Skip to main content

Comparative and Functional Morphology of the Primate Hand Integument

  • Chapter
  • First Online:
The Evolution of the Primate Hand

Abstract

The integument of primate hands (i.e., skin and nails) are specialized to interact with the outside world. The integument of the palm is arranged into a series of fleshy volar pads, while hardened nails grow from the skin overlying the tips of the digits. The volar skin provides friction which enhances climbing ability and the prehension of objects, but also contains important mechanoreceptors for tactile acuity. Primate nails are highly diverse in structure and likely play a number of different roles related to locomotion, grasping, and tactile sensitivity. This chapter provides a comprehensive review of the integument of primate hands. First, the structure of volar skin and nails is discussed. This is followed by a review of the anatomical diversity among nonhuman primates and a discussion of the functional significance of different specializations. The chapter ends with avenues for future study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aerts P, Ker RF, De Clercq D, Ilsley DW, Alexander RM (1995) The mechanical properties of the human heel pad: a paradox resolved. J Biomech 28:1299–1308

    Article  CAS  PubMed  Google Scholar 

  • Aerts P, Ker RF, De Clercq D, Ilsley DW (1996) The effects of isolation on the mechanics of the human heel pad. J Anat 188:417–423

    PubMed  PubMed Central  Google Scholar 

  • Beaven DW, Brooks SE (1984) Color Atlas of the nail in clinical diagnosis. Year Book Medical Publishers, Inc., Chicago

    Google Scholar 

  • Bennett MB, Ker RF (1990) The mechanical properties of the human subcalcaneal fat pad in compression. J Anat 171:131–138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Biegert J (1959) Die Ballen, Leisten, furchen und Nägel von Hand und Fuß der Halbaffen. Z Morphol Anthropol 49:316–409

    Google Scholar 

  • Biegert J (1961) Volarhaut der Hände und Füsse. In: Hofer T, Schultz AH, Stark D (eds) Primatologia, vol 2. Karger, Basel, pp 1–326

    Google Scholar 

  • Biegert J (1963) The evaluation of characteristics of the skull, hands, and feet for primate taxonomy. In: Washburn SL (ed) Classification and human evolution. Aldine, Chicago, pp 116–145

    Google Scholar 

  • Birznieks I, Macefield VG, Westling G, Johansson RS (2009) Slowly adapting mechanoreceptors in the borders of the human fingernail encode fingertip forces. J Neurosci 29:9370–9379

    Article  CAS  PubMed  Google Scholar 

  • Bishop A (1964) Use of the hand in lower primates. In: Buettner-Janusch J (ed) Evolutionary and genetic biology of primates. Academic Press, New York, pp 133–223

    Chapter  Google Scholar 

  • Bruhns F (1910) Der Nagel der Halbaffen und Affen: ein Beitrag zur Phylogenie des menschlichen Nagels. Gegenbaurs Morphol Jahrb 40:501–609

    Google Scholar 

  • Bryant HN, Russell AP, Laroiya R, Powell GL (1996) Claw retraction and protraction in the Carnivora: skeletal microvariation in the phalanges of the Felidae. J Morphol 229:289–308

    Article  CAS  PubMed  Google Scholar 

  • Buck C, Bär H (1993) Investigations on the biomechanical significance of dermatoglyphic ridges. In: Preuschoft H, Chivers DJ (eds) Hands of primates. Springer, Vienna, pp 285–306

    Chapter  Google Scholar 

  • Cartmill M (1972) Arboreal adaptations and the origin of the order Primates. In: Tuttle R (ed) The functional and evolutionary biology of primates. Aldine-Atherton, Chicago, pp 97–122

    Google Scholar 

  • Cartmill M (1974a) Pads and claws in arboreal locomotion. In: Jenkins FA Jr (ed) Primate locomotion. Academic Press, New York, pp 45–83

    Chapter  Google Scholar 

  • Cartmill M (1974b) Rethinking primate origins. Science 184:436–443

    Article  CAS  PubMed  Google Scholar 

  • Cartmill M (1979) The volar skin of primates: its frictional characteristics and their functional significance. Am J Phys Anthropol 50:497–509

    Article  CAS  PubMed  Google Scholar 

  • Cartmill M (1985) Climbing. In: Hildebrand M, Bramble DM, Liem KF, Wake DB (eds) Functional vertebrate morphology. Belknap Press, Cambridge, MA, pp 73–88

    Google Scholar 

  • Cauna N (1954) Nature and functions of the papillary ridges of the digital skin. Anat Rec 119:449–468

    Article  CAS  PubMed  Google Scholar 

  • Cauna N (1956) Nerve supply and nerve ending in Meissner’s corpuscles. Am J Anat 99:315–350

