Skip to main content

Cdc25 Family Phosphatases in Cancer

  • Chapter
  • First Online:
Protein Tyrosine Phosphatases in Cancer

Abstract

Loss of normal cell cycle control leading to unregulated proliferation is a hallmark of cancer. In addition, the inactivation of normal responses to stresses such as DNA damage, known as checkpoints controls, also contributes to the initiation and progression of cancer by increasing the level of genomic instability in the cancer genome which is responsible of the ability of cancers to adapt to new environments and conditions as it progresses beyond its normal physiological niche. Dysregulation of range of cell cycle and checkpoint control mechanisms have been identified in cancers. Understanding the defective mechanisms provides an improved understanding of the initiation and progression of disease and also provides an opportunity to either prevent cancer initiation or provide selective targets to treat the existing cancer. Here we will focus on a family of dual specificity Ser/Thr and Tyr phosphatases, the Cdc25 family, that have critical cell cycle and checkpoint control functions, as well as cell cycle independent roles. We will present a review of the current understanding of the normal roles and regulation of this family, the defects in this regulation identified in cancers, and the prospects for using these phosphatases as anticancer targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gray-Bablin J, Zalvide J, Fox MP, Knickerbocker CJ, DeCaprio JA, Keyomarsi K. Cyclin E, a redundant cyclin in breast cancer. Proc Natl Acad Sci U S A. 1996;93(26):15215–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sherr CJ. The Pezcoller lecture: cancer cell cycles revisited. Cancer Res. 2000;60(14):3689–95.

    CAS  PubMed  Google Scholar 

  3. Ohtsubo M, Theodoras AM, Schumacher J, Roberts JM, Pagano M. Human cyclin E, a nuclear protein essential for the G1-to-S phase transition. Mol Cell Biol. 1995;15(5):2612–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pagano M, Pepperkok R, Verde F, Ansorge W, Draetta G. Cyclin A is required at two points in the human cell cycle. EMBO J. 1992;11(3):961–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Strausfeld UP, Howell M, Descombes P, Chevalier S, Rempel RE, Adamczewski J, et al. Both cyclin A and cyclin E have S-phase promoting (SPF) activity in Xenopus egg extracts. J Cell Sci. 1996;109(Pt 6):1555–63.

    CAS  PubMed  Google Scholar 

  6. De Boer L, Oakes V, Beamish H, Giles N, Stevens F, Somodevilla-Torres M, et al. Cyclin A/cdk2 coordinates centrosomal and nuclear mitotic events. Oncogene. 2008;27(31):4261–8.

    Article  PubMed  CAS  Google Scholar 

  7. Fung TK, Ma HT, Poon RY. Specialized roles of the Two mitotic cyclins in somatic cells: cyclin A as an activator of M phase-promoting factor. Mol Biol Cell. 2007;18(5):1861–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lindqvist A, Rodriguez-Bravo V, Medema RH. The decision to enter mitosis: feedback and redundancy in the mitotic entry network. J Cell Biol. 2009;185(2):193–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li C, Andrake M, Dunbrack R, Enders GH. A bifunctional regulatory element in human somatic Wee1 mediates cyclin A/Cdk2 binding and Crm1-dependent nuclear export. Mol Cell Biol. 2010;30(1):116–30.

    Article  PubMed  CAS  Google Scholar 

  10. Rosenblatt J, Gu Y, Morgan DO. Human cyclin-dependent kinase 2 is activated during the S and G2 phases of the cell cycle and associates with cyclin A. Proc Natl Acad Sci U S A. 1992;89(7):2824–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jeffrey PD, Russo AA, Polyak K, Gibbs E, Hurwitz J, Massague J, et al. Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex [see comments]. Nature. 1995;376(6538):313–20.

    Article  CAS  PubMed  Google Scholar 

  12. Welburn JP, Tucker JA, Johnson T, Lindert L, Morgan M, Willis A, et al. How tyrosine 15 phosphorylation inhibits the activity of cyclin-dependent kinase 2-cyclin A. J Biol Chem. 2007;282(5):3173–81.

    Article  CAS  PubMed  Google Scholar 

  13. Gabrielli BG, Lee MS, Walker DH, Piwnica-Worms H, Maller JL. cdc25 regulates the phosphorylation and activity of the Xenopus cdk2 protein kinase complex. J Biol Chem. 1992;267(25):18040–6.

    CAS  PubMed  Google Scholar 

  14. Iavarone A, Massague J. Repression of the CDK activator Cdc25A and cell-cycle arrest by cytokine TGF-beta in cells lacking the CDK inhibitor p15. Nature. 1997;387(6631):417–22.

    Article  CAS  PubMed  Google Scholar 

  15. Terada Y, Tatsuka M, Jinno S, Okayama H. Requirement for tyrosine phosphorylation of Cdk4 in G1 arrest induced by ultraviolet irradiation. Nature. 1995;376(6538):358–62.

    Article  CAS  PubMed  Google Scholar 

  16. Russell P, Nurse P. cdc25 + functions as an inducer in the mitotic control of fission yeast. Cell. 1986;45(11):145–53.

    Article  CAS  PubMed  Google Scholar 

  17. Harvey SL, Kellogg DR. Conservation of mechanisms controlling entry into mitosis: budding yeast wee1 delays entry into mitosis and is required for cell size control. Curr Biol. 2003;13(4):264–75.

    Article  CAS  PubMed  Google Scholar 

  18. Moseley JB, Mayeux A, Paoletti A, Nurse P. A spatial gradient coordinates cell size and mitotic entry in fission yeast. Nature. 2009;459(7248):857–60.

    Article  CAS  PubMed  Google Scholar 

  19. Hoffman I. Giulio Draetta and Eric Karsenti. Activation of the phosphatase activity of human cdc25A by a cdk2-cyclin E dependent phosphorylation at the G1/S transition. EMBO J. 1994;133(18):4302–10.

    Google Scholar 

  20. Jinno S, Suto K, Nagata A, Igarashi M, Kanaoka Y, Nojima H, Okayama H. Cdc25A is a novel phosphatase functioning early in the cell cycle. EMBO J. 1994;13(7):1549–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sexl V, Diehl JA, Sherr CJ, Ashmun R, Beach D, Roussel MF. A rate limiting function of cdc25A for S phase entry inversely correlates with tyrosine dephosphorylation of Cdk2. Oncogene. 1999;18(3):573–82.

    Article  CAS  PubMed  Google Scholar 

  22. Lindqvist A, Kallstrom H, Lundgren A, Barsoum E, Rosenthal CK. Cdc25B cooperates with Cdc25A to induce mitosis but has a unique role in activating cyclin B1-Cdk1 at the centrosome. J Cell Biol. 2005;171(1):35–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gabrielli BG, De Souza CP, Tonks ID, Clark JM, Hayward NK, Ellem KA. Cytoplasmic accumulation of cdc25B phosphatase in mitosis triggers centrosomal microtubule nucleation in HeLa cells. J Cell Sci. 1996;109(Pt 5):1081–93.

