Skip to main content

PTP1B: From Metabolism to Cancer

  • Chapter
  • First Online:
Protein Tyrosine Phosphatases in Cancer

Abstract

More than 25 years after its discovery, the prototypic protein-tyrosine phosphatase, PTP1B, remains at the forefront of research in the phosphatase field. In this chapter, we summarize its role in metabolic diseases that have heavily contributed to the development of targeted inhibitors. It is now clear that metabolism can be an active contributor to tumorigenesis and intriguingly some PTP1B substrates are known to play a central role in these diseases. In cancer, PTP1B acts on an array of cancer-related substrates including a variety of receptor tyrosine kinases. Because the range of PTP1B substrates generate a complex signaling network, ascertaining the net effect of PTP1B activity on tumorigenesis in a particular context proves to be a challenging task. Along this line, we discuss some of the most characterized systems in which PTP1B has been proven to act as an oncogene. Because PTP1B is ubiquitously expressed and acts on numerous substrates across all cell types, it is clear that its gene and protein regulation is critical for its specificity and in maintaining cellular homeostasis. Therefore, we have highlighted some of the important mechanisms of PTP1B regulation in relation to cancer, including its role on endocytosis, that are likely to influence a broader range of oncogenic processes. In conclusion, we present our thoughts on important questions relative to PTP1B as a target in cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tonks NK, Diltz CD, Fischer EH. Characterization of the major protein-tyrosine-phosphatases of human placenta. J Biol Chem. 1988;263(14):6731–7.

    CAS  PubMed  Google Scholar 

  2. Tonks NK, Diltz CD, Fischer EH. Purification of the major protein-tyrosine-phosphatases of human placenta. J Biol Chem. 1988;263(14):6722–30.

    CAS  PubMed  Google Scholar 

  3. Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J, Mustelin T. Protein tyrosine phosphatases in the human genome. Cell. 2004;117(6):699–711.

    Article  CAS  PubMed  Google Scholar 

  4. Elchebly M, Payette P, Michaliszyn E, Cromlish W, Collins S, Loy AL, Normandin D, Cheng A, Himms-Hagen J, Chan CC, Ramachandran C, Gresser MJ, Tremblay ML, Kennedy BP. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science. 1999;283(5407):1544–8.

    Article  CAS  PubMed  Google Scholar 

  5. Julien SG, Dube N, Read M, Penney J, Paquet M, Han Y, Kennedy BP, Muller WJ, Tremblay ML. Protein tyrosine phosphatase 1B deficiency or inhibition delays ErbB2-induced mammary tumorigenesis and protects from lung metastasis. Nat Genet. 2007;39(3):338–46. doi:10.1038/ng1963. ng1963 [pii].

    Article  CAS  PubMed  Google Scholar 

  6. Bentires-Alj M, Neel BG. Protein-tyrosine phosphatase 1B is required for HER2/Neu-induced breast cancer. Cancer Res. 2007;67(6):2420–4. doi:10.1158/0008-5472.CAN-06-4610. 0008-5472.CAN-06-4610 [pii].

    Article  CAS  PubMed  Google Scholar 

  7. Ferrari E, Tinti M, Costa S, Corallino S, Nardozza AP, Chatraryamontri A, Ceol A, Cesareni G, Castagnoli L. Identification of new substrates of the protein-tyrosine phosphatase PTP1B by Bayesian integration of proteome evidence. J Biol Chem. 2011;286(6):4173–85. doi:10.1074/jbc.M110.157420.

    Article  CAS  PubMed  Google Scholar 

  8. Mondol AS, Tonks NK, Kamata T. Nox4 redox regulation of PTP1B contributes to the proliferation and migration of glioblastoma cells by modulating tyrosine phosphorylation of coronin-1C. Free Radic Biol Med. 2013;67C:285–91. doi:10.1016/j.freeradbiomed.2013.11.005.

    Google Scholar 

  9. Bakke J, Bettaieb A, Nagata N, Matsuo K, Haj FG. Regulation of the SNARE-interacting protein Munc18c tyrosine phosphorylation in adipocytes by protein-tyrosine phosphatase 1B. Cell Commun Signal. 2013;11:57. doi:10.1186/1478-811X-11-57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ, Lin JK, Farzadfar F, Khang YH, Stevens GA, Rao M, Ali MK, Riley LM, Robinson CA, Ezzati M. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet. 2011;378(9785):31–40. doi:10.1016/S0140-6736(11)60679-X.

    Article  CAS  PubMed  Google Scholar 

  11. Ji L, Malecki M, Warram JH, Yang Y, Rich SS, Krolewski AS. New susceptibility locus for NIDDM is localized to human chromosome 20q. Diabetes. 1997;46(5):876–81.

    Article  CAS  PubMed  Google Scholar 

  12. Bowden DW, Sale M, Howard TD, Qadri A, Spray BJ, Rothschild CB, Akots G, Rich SS, Freedman BI. Linkage of genetic markers on human chromosomes 20 and 12 to NIDDM in Caucasian Sib pairs with a history of diabetic nephropathy. Diabetes. 1997;46(5):882–6. doi:10.2337/diab.46.5.882.

    Article  CAS  PubMed  Google Scholar 

  13. Ghosh S, Watanabe RM, Hauser ER, Valle T, Magnuson VL, Erdos MR, Langefeld CD, Balow Jr J, Ally DS, Kohtamaki K, Chines P, Birznieks G, Kaleta HS, Musick A, Te C, Tannenbaum J, Eldridge W, Shapiro S, Martin C, Witt A, So A, Chang J, Shurtleff B, Porter R, Kudelko K, Unni A, Segal L, Sharaf R, Blaschak-Harvan J, Eriksson J, Tenkula T, Vidgren G, Ehnholm C, Tuomilehto-Wolf E, Hagopian W, Buchanan TA, Tuomilehto J, Bergman RN, Collins FS, Boehnke M. Type 2 diabetes: evidence for linkage on chromosome 20 in 716 Finnish affected sib pairs. Proc Natl Acad Sci U S A. 1999;96(5):2198–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zouali H, Hani EH, Philippi A, Vionnet N, Beckmann JS, Demenais F, Froguel P. A susceptibility locus for early-onset non-insulin dependent (type 2) diabetes mellitus maps to chromosome 20q, proximal to the phosphoenolpyruvate carboxykinase gene. Hum Mol Genet. 1997;6(9):1401–8.

