the critical role of PTEN-regulatory mechanisms, especially at the transcriptional and posttranslational levels.

Understanding and interfering with these processes will therefore greatly impact our success in cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem. 1998;273(22):13375–8.

    Article  CAS  PubMed  Google Scholar 

  2. Li J, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997;275(5308):1943–7.

    Article  CAS  PubMed  Google Scholar 

  3. Steck PA, et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet. 1997;15(4):356–62.

    Article  CAS  PubMed  Google Scholar 

  4. Myers MP, et al. P-TEN, the tumor suppressor from human chromosome 10q23, is a dual-specificity phosphatase. Proc Natl Acad Sci U S A. 1997;94(17):9052–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 2006;7(8):606–19.

    Article  CAS  PubMed  Google Scholar 

  6. Huang H, et al. PTEN affects cell size, cell proliferation and apoptosis during Drosophila eye development. Development. 1999;126(23):5365–72.

    CAS  PubMed  Google Scholar 

  7. Stambolic V, et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell. 1998;95(1):29–39.

    Article  CAS  PubMed  Google Scholar 

  8. Cerami E, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4.

    Article  PubMed  Google Scholar 

  9. Liu W, et al. Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nat Med. 2009;15(5):559–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen M, et al. Identification of PHLPP1 as a tumor suppressor reveals the role of feedback activation in PTEN-mutant prostate cancer progression. Cancer Cell. 2011;20(2):173–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Saal LH, et al. Poor prognosis in carcinoma is associated with a gene expression signature of aberrant PTEN tumor suppressor pathway activity. Proc Natl Acad Sci U S A. 2007;104(18):7564–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yanagawa N, et al. Loss of phosphatase and tensin homolog protein expression is an independent poor prognostic marker in lung adenocarcinoma. J Thorac Oncol. 2012;7(10):1513–21.

    Article  CAS  PubMed  Google Scholar 

  13. Kim SS, et al. Expression of NEDD4-1, a PTEN regulator, in gastric and colorectal carcinomas. APMIS. 2008;116(9):779–84.

    Article  PubMed  Google Scholar 

  14. Mirmohammadsadegh A, et al. Epigenetic silencing of the PTEN gene in melanoma. Cancer Res. 2006;66(13):6546–52.

    Article  CAS  PubMed  Google Scholar 

  15. Gravina GL, et al. Epigenetic modulation of PTEN expression during antiandrogenic therapies in human prostate cancer. Int J Oncol. 2009;35(5):1133–9.

    CAS  PubMed  Google Scholar 

  16. Nishioka C, et al. Long-term exposure of leukemia cells to multi-targeted tyrosine kinase inhibitor induces activations of AKT, ERK and STAT5 signaling via epigenetic silencing of the PTEN gene. Leukemia. 2010;24(9):1631–40.

    Article  CAS  PubMed  Google Scholar 

  17. Yang J, et al. Long-term exposure of gastrointestinal stromal tumor cells to sunitinib induces epigenetic silencing of the PTEN gene. Int J Cancer. 2012;130(4):959–66.

    Article  CAS  PubMed  Google Scholar 

  18. Poliseno L, et al. Identification of the miR-106b ~ 25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Sci Signal. 2010;3(117):ra29.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Poliseno L, et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature. 2010;465(7301):1033–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Poliseno L, et al. Deletion of PTENP1 pseudogene in human melanoma. J Invest Dermatol. 2011;131(12):2497–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tay Y, et al. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell. 2011;147(2):344–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Karreth FA, et al. In vivo identification of tumor- suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell. 2011;147(2):382–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sansal I, Sellers WR. The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol. 2004;22(14):2954–63.

    Article  CAS  PubMed  Google Scholar 

  24. Knudson Jr AG. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A. 1971;68(4):820–3.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Di Cristofano A, et al. Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse. Nat Genet. 2001;27(2):222–4.

    Article  PubMed  Google Scholar 

  26. Kwabi-Addo B, et al. Haploinsufficiency of the Pten tumor suppressor gene promotes prostate cancer progression. Proc Natl Acad Sci U S A. 2001;98(20):11563–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Trotman LC, et al. Pten dose dictates cancer progression in the prostate. PLoS Biol. 2003;1(3):E59.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Di Cristofano A, et al. Pten is essential for embryonic development and tumour suppression. Nat Genet. 1998;19(4):348–55.