    CAS  PubMed  Google Scholar 

  24. Goldstone S, Pavey S, Forrest A, Sinnamon J, Gabrielli B. Cdc25-dependent activation of cyclin A/cdk2 is blocked in G2 phase arrested cells independently of ATM/ATR. Oncogene. 2001;20(8):921–32.

    Article  CAS  PubMed  Google Scholar 

  25. Karlsson C, Katich S, Hagting A, Hoffmann I, Pines J. Cdc25B and Cdc25C differ markedly in their properties as initiators of mitosis. J Cell Biol. 1999;146(3):573–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lammer C, Wagerer S, Saffrich R, Mertens D, Ansorge W, Hoffmann I. The cdc25B phosphatase is essential for the G2/M phase transition in human cells. J Cell Sci. 1998;111(Pt 16):2445–53.

    CAS  PubMed  Google Scholar 

  27. Lindqvist A, Kallstrom H, Karlsson RC. Characterisation of Cdc25B localisation and nuclear export during the cell cycle and in response to stress. J Cell Sci. 2004;117(Pt 21):4979–90.

    Article  CAS  PubMed  Google Scholar 

  28. Gabrielli BG, Clark JM, McCormack AK, Ellem KA. Hyperphosphorylation of the N-terminal domain of Cdc25 regulates activity toward cyclin B1/Cdc2 but not cyclin A/Cdk2. J Biol Chem. 1997;272(45):28607–14.

    Article  CAS  PubMed  Google Scholar 

  29. Hoffman I, Paul R. Clarke, M. Jesus Marcote, Eric Karsenti and Giulio Draetta. Phosphorylation and activation of human cdc25C by cdc2-cyclin B and its involvement in the self-amplification of MPF at mitosis. EMBO J. 1993;12(1):53–63.

    Google Scholar 

  30. Turowski P, Franckhauser C, Morris MC, Vaglio P, Fernandez A, Lamb NJ. Functional cdc25C dual-specificity phosphatase is required for S-phase entry in human cells. Mol Biol Cell. 2003;14(7):2984–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu X, Burke SP. Roles of active site residues and the NH2-terminal domain in the catalysis and substrate binding of human Cdc25. J Biol Chem. 1996;271(9):5118–24.

    Article  CAS  PubMed  Google Scholar 

  32. Loffler H, Rebacz B, Ho AD, Lukas J, Bartek J, Kramer A. Chk1-dependent regulation of Cdc25B functions to coordinate mitotic events. Cell Cycle. 2006;5(21):2543–7.

    Article  PubMed  Google Scholar 

  33. De Souza CP, Ellem KA, Gabrielli BG. Centrosomal and cytoplasmic Cdc2/cyclin B1 activation precedes nuclear mitotic events. Exp Cell Res. 2000;257(1):11–21.

    Article  PubMed  Google Scholar 

  34. Baldin V, Cans C, Superti-Furga G, Ducommun B. Alternative splicing of the human CDC25B tyrosine phosphatase. Possible implications for growth control? Oncogene. 1997;14(20):2485–95.

    Article  CAS  PubMed  Google Scholar 

  35. Wegener S, Hampe W, Herrmann D, Schaller HC. Alternative splicing in the regulatory region of the human phosphatases CDC25A and CDC25C. Eur J Cell Biol. 2000;79(11):810–5.

    Article  CAS  PubMed  Google Scholar 

  36. Kieffer I, Lorenzo C, Dozier C, Schmitt E, Ducommun B. Differential mitotic degradation of the CDC25B phosphatase variants. Oncogene. 2007;26(57):7847–58.

    Article  CAS  PubMed  Google Scholar 

  37. Bureik M, Rief N, Drescher R, Jungbluth A, Montenarh M, Wagner P. An additional transcript of the cdc25C gene from A431 cells encodes a functional protein. Int J Oncol. 2000;17(6):1251–8.

    CAS  PubMed  Google Scholar 

  38. Forrest AR, McCormack AK, DeSouza CP, Sinnamon JM, Tonks ID, Hayward NK, et al. Multiple splicing variants of cdc25B regulate G2/M progression. Biochem Biophys Res Commun. 1999;260(2):510–5.

    Article  CAS  PubMed  Google Scholar 

  39. Jullien D, Bugler B, Dozier C, Cazales M, Ducommun B. Identification of N-terminally truncated stable nuclear isoforms of CDC25B that are specifically involved in G2/M checkpoint recovery. Cancer Res. 2011;71(5):1968–77.

    Article  CAS  PubMed  Google Scholar 

  40. Caudill JS, Porcher JC, Steensma DP. Aberrant pre-mRNA splicing of a highly conserved cell cycle regulator, CDC25C, in myelodysplastic syndromes. Leuk Lymphoma. 2008;49(5):989–93.

    Article  CAS  PubMed  Google Scholar 

  41. Lee G, Origanti S, White LS, Sun J, Stappenbeck TS, Piwnica-Worms H. Contributions made by CDC25 phosphatases to proliferation of intestinal epithelial stem and progenitor cells. PLoS One. 2011;6(1), e15561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee G, White LS, Hurov KE, Stappenbeck TS, Piwnica-Worms H. Response of small intestinal epithelial cells to acute disruption of cell division through CDC25 deletion. Proc Natl Acad Sci U S A. 2009;106(12):4701–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ray D, Terao Y, Nimbalkar D, Hirai H, Osmundson EC, Zou X, et al. Hemizygous disruption of Cdc25A inhibits cellular transformation and mammary tumorigenesis in mice. Cancer Res. 2007;67(14):6605–11.

    Article  CAS  PubMed  Google Scholar 

  44. Galaktionov K, Chen X, Beach D. Cdc25 cell-cycle phosphatase as a target of c-myc. Nature. 1996;382(6591):511–7.

    Article  CAS  PubMed  Google Scholar 

  45. Vigo E, Muller H, Prosperini E, Hateboer G, Cartwright P, Moroni MC, et al. CDC25A phosphatase is a target of E2F and is required for efficient E2F-induced S phase. Mol Cell Biol. 1999;19(9):6379–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang M, Gartel AL. The suppression of FOXM1 and its targets in breast cancer xenograft tumors by siRNA. Oncotarget. 2011;2(12):1218–26.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rother K, Kirschner R, Sanger K, Bohlig L, Mossner J, Engeland K. p53 downregulates expression of the G1/S cell cycle phosphatase Cdc25A. Oncogene. 2007;26(13):1949–53.

    Article  CAS  PubMed  Google Scholar 

  48. Demidova AR, Aau MY, Zhuang L, Yu Q. Dual regulation of Cdc25A by Chk1 and p53-ATF3 in DNA replication checkpoint control. J Biol Chem. 2009;284(7):4132–9. Epub 2008/12/09.

    Article  CAS  PubMed  Google Scholar 

  49. Dalvai M, Mondesert O, Bourdon JC, Ducommun B, Dozier C. Cdc25B is negatively regulated by p53 through Sp1 and NF-Y transcription factors. Oncogene. 2011;30(19):2282–8.