    Article  CAS  PubMed  Google Scholar 

  • Charles-Dominique P (1977) Ecology and behaviour of nocturnal primates. Columbia University Press, New York

    Google Scholar 

  • Cochran GVB (1982) A primer of orthopaedic biomechanics. Churchill Livingstone, New York

    Google Scholar 

  • Comaish S, Bottoms E (1971) The skin and friction: deviations from Amonton’s laws, and the effects of hydration and lubrication. Br J Derm 84:37–43

    Article  CAS  Google Scholar 

  • Derler S, Huber R, Feuz H-P, Hadad M (2009) Influence of surface microstructure on the sliding friction of plantar skin against hard substrates. Wear 267:1281–1288

    Article  CAS  Google Scholar 

  • Farren L, Shayler S, Ennos AR (2004) The fracture properties and mechanical design of human fingernails. J Exp Biol 207:735–741

    Article  CAS  PubMed  Google Scholar 

  • Fawcett DW (1994) Bloom and Fawcett: a textbook of histology, 12th edn. Chapman and Hall, New York

    Google Scholar 

  • Fleckman P, Jaeger K, Silva KA, Sundberg JP (2013) Comparative anatomy of mouse and human nail units. Anat Rec 296:521–532

    Article  Google Scholar 

  • Ford SM (1980) Callitrichids as phyletic dwarfs, and the place of the Callitrichidae in Platyrrhini. Primates 21:31–43

    Article  Google Scholar 

  • Garber PA (1980) Locomotor behavior and feeding ecology of the Panamanian tamarin (Saguinus oedipus geoffroyi, Callitrichidae, Primates). Int J Primatol 1:185–201

    Article  Google Scholar 

  • Garber PA (1992) Vertical clinging, small body size, and the evolution of feeding adaptations in the Callitrichinae. Am J Phys Anthropol 88:469–482

    Article  CAS  PubMed  Google Scholar 

  • Garson JC, Baltenneck F, Leroy F, Riekel C, Müller M (2000) Histological structure of human nail as studied by synchrotron X-ray microdiffraction. Cell Mol Biol (Noisy-le-Grand) 46:1025–1034

    CAS  Google Scholar 

  • Godinot M (2007) Primate origins: reappraisal of historical data favoring tupaiid affinities. In: Ravosa MJ, Dagosto M (eds) Primate origins: adaptations and evolution. Springer, New York, pp 403–435

    Google Scholar 

  • Godinot M, Beard KC (1991) Fossil primate hands: a review and an evolutionary inquiry emphasizing early forms. Hum Evol 6:307–354

    Article  Google Scholar 

  • Gonyea W, Ashworth R (1975) The form and function of retractile claws in the Felidae and other representatives carnivorans. J Morphol 145:229–238

    Article  CAS  PubMed  Google Scholar 

  • Haffner M (1998) A comparison of the gross morphology and micro-anatomy of the foot pads in two fossorial and two climbing rodents (Mammalia). J Zool 244:287–294

    Article  Google Scholar 

  • Haines RW (1955) The anatomy of the hand of certain insectivores. Proc Zool Soc Lond 125:761–777

    Article  Google Scholar 

  • Haines RW (1958) Arboreal or terrestrial ancestry of placental mammals. Q Rev Biol 33:1–23

    Article  CAS  PubMed  Google Scholar 

  • Halata Z (1975) The mechanoreceptors of the mammalian skin. Adv Anat Embryol Cell Biol 50:1–77

    Google Scholar 

  • Halata Z, Grim M, Bauman KI (2003) Friedrich Sigmund Merkel and his “Merkel Cell”, morphology, development, and physiology: review and new results. Anat Rec 271A:225–239

    Article  Google Scholar 

  • Hamrick MW (1998) Functional and adaptive significance of primate pads and claws: evidence from New World anthropoids. Am J Phys Anthropol 106:113–127

    Article  CAS  PubMed  Google Scholar 

  • Hamrick MW (1999) Pattern and process in the evolution of primate nails and claws. J Hum Evol 37:293–297

    Article  CAS  PubMed  Google Scholar 

  • Hamrick MW (2001a) Development and evolution of the mammalian limb: adaptive diversification of nails, hooves, and claws. Evol Dev 3:355–363

    Article  CAS  PubMed  Google Scholar 

  • Hamrick MW (2001b) Morphological diversity in digital skin microstructure of didelphid marsupials. J Anat 198:683–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamrick MW (2003) Evolution and development of mammalian limb integumentary structures. J Exp Zool B 298B:152–163

    Article  Google Scholar 

  • Hashimoto K, Hori K, Aso M (1986) Sweat glands. In: Bereiter-Hahn J, Matoltsy AG, Richards KS (eds) Biology of the integument. Springer-Verlag, Berlin, pp 339–356