    Article  CAS  PubMed  Google Scholar 

  15. Klupa T, Malecki MT, Pezzolesi M, Ji L, Curtis S, Langefeld CD, Rich SS, Warram JH, Krolewski AS. Further evidence for a susceptibility locus for type 2 diabetes on chromosome 20q13.1-q13.2. Diabetes. 2000;49(12):2212–6.

    Article  CAS  PubMed  Google Scholar 

  16. Brown-Shimer S, Johnson KA, Lawrence JB, Johnson C, Bruskin A, Green NR, Hill DE. Molecular cloning and chromosome mapping of the human gene encoding protein phosphotyrosyl phosphatase 1B. Proc Natl Acad Sci U S A. 1990;87(13):5148–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Czech MP, Lawrence Jr JC, Lynn WS. Evidence for electron transfer reactions involved in the Cu2+ -dependent thiol activation of fat cell glucose utilization. J Biol Chem. 1974;249(4):1001–6.

    CAS  PubMed  Google Scholar 

  18. Thompson KH, Orvig C. Vanadium in diabetes: 100 years from Phase 0 to Phase I. J Inorg Biochem. 2006;100(12):1925–35. doi:10.1016/j.jinorgbio.2006.08.016.

    Article  CAS  PubMed  Google Scholar 

  19. Shechter Y, Karlish SJ. Insulin-like stimulation of glucose oxidation in rat adipocytes by vanadyl (IV) ions. Nature. 1980;284(5756):556–8.

    Article  CAS  PubMed  Google Scholar 

  20. Chernoff J, Schievella AR, Jost CA, Erikson RL, Neel BG. Cloning of a cDNA for a major human protein-tyrosine-phosphatase. Proc Natl Acad Sci U S A. 1990;87(7):2735–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cicirelli MF, Tonks NK, Diltz CD, Weiel JE, Fischer EH, Krebs EG. Microinjection of a protein-tyrosine-phosphatase inhibits insulin action in Xenopus oocytes. Proc Natl Acad Sci U S A. 1990;87(14):5514–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kenner KA, Anyanwu E, Olefsky JM, Kusari J. Protein-tyrosine phosphatase 1B is a negative regulator of insulin- and insulin-like growth factor-I-stimulated signaling. J Biol Chem. 1996;271(33):19810–6.

    Article  CAS  PubMed  Google Scholar 

  23. Seely BL, Staubs PA, Reichart DR, Berhanu P, Milarski KL, Saltiel AR, Kusari J, Olefsky JM. Protein tyrosine phosphatase 1B interacts with the activated insulin receptor. Diabetes. 1996;45(10):1379–85.

    Article  CAS  PubMed  Google Scholar 

  24. Ahmad F, Goldstein BJ. Increased abundance of specific skeletal muscle protein-tyrosine phosphatases in a genetic model of insulin-resistant obesity and diabetes mellitus. Metabolism. 1995;44(9):1175–84.

    Article  CAS  PubMed  Google Scholar 

  25. Ahmad F, Goldstein BJ. Alterations in specific protein-tyrosine phosphatases accompany insulin resistance of streptozotocin diabetes. Am J Physiol. 1995;268(5 Pt 1):E932–40.

    CAS  PubMed  Google Scholar 

  26. Bandyopadhyay D, Kusari A, Kenner KA, Liu F, Chernoff J, Gustafson TA, Kusari J. Protein-tyrosine phosphatase 1B complexes with the insulin receptor in vivo and is tyrosine-phosphorylated in the presence of insulin. J Biol Chem. 1997;272(3):1639–45. doi:10.1074/jbc.272.3.1639.

    Article  CAS  PubMed  Google Scholar 

  27. Klaman LD, Boss O, Peroni OD, Kim JK, Martino JL, Zabolotny JM, Moghal N, Lubkin M, Kim YB, Sharpe AH, Stricker-Krongrad A, Shulman GI, Neel BG, Kahn BB. Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol Cell Biol. 2000;20(15):5479–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee JH, Reed DR, Li WD, Xu W, Joo EJ, Kilker RL, Nanthakumar E, North M, Sakul H, Bell C, Price RA. Genome scan for human obesity and linkage to markers in 20q13. Am J Hum Genet. 1999;64(1):196–209. doi:10.1086/302195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cheng A, Uetani N, Simoncic PD, Chaubey VP, Lee-Loy A, McGlade CJ, Kennedy BP, Tremblay ML. Attenuation of leptin action and regulation of obesity by protein tyrosine phosphatase 1B. Dev Cell. 2002;2(4):497–503.

    Article  CAS  PubMed  Google Scholar 

  30. Zabolotny JM, Bence-Hanulec KK, Stricker-Krongrad A, Haj F, Wang Y, Minokoshi Y, Kim YB, Elmquist JK, Tartaglia LA, Kahn BB, Neel BG. PTP1B regulates leptin signal transduction in vivo. Dev Cell. 2002;2(4):489–95.

    Article  CAS  PubMed  Google Scholar 

  31. Myers MP, Andersen JN, Cheng A, Tremblay ML, Horvath CM, Parisien JP, Salmeen A, Barford D, Tonks NK. TYK2 and JAK2 are substrates of protein-tyrosine phosphatase 1B. J Biol Chem. 2001;276(51):47771–4. doi:10.1074/jbc.C100583200.

    CAS  PubMed  Google Scholar 

  32. Bence KK, Delibegovic M, Xue B, Gorgun CZ, Hotamisligil GS, Neel BG, Kahn BB. Neuronal PTP1B regulates body weight, adiposity and leptin action. Nat Med. 2006;12(8):917–24. doi:10.1038/nm1435.

    Article  CAS  PubMed  Google Scholar 

  33. Banno R, Zimmer D, De Jonghe BC, Atienza M, Rak K, Yang W, Bence KK. PTP1B and SHP2 in POMC neurons reciprocally regulate energy balance in mice. J Clin Invest. 2010;120(3):720–34. doi:10.1172/JCI39620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. White CL, Whittington A, Barnes MJ, Wang Z, Bray GA, Morrison CD. HF diets increase hypothalamic PTP1B and induce leptin resistance through both leptin-dependent and -independent mechanisms. Am J Physiol Endocrinol Metab. 2009;296(2):E291–9. doi:10.1152/ajpendo.90513.2008.