    Article  CAS  PubMed  Google Scholar 

  50. Badie C, Itzhaki JE, Sullivan MJ, Carpenter AJ, Porter AC. Repression of CDK1 and other genes with CDE and CHR promoter elements during DNA damage-induced G(2)/M arrest in human cells. Mol Cell Biol. 2000;20(7):2358–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Krause K, Haugwitz U, Wasner M, Wiedmann M, Mossner J, Engeland K. Expression of the cell cycle phosphatase cdc25C is down-regulated by the tumor suppressor protein p53 but not by p73. Biochem Biophys Res Commun. 2001;284(3):743–50.

    Article  CAS  PubMed  Google Scholar 

  52. Thanasoula M, Escandell JM, Suwaki N, Tarsounas M. ATM/ATR checkpoint activation downregulates CDC25C to prevent mitotic entry with uncapped telomeres. EMBO J. 2012;31(16):3398–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. St Clair S, Giono L, Varmeh-Ziaie S, Resnick-Silverman L, Liu WJ, Padi A, et al. DNA damage-induced downregulation of Cdc25C is mediated by p53 via two independent mechanisms: one involves direct binding to the cdc25C promoter. Mol Cell. 2004;16(5):725–36.

    Article  PubMed  Google Scholar 

  54. Nguyen DX, Westbrook TF, McCance DJ. Human papillomavirus type 16 E7 maintains elevated levels of the cdc25A tyrosine phosphatase during deregulation of cell cycle arrest. J Virol. 2002;76(2):619–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tomko Jr RJ, Lazo JS. Multimodal control of Cdc25A by nitrosative stress. Cancer Res. 2008;68(18):7457–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gautier EF, Picard M, Laurent C, Marty C, Villeval JL, Demur C, et al. The cell cycle regulator CDC25A is a target for JAK2V617F oncogene. Blood. 2012;119(5):1190–9.

    Article  CAS  PubMed  Google Scholar 

  57. Lemaire M, Ducommun B, Nebreda AR. UV-induced downregulation of the CDC25B protein in human cells. FEBS Lett. 2010;584(6):1199–204.

    Article  CAS  PubMed  Google Scholar 

  58. Lee SO, Masyuk T, Splinter P, Banales JM, Masyuk A, Stroope A, et al. MicroRNA15a modulates expression of the cell-cycle regulator Cdc25A and affects hepatic cystogenesis in a rat model of polycystic kidney disease. J Clin Invest. 2008;118(11):3714–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. de Oliveira PE, Zhang L, Wang Z, Lazo JS. Hypoxia-mediated regulation of Cdc25A phosphatase by p21 and miR-21. Cell Cycle. 2009;8(19):3157–64.

    Article  PubMed  Google Scholar 

  60. Wang P, Zou F, Zhang X, Li H, Dulak A, Tomko Jr RJ, et al. microRNA-21 negatively regulates Cdc25A and cell cycle progression in colon cancer cells. Cancer Res. 2009;69(20):8157–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yang X, Feng M, Jiang X, Wu Z, Li Z, Aau M, et al. miR-449a and miR-449b are direct transcriptional targets of E2F1 and negatively regulate pRb-E2F1 activity through a feedback loop by targeting CDK6 and CDC25A. Genes Dev. 2009;23(20):2388–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liffers ST, Munding JB, Vogt M, Kuhlmann JD, Verdoodt B, Nambiar S, et al. MicroRNA-148a is down-regulated in human pancreatic ductal adenocarcinomas and regulates cell survival by targeting CDC25B. Lab Invest. 2011;91(10):1472–9.

    Article  CAS  PubMed  Google Scholar 

  63. Le MT, Shyh-Chang N, Khaw SL, Chin L, Teh C, Tay J, et al. Conserved regulation of p53 network dosage by microRNA-125b occurs through evolving miRNA-target gene pairs. PLoS Genet. 2011;7(9), e1002242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jin Y. 3,3’-Diindolylmethane inhibits breast cancer cell growth via miR-21-mediated Cdc25A degradation. Mol Cell Biochem. 2011;358(1-2):345–54.

    Article  CAS  PubMed  Google Scholar 

  65. Busino L, Donzelli M, Chiesa M, Guardavaccaro D, Ganoth D, Dorrello NV, et al. Degradation of Cdc25A by beta-TrCP during S phase and in response to DNA damage. Nature. 2003;426(6962):87–91.

    Article  CAS  PubMed  Google Scholar 

  66. Donzelli M, Busino L, Chiesa M, Ganoth D, Hershko A, Draetta GF. Hierarchical order of phosphorylation events commits Cdc25A to betaTrCP-dependent degradation. Cell Cycle. 2004;3(4):469–71.

    Article  CAS  PubMed  Google Scholar 

  67. Kanemori Y, Uto K, Sagata N. Beta-TrCP recognizes a previously undescribed nonphosphorylated destruction motif in Cdc25A and Cdc25B phosphatases. Proc Natl Acad Sci U S A. 2005;102(18):6279–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Uchida S, Watanabe N, Kudo Y, Yoshioka K, Matsunaga T, Ishizaka Y, et al. SCFbeta(TrCP) mediates stress-activated MAPK-induced Cdc25B degradation. J Cell Sci. 2011;124(Pt 16):2816–25.

    Article  CAS  PubMed  Google Scholar 

  69. Donzelli M, Squatrito M, Ganoth D, Hershko A, Pagano M, Draetta GF. Dual mode of degradation of Cdc25 A phosphatase. EMBO J. 2002;21(18):4875–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Reber A, Lehner CF, Jacobs HW. Terminal mitoses require negative regulation of Fzr/Cdh1 by Cyclin A, preventing premature degradation of mitotic cyclins and String/Cdc25. Development. 2006;133(16):3201–11.

    Article  CAS  PubMed  Google Scholar 

  71. Skaar JR, Pagano M. Cdh1: a master G0/G1 regulator. Nat Cell Biol. 2008;10(7):755–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mailand N, Podtelejnikov AV, Groth A, Mann M, Bartek J, Lukas J. Regulation of G(2)/M events by Cdc25A through phosphorylation-dependent modulation of its stability. EMBO J. 2002;21(21):5911–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chan TH, Chen L, Liu M, Hu L, Zheng BJ, Poon VK, et al. Translationally controlled tumor protein induces mitotic defects and chromosome missegregation in hepatocellular carcinoma development. Hepatology. 2012;55(2):491–505.

    Article  CAS  PubMed  Google Scholar 

  74. Xiao Z, Chen Z, Gunasekera AH, Sowin TJ, Rosenberg SH, Fesik S, et al. Chk1 mediates S and G2 arrests through Cdc25A degradation in response to DNA-damaging agents. J Biol Chem. 2003;278(24):21767–73.

    Article  CAS  PubMed  Google Scholar 

  75. Zhao H, Watkins JL, Piwnica-Worms H. Disruption of the checkpoint kinase 1/cell division cycle 25A pathway abrogates ionizing radiation-induced S and G2 checkpoints. Proc Natl Acad Sci U S A. 2002;99(23):14795–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sorensen CS, Syljuasen RG, Falck J, Schroeder T, Ronnstrand L, Khanna KK, et al. Chk1 regulates the S phase checkpoint by coupling the physiological turnover and ionizing radiation-induced accelerated proteolysis of Cdc25A. Cancer Cell. 2003;3(3):247–58.