    Article  PubMed  Google Scholar 

  29. Podsypanina K, et al. Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc Natl Acad Sci U S A. 1999;96(4):1563–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Suzuki A, et al. High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr Biol. 1998;8(21):1169–78.

    Article  CAS  PubMed  Google Scholar 

  31. Suzuki A, et al. Keratinocyte-specific Pten deficiency results in epidermal hyperplasia, accelerated hair follicle morphogenesis and tumor formation. Cancer Res. 2003;63(3):674–81.

    CAS  PubMed  Google Scholar 

  32. Oudit GY, et al. Loss of PTEN attenuates the development of pathological hypertrophy and heart failure in response to biomechanical stress. Cardiovasc Res. 2008;78(3):505–14.

    Article  CAS  PubMed  Google Scholar 

  33. Fraser MM, et al. Pten loss causes hypertrophy and increased proliferation of astrocytes in vivo. Cancer Res. 2004;64(21):7773–9.

    Article  CAS  PubMed  Google Scholar 

  34. Di Cristofano A, et al. Impaired Fas response and autoimmunity in Pten+/- mice. Science. 1999;285(5436):2122–5.

    Article  PubMed  Google Scholar 

  35. Naguib A, Trotman LC. PTEN plasticity: how the taming of a lethal gene can go too far. Trends Cell Biol. 2013;23:374–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kwon CH, et al. Pten regulates neuronal soma size: a mouse model of Lhermitte-Duclos disease. Nat Genet. 2001;29(4):404–11.

    Article  CAS  PubMed  Google Scholar 

  37. Backman SA, et al. Deletion of Pten in mouse brain causes seizures, ataxia and defects in soma size resembling Lhermitte-Duclos disease. Nat Genet. 2001;29(4):396–403.

    Article  CAS  PubMed  Google Scholar 

  38. Medema RH, et al. AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature. 2000;404(6779):782–7.

    Article  CAS  PubMed  Google Scholar 

  39. Tran H, et al. DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science. 2002;296(5567):530–4.

    Article  CAS  PubMed  Google Scholar 

  40. Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell. 2007;12(1):9–22.

    Article  CAS  PubMed  Google Scholar 

  41. Guertin DA, et al. mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell. 2009;15(2):148–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Podsypanina K, et al. An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/- mice. Proc Natl Acad Sci U S A. 2001;98(18):10320–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Neshat MS, et al. Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci U S A. 2001;98(18):10314–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Franz DN, et al. Rapamycin causes regression of astrocytomas in tuberous sclerosis complex. Ann Neurol. 2006;59(3):490–8.

    Article  CAS  PubMed  Google Scholar 

  45. Wong KK, Engelman JA, Cantley LC. Targeting the PI3K signaling pathway in cancer. Curr Opin Genet Dev. 2010;20(1):87–90.

    Article  CAS  PubMed  Google Scholar 

  46. Chen Z, et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature. 2005;436(7051):725–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Narita M, Lowe SW. Senescence comes of age. Nat Med. 2005;11(9):920–2.

    Article  CAS  PubMed  Google Scholar 

  48. Trotman LC, et al. Identification of a tumour suppressor network opposing nuclear Akt function. Nature. 2006;441(7092):523–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cordon-Cardo C, et al. Distinct altered patterns of p27KIP1 gene expression in benign prostatic hyperplasia and prostatic carcinoma. J Natl Cancer Inst. 1998;90(17):1284–91.

    Article  CAS  PubMed  Google Scholar 

  50. Gurrieri C, et al. Loss of the tumor suppressor PML in human cancers of multiple histologic origins. J Natl Cancer Inst. 2004;96(4):269–79.

    Article  CAS  PubMed  Google Scholar 

  51. Berger AH, Knudson AG, Pandolfi PP. A continuum model for tumour suppression. Nature. 2011;476(7359):163–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Franke TF, et al. PI3K/Akt and apoptosis: size matters. Oncogene. 2003;22(56):8983–98.

    Article  CAS  PubMed  Google Scholar 

  53. Friedl P, Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell. 2011;147(5):992–1009.

    Article  CAS  PubMed  Google Scholar 

  54. Trimboli AJ, et al. Pten in stromal fibroblasts suppresses mammary epithelial tumours. Nature. 2009;461(7267):1084–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Funamoto S, et al. Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell. 2002;109(5):611–23.

    Article  CAS  PubMed  Google Scholar 

  56. Iijima M, Devreotes P. Tumor suppressor PTEN mediates sensing of chemoattractant gradients. Cell. 2002;109(5):599–610.