    Article  CAS  PubMed  Google Scholar 

  35. Delibegovic M, Zimmer D, Kauffman C, Rak K, Hong EG, Cho YR, Kim JK, Kahn BB, Neel BG, Bence KK. Liver-specific deletion of protein-tyrosine phosphatase 1B (PTP1B) improves metabolic syndrome and attenuates diet-induced endoplasmic reticulum stress. Diabetes. 2009;58(3):590–9. doi:10.2337/db08-0913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Owen C, Lees EK, Grant L, Zimmer DJ, Mody N, Bence KK, Delibegovic M. Inducible liver-specific knockdown of protein tyrosine phosphatase 1B improves glucose and lipid homeostasis in adult mice. Diabetologia. 2013;56(10):2286–96. doi:10.1007/s00125-013-2992-z.

    Article  CAS  PubMed  Google Scholar 

  37. Delibegovic M, Bence KK, Mody N, Hong EG, Ko HJ, Kim JK, Kahn BB, Neel BG. Improved glucose homeostasis in mice with muscle-specific deletion of protein-tyrosine phosphatase 1B. Mol Cell Biol. 2007;27(21):7727–34. doi:10.1128/MCB.00959-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA, Pollak M, Regensteiner JG, Yee D. Diabetes and cancer: a consensus report. CA Cancer J Clin. 2010;60(4):207–21. doi:10.3322/caac.20078.

    Article  PubMed  Google Scholar 

  39. Bowker SL, Yasui Y, Veugelers P, Johnson JA. Glucose-lowering agents and cancer mortality rates in type 2 diabetes: assessing effects of time-varying exposure. Diabetologia. 2010;53(8):1631–7. doi:10.1007/s00125-010-1750-8.

    Article  CAS  PubMed  Google Scholar 

  40. Giovannucci E, Pollak M, Liu Y, Platz EA, Majeed N, Rimm EB, Willett WC. Nutritional predictors of insulin-like growth factor I and their relationships to cancer in men. Cancer Epidemiol Biomarkers Prevention. 2003;12(2):84–9.

    CAS  Google Scholar 

  41. Clayton PE, Banerjee I, Murray PG, Renehan AG. Growth hormone, the insulin-like growth factor axis, insulin and cancer risk. Nat Rev Endocrinol. 2011;7(1):11–24. doi:10.1038/nrendo.2010.171.

    Article  CAS  PubMed  Google Scholar 

  42. Gu F, Dube N, Kim JW, Cheng A, Ibarra-Sanchez Mde J, Tremblay ML, Boisclair YR. Protein tyrosine phosphatase 1B attenuates growth hormone-mediated JAK2-STAT signaling. Mol Cell Biol. 2003;23(11):3753–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Buckley DA, Cheng A, Kiely PA, Tremblay ML, O’Connor R. Regulation of insulin-like growth factor type I (IGF-I) receptor kinase activity by protein tyrosine phosphatase 1B (PTP-1B) and enhanced IGF-I-mediated suppression of apoptosis and motility in PTP-1B-deficient fibroblasts. Mol Cell Biol. 2002;22(7):1998–2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fan G, Lin G, Lucito R, Tonks NK. Protein-tyrosine phosphatase 1B antagonized signaling by insulin-like growth factor-1 receptor and kinase BRK/PTK6 in ovarian cancer cells. J Biol Chem. 2013;288(34):24923–34. doi:10.1074/jbc.M113.482737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Collett MS, Erikson RL. Protein kinase activity associated with the avian sarcoma virus src gene product. Proc Natl Acad Sci U S A. 1978;75(4):2021–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Levinson AD, Oppermann H, Levintow L, Varmus HE, Bishop JM. Evidence that the transforming gene of avian sarcoma virus encodes a protein kinase associated with a phosphoprotein. Cell. 1978;15(2):561–72.

    Article  CAS  PubMed  Google Scholar 

  47. Hunter T, Sefton BM. Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci U S A. 1980;77(3):1311–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010;141(7):1117–34. doi:10.1016/j.cell.2010.06.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Woodford-Thomas TA, Rhodes JD, Dixon JE. Expression of a protein tyrosine phosphatase in normal and v-src-transformed mouse 3T3 fibroblasts. J Cell Biol. 1992;117(2):401–14.

    Article  CAS  PubMed  Google Scholar 

  50. Brown-Shimer S, Johnson KA, Hill DE, Bruskin AM. Effect of protein tyrosine phosphatase 1B expression on transformation by the human neu oncogene. Cancer Res. 1992;52(2):478–82.

    CAS  PubMed  Google Scholar 

  51. LaMontagne Jr KR, Hannon G, Tonks NK. Protein tyrosine phosphatase PTP1B suppresses p210 bcr-abl-induced transformation of rat-1 fibroblasts and promotes differentiation of K562 cells. Proc Natl Acad Sci U S A. 1998;95(24):14094–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. LaMontagne Jr KR, Flint AJ, Franza Jr BR, Pandergast AM, Tonks NK. Protein tyrosine phosphatase 1B antagonizes signalling by oncoprotein tyrosine kinase p210 bcr-abl in vivo. Mol Cell Biol. 1998;18(5):2965–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sergina NV, Moasser MM. The HER family and cancer: emerging molecular mechanisms and therapeutic targets. Trends Mol Med. 2007;13(12):527–34. doi:10.1016/j.molmed.2007.10.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Milarski KL, Zhu G, Pearl CG, McNamara DJ, Dobrusin EM, MacLean D, Thieme-Sefler A, Zhang ZY, Sawyer T, Decker SJ, et al. Sequence specificity in recognition of the epidermal growth factor receptor by protein tyrosine phosphatase 1B. J Biol Chem. 1993;268(31):23634–9.

    CAS  PubMed  Google Scholar 

  55. Flint AJ, Tiganis T, Barford D, Tonks NK. Development of “substrate-trapping” mutants to identify physiological substrates of protein tyrosine phosphatases. Proc Natl Acad Sci U S A. 1997;94(5):1680–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mertins P, Eberl HC, Renkawitz J, Olsen JV, Tremblay ML, Mann M, Ullrich A, Daub H. Investigation of protein-tyrosine phosphatase 1B function by quantitative proteomics. Mol Cell Proteomics. 2008;7(9):1763–77. doi:10.1074/mcp.M800196-MCP200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Haj FG, Markova B, Klaman LD, Bohmer FD, Neel BG. Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatase-1B. J Biol Chem. 2003;278(2):739–44. doi:10.1074/jbc.M210194200.

    Article  CAS  PubMed  Google Scholar 

  58. Cooper CS, Park M, Blair DG, Tainsky MA, Huebner K, Croce CM, Vande Woude GF. Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature. 1984;311(5981):29–33.