    Article  CAS  PubMed  Google Scholar 

  77. Jin J, Shirogane T, Xu L, Nalepa G, Qin J, Elledge SJ, et al. SCFbeta-TRCP links Chk1 signaling to degradation of the Cdc25A protein phosphatase. Genes Dev. 2003;17(24):3062–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Melixetian M, Klein DK, Sorensen CS, Helin K. NEK11 regulates CDC25A degradation and the IR-induced G2/M checkpoint. Nat Cell Biol. 2009;11(10):1247–53.

    Article  CAS  PubMed  Google Scholar 

  79. Isoda M, Kanemori Y, Nakajo N, Uchida S, Yamashita K, Ueno H, et al. The extracellular signal-regulated kinase-mitogen-activated protein kinase pathway phosphorylates and targets Cdc25A for SCF beta-TrCP-dependent degradation for cell cycle arrest. Mol Biol Cell. 2009;20(8):2186–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jin J, Ang XL, Ye X, Livingstone M, Harper JW. Differential roles for checkpoint kinases in DNA damage-dependent degradation of the Cdc25A protein phosphatase. J Biol Chem. 2008;283(28):19322–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kang T, Wei Y, Honaker Y, Yamaguchi H, Appella E, Hung MC, et al. GSK-3 beta targets Cdc25A for ubiquitin-mediated proteolysis, and GSK-3 beta inactivation correlates with Cdc25A overproduction in human cancers. Cancer Cell. 2008;13(1):36–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Uchida S, Yoshioka K, Kizu R, Nakagama H, Matsunaga T, Ishizaka Y, et al. Stress-activated mitogen-activated protein kinases c-Jun NH2-terminal kinase and p38 target Cdc25B for degradation. Cancer Res. 2009;69(16):6438–44.

    Article  CAS  PubMed  Google Scholar 

  83. Astuti P, Pike T, Widberg C, Payne E, Harding A, Hancock J, et al. MAPK pathway activation delays G2/M progression by destabilizing Cdc25B. J Biol Chem. 2009;284(49):33781–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Eymin B, Claverie P, Salon C, Brambilla C, Brambilla E, Gazzeri S. p14ARF triggers G2 arrest through ERK-mediated Cdc25C phosphorylation, ubiquitination and proteasomal degradation. Cell Cycle. 2006;5(7):759–65.

    Article  CAS  PubMed  Google Scholar 

  85. Frescas D, Pagano M. Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: tipping the scales of cancer. Nat Rev Cancer. 2008;8(6):438–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pereg Y, Liu BY, O’Rourke KM, Sagolla M, Dey A, Komuves L, et al. Ubiquitin hydrolase Dub3 promotes oncogenic transformation by stabilizing Cdc25A. Nat Cell Biol. 2010;12(4):400–6.

    Article  CAS  PubMed  Google Scholar 

  87. Cangi MG, Cukor B, Soung P, Signoretti S, Moreira Jr G, Ranashinge M, et al. Role of the Cdc25A phosphatase in human breast cancer. J Clin Invest. 2000;106(6):753–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gasparotto D, Maestro R, Piccinin S, Vukosavljevic T, Barzan L, Sulfaro S, et al. Overexpression of CDC25A and CDC25B in head and neck cancers. Cancer Res. 1997;57(12):2366–8.

    CAS  PubMed  Google Scholar 

  89. Hernandez S, Hernandez L, Bea S, Pinyol M, Nayach I, Bellosillo B, et al. cdc25a and the splicing variant cdc25b2, but not cdc25B1, -B3 or -C, are over-expressed in aggressive human non-Hodgkin’s lymphomas. Int J Cancer. 2000;89(2):148–52.

    Article  CAS  PubMed  Google Scholar 

  90. Wu W, Fan YH, Kemp BL, Walsh G, Mao L. Overexpression of cdc25A and cdc25B is frequent in primary non-small cell lung cancer but is not associated with overexpression of c-myc. Cancer Res. 1998;58(18):4082–5.

    CAS  PubMed  Google Scholar 

  91. Loffler H, Syljuasen RG, Bartkova J, Worm J, Lukas J, Bartek J. Distinct modes of deregulation of the proto-oncogenic Cdc25A phosphatase in human breast cancer cell lines. Oncogene. 2003;22(50):8063–71.

    Article  PubMed  CAS  Google Scholar 

  92. Lincoln AJ, Wickramasinghe D, Stein P, Schultz RM, Palko ME, De Miguel MP, et al. Cdc25b phosphatase is required for resumption of meiosis during oocyte maturation. Nat Genet. 2002;30(4):446–9.

    Article  CAS  PubMed  Google Scholar 

  93. Galaktionov K, Lee AK, Eckstein J, Draetta G, Meckler J, Loda M, et al. CDC25 phosphatases as potential human oncogenes. Science. 1995;269(5230):1575–7.

    Article  CAS  PubMed  Google Scholar 

  94. Ray D, Terao Y, Fuhrken PG, Ma ZQ, DeMayo FJ, Christov K, et al. Deregulated CDC25A expression promotes mammary tumorigenesis with genomic instability. Cancer Res. 2007;67(3):984–91.

    Article  CAS  PubMed  Google Scholar 

  95. Blomberg I, Hoffmann I. Ectopic expression of Cdc25A accelerates the G(1)/S transition and leads to premature activation of cyclin E- and cyclin A-dependent kinases. Mol Cell Biol. 1999;19(9):6183–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Srivastava SK, Bansal P, Oguri T, Lazo JS, Singh SV. Cell division cycle 25B phosphatase is essential for benzo(a)pyrene-7,8-Diol-9,10-epoxide induced neoplastic transformation. Cancer Res. 2007;67(19):9150–7.

    Article  CAS  PubMed  Google Scholar 

  97. Varmeh S, Manfredi JJ. Inappropriate activation of cyclin-dependent kinases by the phosphatase Cdc25b results in premature mitotic entry and triggers a p53-dependent checkpoint. J Biol Chem. 2009;284(14):9475–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bansal P, Lazo JS. Induction of Cdc25B regulates cell cycle resumption after genotoxic stress. Cancer Res. 2007;67(7):3356–63.

    Article  CAS  PubMed  Google Scholar 

  99. Yao Y, Slosberg ED, Wang L, Hibshoosh H, Zhang YJ, Xing WQ, et al. Increased susceptibility to carcinogen-induced mammary tumors in MMTV-Cdc25B transgenic mice. Oncogene. 1999;18(37):5159–66.

    Article  CAS  PubMed  Google Scholar 

  100. Hernandez S, Bessa X, Bea S, Hernandez L, Nadal A, Mallofre C, et al. Differential expression of cdc25 cell-cycle-activating phosphatases in human colorectal carcinoma. Lab Invest. 2001;81(4):465–73.

    Article  CAS  PubMed  Google Scholar 

  101. Albert H, Santos S, Battaglia E, Brito M, Monteiro C, Bagrel D. Differential expression of CDC25 phosphatases splice variants in human breast cancer cells. Clin Chem Lab Med. 2011;49(10):1707–14.