    Article  CAS  PubMed  Google Scholar 

  57. Charest PG, Firtel RA. Big roles for small GTPases in the control of directed cell movement. Biochem J. 2007;401(2):377–90.

    Article  CAS  PubMed  Google Scholar 

  58. Li Z, et al. Regulation of PTEN by Rho small GTPases. Nat Cell Biol. 2005;7(4):399–404.

    Article  CAS  PubMed  Google Scholar 

  59. Martin-Belmonte F, et al. PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell. 2007;128(2):383–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tamura M, et al. Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science. 1998;280(5369):1614–7.

    Article  CAS  PubMed  Google Scholar 

  61. Tamura M, et al. Tumor suppressor PTEN inhibition of cell invasion, migration, and growth: differential involvement of focal adhesion kinase and p130Cas. Cancer Res. 1999;59(2):442–9.

    CAS  PubMed  Google Scholar 

  62. Gerber HP, et al. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem. 1998;273(46):30336–43.

    Article  CAS  PubMed  Google Scholar 

  63. Kim I, et al. Angiopoietin-1 regulates endothelial cell survival through the phosphatidylinositol 3'-Kinase/Akt signal transduction pathway. Circ Res. 2000;86(1):24–9.

    Article  CAS  PubMed  Google Scholar 

  64. Huang J, Kontos CD. PTEN modulates vascular endothelial growth factor-mediated signaling and angiogenic effects. J Biol Chem. 2002;277(13):10760–6.

    Article  CAS  PubMed  Google Scholar 

  65. Hamada K, et al. The PTEN/PI3K pathway governs normal vascular development and tumor angiogenesis. Genes Dev. 2005;19(17):2054–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Koul D, et al. MMAC/PTEN tumor suppressor gene regulates vascular endothelial growth factor-mediated angiogenesis in prostate cancer. Int J Oncol. 2002;21(3):469–75.

    CAS  PubMed  Google Scholar 

  67. Majumder PK, et al. mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat Med. 2004;10(6):594–601.

    Article  CAS  PubMed  Google Scholar 

  68. Paik JH, et al. FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell. 2007;128(2):309–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Aranda V, et al. Par6-aPKC uncouples ErbB2 induced disruption of polarized epithelial organization from proliferation control. Nat Cell Biol. 2006;8(11):1235–45.

    Article  CAS  PubMed  Google Scholar 

  70. Liaw D, et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet. 1997;16(1):64–7.

    Article  CAS  PubMed  Google Scholar 

  71. Zbuk KM, Eng C. Cancer phenomics: RET and PTEN as illustrative models. Nat Rev Cancer. 2007;7(1):35–45.

    Article  CAS  PubMed  Google Scholar 

  72. Taylor BS, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18(1):11–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kwon CH, et al. Pten regulates neuronal arborization and social interaction in mice. Neuron. 2006;50(3):377–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhou J, Parada LF. PTEN signaling in autism spectrum disorders. Curr Opin Neurobiol. 2012;22(5):873–9.

    Article  CAS  PubMed  Google Scholar 

  75. Xiong Q, et al. PTEN regulation of local and long-range connections in mouse auditory cortex. J Neurosci. 2012;32(5):1643–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Smalley SL, et al. Autism and tuberous sclerosis. J Autism Dev Disord. 1992;22(3):339–55.

    Article  CAS  PubMed  Google Scholar 

  77. Goffin A, et al. PTEN mutation in a family with Cowden syndrome and autism. Am J Med Genet. 2001;105(6):521–4.

    Article  CAS  PubMed  Google Scholar 

  78. Butler MG, et al. Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations. J Med Genet. 2005;42(4):318–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sahin M. Targeted treatment trials for tuberous sclerosis and autism: no longer a dream. Curr Opin Neurobiol. 2012;22(5):895–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang X, et al. NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN. Cell. 2007;128(1):129–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Trotman LC, et al. Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell. 2007;128(1):141–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Palomero T, et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med. 2007;13(10):1203–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nagata Y, et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell. 2004;6(2):117–27.

    Article  CAS  PubMed  Google Scholar 

  84. Mellinghoff IK, et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med. 2005;353(19):2012–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nowak, D.G., Trotman, L.C. (2016). PTEN. In: Neel, B., Tonks, N. (eds) Protein Tyrosine Phosphatases in Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3649-6_8

Download citation

Publish with us

Policies and ethics