    Article  CAS  PubMed  Google Scholar 

  59. Gherardi E, Birchmeier W, Birchmeier C, Vande Woude G. Targeting MET in cancer: rationale and progress. Nat Rev Cancer. 2012;12(2):89–103. doi:10.1038/nrc3205.

    Article  CAS  PubMed  Google Scholar 

  60. Sangwan V, Paliouras GN, Abella JV, Dube N, Monast A, Tremblay ML, Park M. Regulation of the Met receptor-tyrosine kinase by the protein-tyrosine phosphatase 1B and T-cell phosphatase. J Biol Chem. 2008;283(49):34374–83. doi:10.1074/jbc.M805916200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Suwaki N, Vanhecke E, Atkins KM, Graf M, Swabey K, Huang P, Schraml P, Moch H, Cassidy AM, Brewer D, Al-Lazikani B, Workman P, De-Bono J, Kaye SB, Larkin J, Gore ME, Sawyers CL, Nelson P, Beer TM, Geng H, Gao L, Qian DZ, Alumkal JJ, Thomas G, Thomas GV. A HIF-regulated VHL-PTP1B-Src signaling axis identifies a therapeutic target in renal cell carcinoma. Sci Transl Med. 2011;3(85):85ra47. doi:10.1126/scitranslmed.3002004

    Google Scholar 

  62. Lanahan AA, Hermans K, Claes F, Kerley-Hamilton JS, Zhuang ZW, Giordano FJ, Carmeliet P, Simons M. VEGF receptor 2 endocytic trafficking regulates arterial morphogenesis. Dev Cell. 2010;18(5):713–24. doi:10.1016/j.devcel.2010.02.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nakamura Y, Patrushev N, Inomata H, Mehta D, Urao N, Kim HW, Razvi M, Kini V, Mahadev K, Goldstein BJ, McKinney R, Fukai T, Ushio-Fukai M. Role of protein tyrosine phosphatase 1B in vascular endothelial growth factor signaling and cell-cell adhesions in endothelial cells. Circ Res. 2008;102(10):1182–91. doi:10.1161/CIRCRESAHA.107.167080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lanahan AA, Lech D, Dubrac A, Zhang J, Zhuang ZW, Eichmann A, Simons M. PTP1b is a physiologic regulator of vascular endothelial growth factor signaling in endothelial cells. Circulation. 2014;130(11):902–9. doi:10.1161/CIRCULATIONAHA.114.009683.

    Article  CAS  PubMed  Google Scholar 

  65. Liu F, Chernoff J. Protein tyrosine phosphatase 1B interacts with and is tyrosine phosphorylated by the epidermal growth factor receptor. Biochem J. 1997;327(Pt 1):139–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lu KV, Chang JP, Parachoniak CA, Pandika MM, Aghi MK, Meyronet D, Isachenko N, Fouse SD, Phillips JJ, Cheresh DA, Park M, Bergers G. VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. Cancer Cell. 2012;22(1):21–35. doi:10.1016/j.ccr.2012.05.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Warabi M, Nemoto T, Ohashi K, Kitagawa M, Hirokawa K. Expression of protein tyrosine phosphatases and its significance in esophageal cancer. Exp Mol Pathol. 2000;68(3):187–95. 10.1006/exmp.2000.2303. S0014-4800(00)92303-7 [pii].

    Article  CAS  PubMed  Google Scholar 

  68. Mahlamaki EH, Barlund M, Tanner M, Gorunova L, Hoglund M, Karhu R, Kallioniemi A. Frequent amplification of 8q24, 11q, 17q, and 20q-specific genes in pancreatic cancer. Genes Chromosomes Cancer. 2002;35(4):353–8. doi:10.1002/gcc.10122.

    Article  CAS  PubMed  Google Scholar 

  69. Yang SH, Seo MY, Jeong HJ, Jeung HC, Shin J, Kim SC, Noh SH, Chung HC, Rha SY. Gene copy number change events at chromosome 20 and their association with recurrence in gastric cancer patients. Clin Cancer Res. 2005;11(2 pt 1):612–20.

    CAS  PubMed  Google Scholar 

  70. Tanner MM, Tirkkonen M, Kallioniemi A, Isola J, Kuukasjarvi T, Collins C, Kowbel D, Guan XY, Trent J, Gray JW, Meltzer P, Kallioniemi OP. Independent amplification and frequent co-amplification of three nonsyntenic regions on the long arm of chromosome 20 in human breast cancer. Cancer Res. 1996;56(15):3441–5.

    CAS  PubMed  Google Scholar 

  71. Bar-Shira A, Pinthus JH, Rozovsky U, Goldstein M, Sellers WR, Yaron Y, Eshhar Z, Orr-Urtreger A. Multiple genes in human 20q13 chromosomal region are involved in an advanced prostate cancer xenograft. Cancer Res. 2002;62(23):6803–7.

    CAS  PubMed  Google Scholar 

  72. Tabach Y, Kogan-Sakin I, Buganim Y, Solomon H, Goldfinger N, Hovland R, Ke XS, Oyan AM, Kalland KH, Rotter V, Domany E. Amplification of the 20q chromosomal arm occurs early in tumorigenic transformation and may initiate cancer. PLoS One. 2011;6(1), e14632. doi:10.1371/journal.pone.0014632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lessard L, Labbé DP, Deblois G, Bégin LR, Hardy S, Mes-Masson AM, Saad F, Trotman LC, Giguère V, Tremblay ML. PTP1B is an androgen receptor-regulated phosphatase that promotes the progression of prostate cancer. Cancer Res. 2012;72(6):1529–37. doi:10.1158/0008-5472.CAN-11-2602.

    Article  CAS  PubMed  Google Scholar 

  74. Labbé DP, Nowak DG, Deblois G, Lessard L, Giguère V, Trotman LC, Tremblay ML. Prostate cancer genetic-susceptibility locus on chromosome 20q13 is amplified and coupled to androgen receptor-regulation in metastatic tumors. Mol Cancer Res. 2014;12(2):184–9. doi:10.1158/1541-7786.MCR-13-0477.

    Article  PubMed  CAS  Google Scholar 

  75. Wiener JR, Kerns BJ, Harvey EL, Conaway MR, Iglehart JD, Berchuck A, Bast Jr RC. Overexpression of the protein tyrosine phosphatase PTP1B in human breast cancer: association with p185c-erbB-2 protein expression. J Natl Cancer Inst. 1994;86(5):372–8.