    Article  CAS  PubMed  Google Scholar 

  102. Guo J, Kleeff J, Li J, Ding J, Hammer J, Zhao Y, et al. Expression and functional significance of CDC25B in human pancreatic ductal adenocarcinoma. Oncogene. 2004;23(1):71–81.

    Article  PubMed  CAS  Google Scholar 

  103. Younis RH, Cao W, Lin R, Xia R, Liu Z, Edelman MJ, et al. CDC25A(Q110del): a novel cell division cycle 25A isoform aberrantly expressed in non-small cell lung cancer. PLoS One. 2012;7(10), e46464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Pacheco TR, Moita LF, Gomes AQ, Hacohen N, Carmo-Fonseca M. RNA interference knockdown of hU2AF35 impairs cell cycle progression and modulates alternative splicing of Cdc25 transcripts. Mol Biol Cell. 2006;17(10):4187–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Albert H, Battaglia E, Monteiro C, Bagrel D. Genotoxic stress modulates CDC25C phosphatase alternative splicing in human breast cancer cell lines. Mol Oncol. 2012;6(5):542–52.

    Article  CAS  PubMed  Google Scholar 

  106. Shreeram S, Hee WK, Bulavin DV. Cdc25A serine 123 phosphorylation couples centrosome duplication with DNA replication and regulates tumorigenesis. Mol Cell Biol. 2008;28(24):7442–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Boutros R, Ducommun B. Asymmetric localization of the CDC25B phosphatase to the mother centrosome during interphase. Cell Cycle. 2008;7(3):401–6. Epub 2008/02/01.

    Article  CAS  PubMed  Google Scholar 

  108. Boutros R, Lobjois V, Ducommun B. CDC25B involvement in the centrosome duplication cycle and in microtubule nucleation. Cancer Res. 2007;67(24):11557–64.

    Article  CAS  PubMed  Google Scholar 

  109. Boutros R, Lorenzo C, Mondesert O, Jauneau A, Oakes V, Dozier C, et al. CDC25B associates with a centrin 2-containing complex and is involved in maintaining centrosome integrity. Biol Cell. 2011;103(2):55–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Duensing A, Duensing S. Centrosomes, polyploidy and cancer. Adv Exp Med Biol. 2010;676:93–103.

    Article  CAS  PubMed  Google Scholar 

  111. Kramer A, Maier B, Bartek J. Centrosome clustering and chromosomal (in)stability: a matter of life and death. Mol Oncol. 2011;5(4):324–35.

    Article  PubMed  CAS  Google Scholar 

  112. Marthiens V, Piel M, Basto R. Never tear us apart—the importance of centrosome clustering. J Cell Sci. 2012;125(Pt 14):3281–92.

    Article  CAS  PubMed  Google Scholar 

  113. Schmidt S, Essmann F, Cirstea IC, Kuck F, Thakur HC, Singh M, et al. The centrosome and mitotic spindle apparatus in cancer and senescence. Cell Cycle. 2010;9(22):4469–73.

    Article  CAS  PubMed  Google Scholar 

  114. Medema RH, Macurek L. Checkpoint control and cancer. Oncogene. 2012;31(21):2601–13.

    Article  CAS  PubMed  Google Scholar 

  115. Gardino AK, Yaffe MB. 14-3-3 proteins as signaling integration points for cell cycle control and apoptosis. Semin Cell Dev Biol. 2011;22(7):688–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Chen MS, Ryan CE, Piwnica-Worms H. Chk1 kinase negatively regulates mitotic function of Cdc25A phosphatase through 14-3-3 binding. Mol Cell Biol. 2003;23(21):7488–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Uto K, Inoue D, Shimuta K, Nakajo N, Sagata N. Chk1, but not Chk2, inhibits Cdc25 phosphatases by a novel common mechanism. EMBO J. 2004;23(16):3386–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kasahara K, Goto H, Enomoto M, Tomono Y, Kiyono T, Inagaki M. 14-3-3gamma mediates Cdc25A proteolysis to block premature mitotic entry after DNA damage. EMBO J. 2010;29(16):2802–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ray D, Kiyokawa H. CDC25A levels determine the balance of proliferation and checkpoint response. Cell Cycle. 2007;6(24):3039–42.

    Article  CAS  PubMed  Google Scholar 

  120. Giles N, Forrest A, Gabrielli B. 14-3-3 acts as an intramolecular bridge to regulate cdc25B localization and activity. J Biol Chem. 2003;278(31):28580–7.

    Article  CAS  PubMed  Google Scholar 

  121. Schmitt E, Boutros R, Froment C, Monsarrat B, Ducommun B, Dozier C. CHK1 phosphorylates CDC25B during the cell cycle in the absence of DNA damage. J Cell Sci. 2006;119(Pt 20):4269–75.

    Article  CAS  PubMed  Google Scholar 

  122. Astuti P, Boutros R, Ducommun B, Gabrielli B. Mitotic phosphorylation of cdc25B Ser321 disrupts 14-3-3 binding to the high affinity Ser323 site. J Biol Chem. 2010;285(45):34364–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Dalal SN, Schweitzer CM, Gan J, DeCaprio JA. Cytoplasmic localization of human cdc25C during interphase requires an intact 14-3-3 binding site. Mol Cell Biol. 1999;19(6):4465–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Peng CY, Graves PR, Thoma RS, Wu Z, Shaw AS, Piwnica-Worms H. Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science. 1997;277(5331):1501–5.

    Article  CAS  PubMed  Google Scholar 

  125. Chan PM, Ng YW, Manser E. A robust protocol to map binding sites of the 14-3-3 interactome: Cdc25C requires phosphorylation of both S216 and S263 to bind 14-3-3. Mol Cell Proteomics. 2011;10(3):M110.005157.

    Article  PubMed  CAS  Google Scholar 

  126. Esmenjaud-Mailhat C, Lobjois V, Froment C, Golsteyn RM, Monsarrat B, Ducommun B. Phosphorylation of CDC25C at S263 controls its intracellular localisation. FEBS Lett. 2007;581(21):3979–85.

    Article  CAS  PubMed  Google Scholar 

  127. Chen MS, Hurov J, White LS, Woodford-Thomas T, Piwnica-Worms H. Absence of apparent phenotype in mice lacking Cdc25C protein phosphatase. Mol Cell Biol. 2001;21(12):3853–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Poon RY, Chau MS, Yamashita K, Hunter T. The role of Cdc2 feedback loop control in the DNA damage checkpoint in mammalian cells. Cancer Res. 1997;57(22):5168–78.

    CAS  PubMed  Google Scholar 

  129. Bulavin DV, Higashimoto Y, Demidenko ZN, Meek S, Graves P, Phillips C, et al. Dual phosphorylation controls Cdc25 phosphatases and mitotic entry. Nat Cell Biol. 2003;5(6):545–51.

    Article  CAS  PubMed  Google Scholar 

  130. Boutros R, Lobjois V, Ducommun B. CDC25 phosphatases in cancer cells: key players? Good targets? Nat Rev Cancer. 2007;7(7):495–507.

    Article  CAS  PubMed  Google Scholar 

  131. Bulavin DV, Higashimoto Y, Popoff IJ, Gaarde WA, Basrur V, Potapova O, et al. Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase. Nature. 2001;411(6833):102–7.

    Article  CAS  PubMed  Google Scholar 

  132. Lemaire M, Froment C, Boutros R, Mondesert O, Nebreda AR, Monsarrat B, et al. CDC25B phosphorylation by p38 and MK-2. Cell Cycle. 2006;5(15):1649–53.

    Article  CAS  PubMed  Google Scholar 

  133. Manke IA, Nguyen A, Lim D, Stewart MQ, Elia AE, Yaffe MB. MAPKAP kinase-2 is a cell cycle checkpoint kinase that regulates the G2/M transition and S phase progression in response to UV irradiation. Mol Cell. 2005;17(1):37–48.

    Article  CAS  PubMed  Google Scholar 

  134. Ogg S, Gabrielli B, Piwnica-Worms H. Purification of a serine kinase that associates with and phosphorylates human cdc25C on Serine 216. J Biol Chem. 1994;269(48):30461–9.

    CAS  PubMed  Google Scholar 

  135. Hutchins JR, Clarke PR. Many fingers on the mitotic trigger: post-translational regulation of the Cdc25C phosphatase. Cell Cycle. 2004;3(1):41–5.

    Article  CAS  PubMed  Google Scholar 

  136. van Vugt MA, Bras A, Medema RH. Polo-like kinase-1 controls recovery from a G2 DNA damage-induced arrest in mammalian cells. Mol Cell. 2004;15(5):799–811.

    Article  PubMed  Google Scholar 

  137. Dai Y, Grant S. New insights into checkpoint kinase 1 in the DNA damage response signaling network. Clin Cancer Res. 2010;16(2):376–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Graves PR, Yu L, Schwarz JK, Gales J, Sausville EA, O’Connor PM, et al. The Chk1 protein kinase and the Cdc25C regulatory pathways are targets of the anticancer agent UCN-01. J Biol Chem. 2000;275(8):5600–5.

    Article  CAS  PubMed  Google Scholar 

  139. Liu Q, Guntuku S, Cui XS, Matsuoka S, Cortez D, Tamai K, et al. Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev. 2000;14(12):1448–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Astuti P, Gabrielli B. Phosphorylation of Cdc25B3 Ser169 regulates 14-3-3 binding to Ser151 and Cdc25B activity. Cell Cycle. 2011;10(12):1960–7.

    Article  CAS  PubMed  Google Scholar 

  141. Conklin DS, Galaktionov K, Beach D. 14-3-3 proteins associate with cdc25 phosphatases. Proc Natl Acad Sci U S A. 1995;92(17):7892–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Galaktionov K, Jessus C, Beach D. Raf1 interaction with Cdc25 phosphatase ties mitogenic signal transduction to cell cycle activation. Genes Dev. 1995;9(9):1046–58.

    Article  CAS  PubMed  Google Scholar 

  143. Xia K, Lee RS, Narsimhan RP, Mukhopadhyay NK, Neel BG, Roberts TM. Tyrosine phosphorylation of the proto-oncoprotein Raf-1 is regulated by Raf-1 itself and the phosphatase Cdc25A. Mol Cell Biol. 1999;19(7):4819–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Fuhrmann G, Leisser C, Rosenberger G, Grusch M, Huettenbrenner S, Halama T, et al. Cdc25A phosphatase suppresses apoptosis induced by serum deprivation. Oncogene. 2001;20(33):4542–53.

    Article  CAS  PubMed  Google Scholar 

  145. Leisser C, Rosenberger G, Maier S, Fuhrmann G, Grusch M, Strasser S, et al. Subcellular localisation of Cdc25A determines cell fate. Cell Death Differ. 2004;11(1):80–9.

    Article  CAS  PubMed  Google Scholar 

  146. Obexer P, Geiger K, Ambros PF, Meister B, Ausserlechner MJ. FKHRL1-mediated expression of Noxa and Bim induces apoptosis via the mitochondria in neuroblastoma cells. Cell Death Differ. 2007;14(3):534–47.

    Article  CAS  PubMed  Google Scholar 

  147. Zou X, Tsutsui T, Ray D, Blomquist JF, Ichijo H, Ucker DS, et al. The cell cycle-regulatory CDC25A phosphatase inhibits apoptosis signal-regulating kinase 1. Mol Cell Biol. 2001;21(14):4818–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kutuzov MA, Andreeva AV, Voyno-Yasenetskaya TA. Regulation of apoptosis signal-regulating kinase 1 (ASK1) by polyamine levels via protein phosphatase 5. J Biol Chem. 2005;280(27):25388–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. el Bahassi M, Yin M, Robbins SB, Li YQ, Conrady DG, Yuan Z, et al. A human cancer-predisposing polymorphism in Cdc25A is embryonic lethal in the mouse and promotes ASK-1 mediated apoptosis. Cell Div. 2011;6(1):4.

    Article  CAS  PubMed Central  Google Scholar 

  150. Mazars A, Fernandez-Vidal A, Mondesert O, Lorenzo C, Prevost G, Ducommun B, et al. A caspase-dependent cleavage of CDC25A generates an active fragment activating cyclin-dependent kinase 2 during apoptosis. Cell Death Differ. 2009;16(2):208–18.

    Article  CAS  PubMed  Google Scholar 

  151. Chou ST, Yen YC, Lee CM, Chen MS. Pro-apoptotic role of Cdc25A: activation of cyclin B1/Cdc2 by the Cdc25A C-terminal domain. J Biol Chem. 2010;285(23):17833–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Liu J, Rosen BP. Ligand interactions of the ArsC arsenate reductase. J Biol Chem. 1997;272(34):21084–9.

    Article  CAS  PubMed  Google Scholar 

  153. Mukhopadhyay R, Rosen BP. Saccharomyces cerevisiae ACR2 gene encodes an arsenate reductase. FEMS Microbiol Lett. 1998;168(1):127–36.

    Article  CAS  PubMed  Google Scholar 

  154. Mukhopadhyay R, Rosen BP. Arsenate reductases in prokaryotes and eukaryotes. Environ Health Perspect. 2002;110 Suppl 5:745–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Radabaugh TR, Aposhian HV. Enzymatic reduction of arsenic compounds in mammalian systems: reduction of arsenate to arsenite by human liver arsenate reductase. Chem Res Toxicol. 2000;13(1):26–30.

    Article  CAS  PubMed  Google Scholar 

  156. Bordo D, Bork P. The rhodanese/Cdc25 phosphatase superfamily. Sequence-structure-function relations. EMBO Rep. 2002;3(8):741–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Hofmann K, Bucher P, Kajava AV. A model of Cdc25 phosphatase catalytic domain and Cdk-interaction surface based on the presence of a rhodanese homology domain. J Mol Biol. 1998;282(1):195–208.

    Article  CAS  PubMed  Google Scholar 

  158. Yeo HK, Lee JY. Crystal structure of Saccharomyces cerevisiae Ygr203w, a homolog of single-domain rhodanese and Cdc25 phosphatase catalytic domain. Proteins. 2009;76(2):520–4.