    Article  CAS  PubMed  Google Scholar 

  76. Wiener JR, Hurteau JA, Kerns BJ, Whitaker RS, Conaway MR, Berchuck A, Bast Jr RC. Overexpression of the tyrosine phosphatase PTP1B is associated with human ovarian carcinomas. Am J Obstet Gynecol. 1994;170(4):1177–83. doi:S0002937894005740 [pii].

    Article  CAS  PubMed  Google Scholar 

  77. Wang J, Liu B, Chen X, Su L, Wu P, Wu J, Zhu Z. PTP1B expression contributes to gastric cancer progression. Med Oncol. 2011. doi:10.1007/s12032-011-9911-2.

    Google Scholar 

  78. Zheng LY, Zhou DX, Lu J, Zhang WJ, Zou DJ. Down-regulated expression of the protein-tyrosine phosphatase 1B (PTP1B) is associated with aggressive clinicopathologic features and poor prognosis in hepatocellular carcinoma. Biochem Biophys Res Commun. 2012;420(3):680–4. doi:10.1016/j.bbrc.2012.03.066.

    Article  CAS  PubMed  Google Scholar 

  79. Brown MT, Cooper JA. Regulation, substrates and functions of src. Biochim Biophys Acta. 1996;1287(2-3):121–49.

    PubMed  Google Scholar 

  80. Roskoski Jr R. Src kinase regulation by phosphorylation and dephosphorylation. Biochem Biophys Res Commun. 2005;331(1):1–14. doi:10.1016/j.bbrc.2005.03.012.

    Article  CAS  PubMed  Google Scholar 

  81. Martin GS. The hunting of the Src. Nat Rev Mol Cell Biol. 2001;2(6):467–75. doi:10.1038/35073094.

    Article  CAS  PubMed  Google Scholar 

  82. Arregui CO, Balsamo J, Lilien J. Impaired integrin-mediated adhesion and signaling in fibroblasts expressing a dominant-negative mutant PTP1B. J Cell Biol. 1998;143(3):861–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bjorge JD, Pang A, Fujita DJ. Identification of protein-tyrosine phosphatase 1B as the major tyrosine phosphatase activity capable of dephosphorylating and activating c-Src in several human breast cancer cell lines. J Biol Chem. 2000;275(52):41439–46. doi:10.1074/jbc.M004852200.

    Article  CAS  PubMed  Google Scholar 

  84. Dadke S, Chernoff J. Interaction of protein tyrosine phosphatase (PTP) 1B with its substrates is influenced by two distinct binding domains. Biochem J. 2002;364(Pt 2):377–83. doi:10.1042/BJ20011372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhu S, Bjorge JD, Fujita DJ. PTP1B contributes to the oncogenic properties of colon cancer cells through Src activation. Cancer Res. 2007;67(21):10129–37.

    Article  CAS  PubMed  Google Scholar 

  86. Cortesio CL, Chan KT, Perrin BJ, Burton NO, Zhang S, Zhang ZY, Huttenlocher A. Calpain 2 and PTP1B function in a novel pathway with Src to regulate invadopodia dynamics and breast cancer cell invasion. J Cell Biol. 2008;180(5):957–71. doi:10.1083/jcb.200708048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Monteleone MC, Gonzalez Wusener AE, Burdisso JE, Conde C, Caceres A, Arregui CO. ER-bound protein tyrosine phosphatase PTP1B interacts with Src at the plasma membrane/substrate interface. PLoS One. 2012;7(6), e38948. doi:10.1371/journal.pone.0038948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dube N, Cheng A, Tremblay ML. The role of protein tyrosine phosphatase 1B in Ras signaling. Proc Natl Acad Sci U S A. 2004;101(7):1834–9. doi:10.1073/pnas.0304242101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Klinghoffer RA, Sachsenmaier C, Cooper JA, Soriano P. Src family kinases are required for integrin but not PDGFR signal transduction. EMBO J. 1999;18(9):2459–71. doi:10.1093/emboj/18.9.2459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Broome MA, Courtneidge SA. No requirement for src family kinases for PDGF signaling in fibroblasts expressing SV40 large T antigen. Oncogene. 2000;19(24):2867–9. doi:10.1038/sj.onc.1203608.

    Article  CAS  PubMed  Google Scholar 

  91. Schubbert S, Shannon K, Bollag G. Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer. 2007;7(4):295–308. doi:10.1038/nrc2109.

    Article  CAS  PubMed  Google Scholar 

  92. Hynes NE, MacDonald G. ErbB receptors and signaling pathways in cancer. Curr Opin Cell Biol. 2009;21(2):177–84. doi:S0955-0674(09)00014-3 [pii] 10.1016/j.ceb.2008.12.010.

    Article  CAS  PubMed  Google Scholar 

  93. Balavenkatraman KK, Aceto N, Britschgi A, Mueller U, Bence KK, Neel B, Bentires-Alj M. Epithelial protein-tyrosine phosphatase 1B (PTP1B) contributes to the induction of mammary tumors by HER2/Neu but is not essential for tumor maintenance. Mol Cancer Res. 2011. doi:10.1158/1541-7786.MCR-11-0198.

    PubMed  PubMed Central  Google Scholar 

  94. Johnson KJ, Peck AR, Liu C, Tran TH, Utama FE, Sjolund AB, Schaber JD, Witkiewicz AK, Rui H. PTP1B suppresses prolactin activation of Stat5 in breast cancer cells. Am J Pathol. 2010;177(6):2971–83. doi:10.2353/ajpath.2010.090399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Soysal S, Obermann EC, Gao F, Oertli D, Gillanders WE, Viehl CT, Muenst S. PTP1B expression is an independent positive prognostic factor in human breast cancer. Breast Cancer Res Treat. 2013;137(2):637–44. doi:10.1007/s10549-012-2373-1.

    Article  CAS  PubMed  Google Scholar 

  96. Li X, Wilmanns M, Thornton J, Kohn M. Elucidating human phosphatase-substrate networks. Sci Signal. 2013;6(275):10. doi:10.1126/scisignal.2003203.

    Article  CAS  Google Scholar 

  97. Damber JE, Aus G. Prostate cancer. Lancet. 2008;371(9625):1710–21. doi:10.1016/S0140-6736(08)60729-1.

    Article  PubMed  Google Scholar 

  98. Shen MM, Abate-Shen C. Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev. 2010;24(18):1967–2000. doi:10.1101/gad.1965810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Fukada T, Tonks NK. The reciprocal role of Egr-1 and Sp family proteins in regulation of the PTP1B promoter in response to the p210 Bcr-Abl oncoprotein-tyrosine kinase. J Biol Chem. 2001;276(27):25512–9. doi:10.1074/jbc.M101354200.