    Article  CAS  PubMed  Google Scholar 

  159. Duan GL, Zhou Y, Tong YP, Mukhopadhyay R, Rosen BP, Zhu YG. A CDC25 homologue from rice functions as an arsenate reductase. New Phytol. 2007;174(2):311–21.

    Article  CAS  PubMed  Google Scholar 

  160. Bleeker PM, Hakvoort HW, Bliek M, Souer E, Schat H. Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcus lanatus. Plant J. 2006;45(6):917–29.

    Article  CAS  PubMed  Google Scholar 

  161. Salgado A, Lopez-Serrano Oliver A, Matia-Gonzalez AM, Sotelo J, Zarco-Fernandez S, Munoz-Olivas R, et al. Response to arsenate treatment in Schizosaccharomyces pombe and the role of its arsenate reductase activity. PLoS One. 2012;7(8), e43208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Bhattacharjee H, Sheng J, Ajees AA, Mukhopadhyay R, Rosen BP. Adventitious arsenate reductase activity of the catalytic domain of the human Cdc25B and Cdc25C phosphatases. Biochemistry. 2010;49(4):802–9.

    Article  CAS  PubMed  Google Scholar 

  163. Tapio S, Grosche B. Arsenic in the aetiology of cancer. Mutat Res. 2006;612(3):215–46.

    Article  CAS  PubMed  Google Scholar 

  164. Chowdhury R, Chatterjee R, Giri AK, Mandal C, Chaudhuri K. Arsenic-induced cell proliferation is associated with enhanced ROS generation, Erk signaling and CyclinA expression. Toxicol Lett. 2010;198(2):263–71.

    Article  CAS  PubMed  Google Scholar 

  165. Yih LH, Wu YC, Hsu NC, Kuo HH. Arsenic trioxide induces abnormal mitotic spindles through a PIP4KIIgamma/Rho pathway. Toxicol Sci. 2012;128(1):115–25.

    Article  CAS  PubMed  Google Scholar 

  166. Lehmann GM, McCabe Jr MJ. Arsenite slows S phase progression via inhibition of cdc25A dual specificity phosphatase gene transcription. Toxicol Sci. 2007;99(1):70–8.

    Article  CAS  PubMed  Google Scholar 

  167. Ma ZQ, Liu Z, Ngan ES, Tsai SY. Cdc25B functions as a novel coactivator for the steroid receptors. Mol Cell Biol. 2001;21(23):8056–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Altucci L, Addeo R, Cicatiello L, Dauvois S, Parker MG, Truss M, et al. 17beta-Estradiol induces cyclin D1 gene transcription, p36D1-p34cdk4 complex activation and p105Rb phosphorylation during mitogenic stimulation of G(1)-arrested human breast cancer cells. Oncogene. 1996;12(11):2315–24.

    CAS  PubMed  Google Scholar 

  169. Prall OW, Sarcevic B, Musgrove EA, Watts CK, Sutherland RL. Estrogen-induced activation of Cdk4 and Cdk2 during G1-S phase progression is accompanied by increased cyclin D1 expression and decreased cyclin-dependent kinase inhibitor association with cyclin E-Cdk2. J Biol Chem. 1997;272(16):10882–94.

    Article  CAS  PubMed  Google Scholar 

  170. Lamb J, Ladha MH, McMahon C, Sutherland RL, Ewen ME. Regulation of the functional interaction between cyclin D1 and the estrogen receptor. Mol Cell Biol. 2000;20(23):8667–75. Epub 2000/11/14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Kuo MH, Allis CD. Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays. 1998;20(8):615–26.

    Article  CAS  PubMed  Google Scholar 

  172. Lee KK, Workman JL. Histone acetyltransferase complexes: one size doesn’t fit all. Nat Rev Mol Cell Biol. 2007;8(4):284–95.

    Article  CAS  PubMed  Google Scholar 

  173. Wang Z, Wang M, Lazo JS, Carr BI. Identification of epidermal growth factor receptor as a target of Cdc25A protein phosphatase. J Biol Chem. 2002;277(22):19470–5.

    Article  CAS  PubMed  Google Scholar 

  174. Wang Z, Zhang B, Wang M, Carr BI. Cdc25A and ERK interaction: EGFR-independent ERK activation by a protein phosphatase Cdc25A inhibitor, compound 5. J Cell Physiol. 2005;204(2):437–44.

    Article  CAS  PubMed  Google Scholar 

  175. Melchheier I, von Montfort C, Stuhlmann D, Sies H, Klotz LO. Quinone-induced Cdc25A inhibition causes ERK-dependent connexin phosphorylation. Biochem Biophys Res Commun. 2005;327(4):1016–23.

    Article  CAS  PubMed  Google Scholar 

  176. Chiu YT, Han HY, Leung SC, Yuen HF, Chau CW, Guo Z, et al. CDC25A functions as a novel Ar corepressor in prostate cancer cells. J Mol Biol. 2009;385(2):446–56.

    Article  CAS  PubMed  Google Scholar 

  177. Ngan ES, Hashimoto Y, Ma ZQ, Tsai MJ, Tsai SY. Overexpression of Cdc25B, an androgen receptor coactivator, in prostate cancer. Oncogene. 2003;22(5):734–9. Epub 2003/02/06.

    Article  CAS  PubMed  Google Scholar 

  178. Ozen M, Ittmann M. Increased expression and activity of CDC25C phosphatase and an alternatively spliced variant in prostate cancer. Clin Cancer Res. 2005;11(13):4701–6.

    Article  CAS  PubMed  Google Scholar 

  179. Broggini M, Buraggi G, Brenna A, Riva L, Codegoni AM, Torri V, et al. Cell cycle-related phosphatases CDC25A and B expression correlates with survival in ovarian cancer patients. Anticancer Res. 2000;20(6C):4835–40.

    CAS  PubMed  Google Scholar 

  180. Lorca T, Bernis C, Vigneron S, Burgess A, Brioudes E, Labbe JC, et al. Constant regulation of both the MPF amplification loop and the Greatwall-PP2A pathway is required for metaphase II arrest and correct entry into the first embryonic cell cycle. J Cell Sci. 2010;123(Pt 13):2281–91.

    Article  CAS  PubMed  Google Scholar 

  181. Horiguchi T, Nishi K, Hakoda S, Tanida S, Nagata A, Okayama H. Dnacin A1 and dnacin B1 are antitumor antibiotics that inhibit cdc25B phosphatase activity. Biochem Pharmacol. 1994;48(11):2139–41.

    Article  CAS  PubMed  Google Scholar 

  182. Wipf P, Hopkins CR, Phillips EO, Lazo JS. Separation of Cdc25 dual specificity phosphatase inhibition and DNA cleaving activities in a focused library of analogs of the antitumor antibiotic Dnacin. Tetrahedron. 2002;58(32):6367–72.

    Article  CAS  Google Scholar 

  183. Lazo JS, Wipf P. Is Cdc25 a druggable target? Anticancer Agents Med Chem. 2008;8(8):837–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Lavecchia A, Di Giovanni C, Novellino E. CDC25 phosphatase inhibitors: an update. Mini-Rev Med Chem. 2012;12(1):62–73.