    Article  CAS  PubMed  Google Scholar 

  100. Li L, He S, Sun JM, Davie JR. Gene regulation by Sp1 and Sp3. Biochem Cell Biol. 2004;82(4):460–71. doi:10.1139/o04-045.

    Article  CAS  PubMed  Google Scholar 

  101. Lee C, Dhillon J, Wang MY, Gao Y, Hu K, Park E, Astanehe A, Hung MC, Eirew P, Eaves CJ, Dunn SE. Targeting YB-1 in HER-2 overexpressing breast cancer cells induces apoptosis via the mTOR/STAT3 pathway and suppresses tumor growth in mice. Cancer Res. 2008;68(21):8661–6. doi:10.1158/0008-5472.CAN-08-1082.

    Article  CAS  PubMed  Google Scholar 

  102. Habibi G, Leung S, Law JH, Gelmon K, Masoudi H, Turbin D, Pollak M, Nielsen TO, Huntsman D, Dunn SE. Redefining prognostic factors for breast cancer: YB-1 is a stronger predictor of relapse and disease-specific survival than estrogen receptor or HER-2 across all tumor subtypes. Breast Cancer Res. 2008;10(5):R86. doi:10.1186/bcr2156.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Dhillon J, Astanehe A, Lee C, Fotovati A, Hu K, Dunn SE. The expression of activated Y-box binding protein-1 serine 102 mediates trastuzumab resistance in breast cancer cells by increasing CD44+ cells. Oncogene. 2010;29(47):6294–300. doi:10.1038/onc.2010.365.

    Article  CAS  PubMed  Google Scholar 

  104. Fukada T, Tonks NK. Identification of YB-1 as a regulator of PTP1B expression: implications for regulation of insulin and cytokine signaling. EMBO J. 2003;22(3):479–93. doi:10.1093/emboj/cdg067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zabolotny JM, Kim YB, Welsh LA, Kershaw EE, Neel BG, Kahn BB. Protein-tyrosine phosphatase 1B expression is induced by inflammation in vivo. J Biol Chem. 2008;283(21):14230–41. doi:10.1074/jbc.M800061200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Baron V, Adamson ED, Calogero A, Ragona G, Mercola D. The transcription factor Egr1 is a direct regulator of multiple tumor suppressors including TGFbeta1, PTEN, p53, and fibronectin. Cancer Gene Ther. 2006;13(2):115–24. doi:10.1038/sj.cgt.7700896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sun C, Zhang F, Ge X, Yan T, Chen X, Shi X, Zhai Q. SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab. 2007;6(4):307–19. doi:10.1016/j.cmet.2007.08.014.

    Article  CAS  PubMed  Google Scholar 

  108. Cheng A, Bal GS, Kennedy BP, Tremblay ML. Attenuation of adhesion-dependent signaling and cell spreading in transformed fibroblasts lacking protein tyrosine phosphatase-1B. J Biol Chem. 2001;276(28):25848–55. doi:10.1074/jbc.M009734200.

    Article  CAS  PubMed  Google Scholar 

  109. Arias-Romero LE, Saha S, Villamar-Cruz O, Yip SC, Ethier SP, Zhang ZY, Chernoff J. Activation of Src by protein tyrosine phosphatase 1B Is required for ErbB2 transformation of human breast epithelial cells. Cancer Res. 2009;69(11):4582–8. doi:0008-5472.CAN-08-4001 [pii] 10.1158/0008-5472.CAN-08-4001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lu X, Malumbres R, Shields B, Jiang X, Sarosiek KA, Natkunam Y, Tiganis T, Lossos IS. PTP1B is a negative regulator of interleukin 4-induced STAT6 signaling. Blood. 2008;112(10):4098–108. doi:10.1182/blood-2008-03-148726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hutchins AP, Diez D, Takahashi Y, Ahmad S, Jauch R, Tremblay ML, Miranda-Saavedra D. Distinct transcriptional regulatory modules underlie STAT3’s cell type-independent and cell type-specific functions. Nucleic Acids Res. 2013;41(4):2155–70. doi:10.1093/nar/gks1300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ravichandran LV, Chen H, Li Y, Quon MJ. Phosphorylation of PTP1B at Ser(50) by Akt impairs its ability to dephosphorylate the insulin receptor. Mol Endocrinol. 2001;15(10):1768–80.

    Article  CAS  PubMed  Google Scholar 

  113. Frangioni JV, Oda A, Smith M, Salzman EW, Neel BG. Calpain-catalyzed cleavage and subcellular relocation of protein phosphotyrosine phosphatase 1B (PTP-1B) in human platelets. EMBO J. 1993;12(12):4843–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Kuchay SM, Kim N, Grunz EA, Fay WP, Chishti AH. Double knockouts reveal that protein tyrosine phosphatase 1B is a physiological target of calpain-1 in platelets. Mol Cell Biol. 2007;27(17):6038–52. doi:10.1128/MCB.00522-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gomez MA, Contreras I, Halle M, Tremblay ML, McMaster RW, Olivier M. Leishmania GP63 alters host signaling through cleavage-activated protein tyrosine phosphatases. Sci Signal. 2009;2(90):58.

    Article  Google Scholar 

  116. Dadke S, Cotteret S, Yip SC, Jaffer ZM, Haj F, Ivanov A, Rauscher 3rd F, Shuai K, Ng T, Neel BG, Chernoff J. Regulation of protein tyrosine phosphatase 1B by sumoylation. Nat Cell Biol. 2007;9(1):80–5. doi:10.1038/ncb1522.

    Article  CAS  PubMed  Google Scholar 

  117. Hussain SP, Hofseth LJ, Harris CC. Radical causes of cancer. Nat Rev Cancer. 2003;3(4):276–85. doi:10.1038/nrc1046.

    Article  CAS  PubMed  Google Scholar 

  118. Storz P, Liou GY. Reactive oxygen species in cancer. Free Radic Res. 2010;44(5):479–96. doi:10.3109/10715761003667554.

    Article  PubMed  Google Scholar 

  119. Chiarugi P, Giannoni E, Taddei ML. Src redox regulation: again in the front line. Free Radic Bio Med. 2010;49(4):516–27. doi:10.1016/j.freeradbiomed.2010.04.025.

    Article  CAS  Google Scholar 

  120. Li N, Karin M. Is NF-kappaB the sensor of oxidative stress? FASEB J. 1999;13(10):1137–43.

    CAS  PubMed  Google Scholar 

  121. Salmeen A, Andersen JN, Myers MP, Meng TC, Hinks JA, Tonks NK, Barford D. Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature. 2003;423(6941):769–73. doi:10.1038/nature01680.

    Article  CAS  PubMed  Google Scholar 

  122. Salmeen A, Barford D. Functions and mechanisms of redox regulation of cysteine-based phosphatases. Antioxid Redox Sign. 2005;7(5-6):560–77. doi:10.1089/ars.2005.7.560.

    Article  CAS  Google Scholar 

  123. Yang J, Groen A, Lemeer S, Jans A, Slijper M, Roe SM, den Hertog J, Barford D. Reversible oxidation of the membrane distal domain of receptor PTPalpha is mediated by a cyclic sulfenamide. Biochemistry. 2007;46(3):709–19. doi:10.1021/bi061546m.

    Article  CAS  PubMed  Google Scholar 

  124. Karisch R, Fernandez M, Taylor P, Virtanen C, St-Germain JR, Jin LL, Harris IS, Mori J, Mak TW, Senis YA, Ostman A, Moran MF, Neel BG. Global proteomic assessment of the classical protein-tyrosine phosphatome and “Redoxome”. Cell. 2011;146(5):826–40. doi:10.1016/j.cell.2011.07.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Dagnell M, Frijhoff J, Pader I, Augsten M, Boivin B, Xu J, Mandal PK, Tonks NK, Hellberg C, Conrad M, Arner ES, Ostman A. Selective activation of oxidized PTP1B by the thioredoxin system modulates PDGF-beta receptor tyrosine kinase signaling. Proc Natl Acad Sci U S A. 2013;110(33):13398–403. doi:10.1073/pnas.1302891110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yang M, Haase AD, Huang FK, Coulis G, Rivera KD, Dickinson BC, Chang CJ, Pappin DJ, Neubert TA, Hannon GJ, Boivin B, Tonks NK. Dephosphorylation of tyrosine 393 in argonaute 2 by protein tyrosine phosphatase 1B regulates gene silencing in oncogenic RAS-induced senescence. Mol Cell. 2014;55(5):782–90. doi:10.1016/j.molcel.2014.07.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Gulati P, Markova B, Gottlicher M, Bohmer FD, Herrlich PA. UVA inactivates protein tyrosine phosphatases by calpain-mediated degradation. EMBO Rep. 2004;5(8):812–7. doi:10.1038/sj.embor.7400190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Haque A, Andersen JN, Salmeen A, Barford D, Tonks NK. Conformation-sensing antibodies stabilize the oxidized form of PTP1B and inhibit its phosphatase activity. Cell. 2011;147(1):185–98. doi:10.1016/j.cell.2011.08.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Frangioni JV, Beahm PH, Shifrin V, Jost CA, Neel BG. The nontransmembrane tyrosine phosphatase PTP-1B localizes to the endoplasmic reticulum via its 35 amino acid C-terminal sequence. Cell. 1992;68(3):545–60.

    Article  CAS  PubMed  Google Scholar 

  130. Haj FG, Sabet O, Kinkhabwala A, Wimmer-Kleikamp S, Roukos V, Han HM, Grabenbauer M, Bierbaum M, Antony C, Neel BG, Bastiaens PI. Regulation of signaling at regions of cell-cell contact by endoplasmic reticulum-bound protein-tyrosine phosphatase 1B. PLoS One. 2012;7(5), e36633. doi:10.1371/journal.pone.0036633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Anderie I, Schulz I, Schmid A. Direct interaction between ER membrane-bound PTP1B and its plasma membrane-anchored targets. Cell Signal. 2007;19(3):582–92. doi:10.1016/j.cellsig.2006.08.007.

    Article  CAS  PubMed  Google Scholar 

  132. Haj FG, Verveer PJ, Squire A, Neel BG, Bastiaens PI. Imaging sites of receptor dephosphorylation by PTP1B on the surface of the endoplasmic reticulum. Science. 2002;295(5560):1708–11. doi:10.1126/science.1067566.

    Article  CAS  PubMed  Google Scholar 

  133. Choudhary C, Olsen JV, Brandts C, Cox J, Reddy PN, Bohmer FD, Gerke V, Schmidt-Arras DE, Berdel WE, Muller-Tidow C, Mann M, Serve H. Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes. Mol Cell. 2009;36(2):326–39. doi:10.1016/j.molcel.2009.09.019.

    Article  CAS  PubMed  Google Scholar 

  134. Boute N, Boubekeur S, Lacasa D, Issad T. Dynamics of the interaction between the insulin receptor and protein tyrosine-phosphatase 1B in living cells. EMBO Rep. 2003;4(3):313–9. doi:10.1038/sj.embor.embor767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Romsicki Y, Reece M, Gauthier JY, Asante-Appiah E, Kennedy BP. Protein tyrosine phosphatase-1B dephosphorylation of the insulin receptor occurs in a perinuclear endosome compartment in human embryonic kidney 293 cells. J Biol Chem. 2004;279(13):12868–75. doi:10.1074/jbc.M309600200.

    Article  CAS  PubMed  Google Scholar 

  136. Cromlish WA, Tang M, Kyskan R, Tran L, Kennedy BP. PTP1B-dependent insulin receptor phosphorylation/residency in the endocytic recycling compartment of CHO-IR cells. Biochem Pharmacol. 2006;72(10):1279–92. doi:10.1016/j.bcp.2006.07.038.

    Article  CAS  PubMed  Google Scholar 

  137. Stuible M, Dube N, Tremblay ML. PTP1B regulates cortactin tyrosine phosphorylation by targeting Tyr446. J Biol Chem. 2008;283(23):15740–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Radhakrishnan VM, Kojs P, Young G, Ramalingam R, Jagadish B, Mash EA, Martinez JD, Ghishan FK, Kiela PR. PTyr(421) cortactin is overexpressed in colon cancer and is dephosphorylated by curcumin: involvement of Non-receptor type 1 protein tyrosine phosphatase (PTPN1). PLoS One. 2014;9(1), e85796. doi:10.1371/journal.pone.0085796.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Ormandy CJ, Musgrove EA, Hui R, Daly RJ, Sutherland RL. Cyclin D1, EMS1 and 11q13 amplification in breast cancer. Breast Cancer Res Treat. 2003;78(3):323–35.