    Article  CAS  PubMed  Google Scholar 

  185. Wu FYH, Sun TP. Vitamin K-3 induces cell cycle arrest and cell death by inhibiting Cdc25 phosphatase. Eur J Cancer. 1999;35(9):1388–93.

    Article  CAS  PubMed  Google Scholar 

  186. Brezak MC, Quaranta M, Contour-Galcera MO, Lavergne O, Mondesert O, Auvray P, et al. Inhibition of human tumor cell growth in vivo by an orally bioavailable inhibitor of CDC25 phosphatases. Mol Cancer Ther. 2005;4(9):1378–87.

    Article  CAS  PubMed  Google Scholar 

  187. Tamura K, Southwick EC, Kerns J, Rosi K, Carr BI, Wilcox C, et al. Cdc25 inhibition and cell cycle arrest by a synthetic thioalkyl vitamin K analogue. Cancer Res. 2000;60(5):1317–25.

    CAS  PubMed  Google Scholar 

  188. Kar S, Wang MF, Ham SW, Carr BI. H32, a non-quinone sulfone analog of vitamin K3, inhibits human hepatoma cell growth by inhibiting Cdc25 and activating ERK. Cancer Biol Ther. 2006;5(10):1340–7.

    Article  CAS  PubMed  Google Scholar 

  189. Brisson M, Foster C, Wipf P, Joo B, Tomko RJ, Nguyen T, et al. Independent mechanistic inhibition of Cdc25 phosphatases by a natural product caulibugulone. Mol Pharmacol. 2007;71(1):184–92.

    Article  CAS  PubMed  Google Scholar 

  190. Aoyagi Y, Masuko N, Ohkubo S, Kitade M, Nagai K, Okazaki S, et al. A novel cinnamic acid derivative that inhibits Cdc25 dual-specificity phosphatase activity. Cancer Sci. 2005;96(9):614–9.

    Article  CAS  PubMed  Google Scholar 

  191. Brezak MC, Quaranta M, Mondesert O, Galcera MO, Lavergne O, Alby F, et al. A novel synthetic inhibitor of CDC25 phosphatases: BN82002. Cancer Res. 2004;64(9):3320–5.

    Article  CAS  PubMed  Google Scholar 

  192. Ajiro K, Yasuda H, Tsuji H. Vanadate triggers the transition from chromosome condensation to decondensation in a mitotic mutant (tsTM13) inactivation of p34cdc2/H1 kinase and dephosphorylation of mitosis-specific histone H3. FEBS J. 1996;241(3):923–30.

    Article  CAS  Google Scholar 

  193. Potapova TA, Sivakumar S, Flynn JN, Li R, Gorbsky GJ. Mitotic progression becomes irreversible in prometaphase and collapses when Wee1 and Cdc25 are inhibited. Mol Biol Cell. 2011;22(8):1191–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Cazales M, Boutros R, Brezak MC, Chaumeron S, Prevost G, Ducommun B. Pharmacologic inhibition of CDC25 phosphatases impairs interphase microtubule dynamics and mitotic spindle assembly. Mol Cancer Ther. 2007;6(1):318–25.

    Article  CAS  PubMed  Google Scholar 

  195. Brezak MC, Valette A, Quaranta M, Contour-Galcera MO, Jullien D, Lavergne O, et al. IRC-083864, a novel bis quinone inhibitor of CDC25 phosphatases active against human cancer cells. Int J Cancer. 2009;124(6):1449–56.

    Article  CAS  PubMed  Google Scholar 

  196. Kar S, Wang M, Carr BI. 2-Methoxyestradiol inhibits hepatocellular carcinoma cell growth by inhibiting Cdc25 and inducing cell cycle arrest and apoptosis. Cancer Chemother Pharmacol. 2008;62(5):831–40.

    Article  CAS  PubMed  Google Scholar 

  197. Brault L, Bagrel D. Activity of novel Cdc25 inhibitors and preliminary evaluation of their potentiation of chemotherapeutic drugs in human breast cancer cells. Life Sci. 2008;82(5-6):315–23.

    Article  CAS  PubMed  Google Scholar 

  198. Rajski SR, Williams RM. DNA cross-linking agents as antitumor drugs. Chem Rev. 1998;98(8):2723–96.

    Article  CAS  PubMed  Google Scholar 

  199. Brisson M, Nguyen T, Wipf P, Joo B, Day BW, Skoko JS, et al. Redox regulation of Cdc25B by cell-active quinolinediones. Mol Pharmacol. 2005;68(6):1810–20.

    CAS  PubMed  Google Scholar 

  200. Lavecchia A, Di Giovanni C, Novellino E. Inhibitors of Cdc25 phosphatases as anticancer agents: a patent review. Expert Opin Ther Pat. 2010;20(3):405–25.

    Article  CAS  PubMed  Google Scholar 

  201. Heidenreich E, Eisler H, Steinboeck F. Epistatic participation of REV1 and REV3 in the formation of UV-induced frameshift mutations in cell cycle-arrested yeast cells. Mutat Res. 2006;593(1–2):187–95.

    Article  CAS  PubMed  Google Scholar 

  202. Masyuk TV, Radtke BN, Stroope AJ, Banales JM, Masyuk AI, Gradilone SA, et al. Inhibition of Cdc25A suppresses hepato-renal cystogenesis in rodent models of polycystic kidney and liver disease. Gastroenterology. 2012;142(3):622–33. e4.

    Article  CAS  PubMed  Google Scholar 

  203. Viry E, Anwar A, Kirsch G, Jacob C, Diederich M, Bagrel D. Antiproliferative effect of natural tetrasulfides in human breast cancer cells is mediated through the inhibition of the cell division cycle 25 phosphatases. Int J Oncol. 2011;38(4):1103–11.

    CAS  PubMed  Google Scholar 

  204. Sibille E, Bana E, Chaouni W, Diederich M, Bagrel D, Chaimbault P. Development of a matrix-assisted laser desorption/ionization-mass spectrometry screening test to evidence reversible and irreversible inhibitors of CDC25 phosphatases. Anal Biochem. 2012;430(1):83–91.

    Article  CAS  PubMed  Google Scholar 

  205. Lavecchia A, Di Giovanni C, Pesapane A, Montuori N, Ragno P, Martucci NM, et al. Discovery of new inhibitors of Cdc25B dual specificity phosphatases by structure-based virtual screening. J Med Chem. 2012;55(9):4142–58.

    Article  CAS  PubMed  Google Scholar 

  206. Mak LH, Knott J, Scott KA, Scott C, Whyte GF, Ye Y, et al. Arylstibonic acids are potent and isoform-selective inhibitors of Cdc25a and Cdc25b phosphatases. Bioorg Med Chem. 2012;20(14):4371–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Stolfi C, Fina D, Caruso R, Caprioli F, Fantini MC, Rizzo A, et al. Mesalazine negatively regulates CDC25A protein expression and promotes accumulation of colon cancer cells in S phase. Carcinogenesis. 2008;29(6):1258–66.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Gabrielli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gabrielli, B., Burgess, A. (2016). Cdc25 Family Phosphatases in Cancer. In: Neel, B., Tonks, N. (eds) Protein Tyrosine Phosphatases in Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3649-6_11

Download citation

Publish with us

Policies and ethics