    Article  CAS  PubMed  Google Scholar 

  140. Schuuring E. The involvement of the chromosome 11q13 region in human malignancies: cyclin D1 and EMS1 are two new candidate oncogenes—a review. Gene. 1995;159(1):83–96.

    Article  CAS  PubMed  Google Scholar 

  141. Sangwan V, Abella J, Lai A, Bertos N, Stuible M, Tremblay ML, Park M. Protein-tyrosine phosphatase 1B modulates early endosome fusion and trafficking of Met and epidermal growth factor receptors. J Biol Chem. 2011;286(52):45000–13. doi:10.1074/jbc.M111.270934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Sorkin A, von Zastrow M. Endocytosis and signalling: intertwining molecular networks. Nat Rev Mol Cell Biol. 2009;10(9):609–22. doi:10.1038/nrm2748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Eden ER, White IJ, Tsapara A, Futter CE. Membrane contacts between endosomes and ER provide sites for PTP1B-epidermal growth factor receptor interaction. Nat Cell Biol. 2010;12(3):267–72. doi:10.1038/ncb2026.

    CAS  PubMed  Google Scholar 

  144. Stuible M, Abella JV, Feldhammer M, Nossov M, Sangwan V, Blagoev B, Park M, Tremblay ML. PTP1B targets the endosomal sorting machinery: dephosphorylation of regulatory sites on the endosomal sorting complex required for transport component STAM2. J Biol Chem. 2010;285(31):23899–907. doi:10.1074/jbc.M110.115295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Heinonen KM, Dube N, Bourdeau A, Lapp WS, Tremblay ML. Protein tyrosine phosphatase 1B negatively regulates macrophage development through CSF-1 signaling. Proc Natl Acad Sci U S A. 2006;103(8):2776–81. doi:10.1073/pnas.0508563103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Yudushkin IA, Schleifenbaum A, Kinkhabwala A, Neel BG, Schultz C, Bastiaens PI. Live-cell imaging of enzyme-substrate interaction reveals spatial regulation of PTP1B. Science. 2007;315(5808):115–9. doi:10.1126/science.1134966.

    Article  CAS  PubMed  Google Scholar 

  147. Pike KA, Hutchins AP, Vinette V, Theberge JF, Sabbagh L, Tremblay ML, Miranda-Saavedra D. Protein tyrosine phosphatase 1B is a regulator of the interleukin-10-induced transcriptional program in macrophages. Sci Signal. 2014;7(324):43.

    Article  CAS  Google Scholar 

  148. Miraldi ER, Sharfi H, Friedline RH, Johnson H, Zhang T, Lau KS, Ko HJ, Curran TG, Haigis KM, Yaffe MB, Bonneau R, Lauffenburger DA, Kahn BB, Kim JK, Neel BG, Saghatelian A, White FM. Molecular network analysis of phosphotyrosine and lipid metabolism in hepatic PTP1b deletion mice. Integr Biol. 2013;5(7):940–63. doi:10.1039/c3ib40013a.

    Article  CAS  Google Scholar 

  149. Haque A, Tonks NK. The use of phage display to generate conformation-sensor recombinant antibodies. Nat Protoc. 2012;7(12):2127–43. doi:10.1038/nprot.2012.132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Krishnan N, Koveal D, Miller DH, Xue B, Akshinthala SD, Kragelj J, Jensen MR, Gauss CM, Page R, Blackledge M, Muthuswamy SK, Peti W, Tonks NK. Targeting the disordered C terminus of PTP1B with an allosteric inhibitor. Nat Chem Biol. 2014;10(7):558–66. doi:10.1038/nchembio.1528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Blanquart C, Karouri SE, Issad T. Implication of protein tyrosine phosphatase 1B in MCF-7 cell proliferation and resistance to 4-OH tamoxifen. Biochem Biophys Res Commun. 2009;387(4):748–53.

    Article  CAS  PubMed  Google Scholar 

  152. Blanquart C, Karouri SE, Issad T. Protein tyrosine phosphatase-1B and T-cell protein tyrosine phosphatase regulate IGF-2-induced MCF-7 cell migration. Biochem Biophys Res Commun. 2010;392(1):83–8. doi:10.1016/j.bbrc.2009.12.176.

    Article  CAS  PubMed  Google Scholar 

  153. Wu C, Zhang L, Bourne PA, Reeder JE, di Sant’Agnese PA, Yao JL, Na Y, Huang J. Protein tyrosine phosphatase PTP1B is involved in neuroendocrine differentiation of prostate cancer. Prostate. 2006;66(11):1125–35. doi:10.1002/pros.20412.

    Article  CAS  PubMed  Google Scholar 

  154. Dube N, Bourdeau A, Heinonen KM, Cheng A, Loy AL, Tremblay ML. Genetic ablation of protein tyrosine phosphatase 1B accelerates lymphomagenesis of p53-null mice through the regulation of B-cell development. Cancer Res. 2005;65(21):10088–95. doi:10.1158/0008-5472.CAN-05-1353.

    Article  CAS  PubMed  Google Scholar 

  155. Wang J, Liu B, Chen X, Su L, Wu P, Wu J, Zhu Z. PTP1B expression contributes to gastric cancer progression. Med Oncol. 2012;29(2):948–56. doi:10.1007/s12032-011-9911-2.

    Article  CAS  PubMed  Google Scholar 

  156. Wang XM, Shang L, Zhang Y, Hao JJ, Shi F, Luo W, Zhang TT, Wang BS, Yang Y, Liu ZH, Zhan QM, Wang MR. PTP1B contributes to calreticulin-induced metastatic phenotypes in esophageal squamous cell carcinoma. Mol Cancer Res. 2013;11(9):986–94. doi:10.1158/1541-7786.MCR-12-0704.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Noriko Uetani for technical assistance with figure design and drawing and Teri Hatzihristidis for a critical review of the manuscript. D.P.L. is a recipient of Canadian Institute of Health Research (CIHR) Frederick Banting and Charles Best doctoral research award and the CIHR/Fonds de la Recherche en Santé du Québec (FRSQ) training grant in cancer research FRN53888 of the McGill Integrated Cancer Research Training Program. M.L.T. is a Jeanne and Jean-Louis Lévesque chair in Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel L. Tremblay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Labbé, D.P., Tremblay, M.L. (2016). PTP1B: From Metabolism to Cancer. In: Neel, B., Tonks, N. (eds) Protein Tyrosine Phosphatases in Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3649-6_6

Download citation

Publish with us

Policies and ethics