    Chapter  Google Scholar 

  • Hershkovitz P (1977) Living New World monkeys (Platyrrhini), vol 1. University of Chicago Press, Chicago

    Google Scholar 

  • Hildebrand M (1985) Digging of quadrupeds. In: Hildebrand M, Bramble DM, Liem KF, Wake DB (eds) Functional vertebrate morphology. Belknap Press, Cambridge, MA, pp 89–109

    Chapter  Google Scholar 

  • Hoffmann JN, Montag AG, Dominy NJ (2004) Meissner corpuscles and somatosensory acuity: the prehensile appendages of primates and elephants. Anat Rec 281A:1138–1147

    Article  Google Scholar 

  • Homberger DG, Ham K, Ogunbakin T, Bonin JA, Hopkins BA, Osborn ML, Hossain I, Barnett HA, Matthews KL II, Butler LG, Bragulla HH (2009) The structure of the cornified claw sheath in the domesticated cat (Felis catus): implications for the claw-shedding mechanism and the evolution of cornified digital end organs. J Anat 214:620–643

    Article  PubMed  PubMed Central  Google Scholar 

  • Iwaniuk AN, Nelson JE, Ivanco TL, Pellis SM, Whishaw IQ (1998) Reaching, grasping, and manipulation of food objects by two tree kangaroo species, Dendrolagus lumholtzi and Dendrolagus matschiei. Aust J Zool 46:235–248

    Article  Google Scholar 

  • Jindrich DL, Zhou Y, Becker T, Dennerlein JT (2003) Non-linear viscoelastic models predict fingertip pulp force-displacement characteristics during voluntary tapping. J Biomech 36:497–503

    Article  PubMed  Google Scholar 

  • Johansson RS, Vallbo ÅB (1979) Tactile sensibility in the human hand: relative and absolute densities of four types of mechanoreceptive units in glabrous skin. J Physiol 286:282–300

    Article  Google Scholar 

  • Johnson MK, Cohen MJ (1975) The hand atlas. Charles C. Thomas, Springfield

    Google Scholar 

  • Ker RF (1990) The time-dependent mechanical properties of the human heel pad in the context of locomotion. J Exp Biol 199:1501–1508

    Google Scholar 

  • Leeson CR, Leeson TS, Paparo AA (1985) Textbook of histology. W.B. Saunders, Philadelphia

    Google Scholar 

  • Le Gros Clark WE (1936) The problem of the claw in primates. Proc Zool Soc Lond 106:1–24

    Article  Google Scholar 

  • Le Gros Clark WE (1959) The antecedents of man. Edinburgh University Press, Edinburgh

    Google Scholar 

  • Lemelin P (2000) Micro-anatomy of the volar skin and interordinal relationships of primates. J Hum Evol 38:257–267

    Article  CAS  PubMed  Google Scholar 

  • Lemelin P, Grafton BW (1998) Grasping performance in Saguinus midas and the evolution of hand prehensility in primates. In: Strasser E, Fleagle J, Rosenberger A, McHenry H (eds) Primate locomotion: recent advances. Plenum Press, New York, pp 131–144

    Chapter  Google Scholar 

  • Lemelin P, Jungers WL (2007) Body size and scaling of the hands and feet of prosimian primates. Am J Phys Anthropol 133:828–840

    Article  PubMed  Google Scholar 

  • MacKenzie CL, Iberall T (1994) The grasping hand. Elsevier, Amsterdam

    Google Scholar 

  • Martin RD (1986) Primates: a definition. In: Wood B, Martin L, Andrews P (eds) Major topics in primate and human evolution. Cambridge University Press, Cambridge, pp 1–31

    Google Scholar 

  • Martin RD (1992) Goeldi and the dwarfs: the evolutionary biology of the small New World monkeys. J Hum Evol 22:367–393

    Article  Google Scholar 

  • Mendel FC (1981) The hand of two-toed sloths (Choloepus): its anatomy and potential uses relative to size of support. J Morphol 169:1–19

    Article  Google Scholar 

  • Mivart SG (1873) On Lepilemur and Cheirogaleus, and on the zoological rank of the Lemuroidea. Proc Zool Soc Lond 1873:485–510

    Google Scholar 

  • Montagna W, Parakkal PF (1974) The structure and function of skin, 3rd edn. Academic Press, New York

    Google Scholar 

  • Montagna W, Yun JS (1963) The skin of Primates. XVI The skin of Lemur mongoz. Am J Phys Anthropol 21:371–381

    Article  CAS  PubMed  Google Scholar 

  • Midlo C (1934) Form of the hand and foot in primates. Am J Phys Anthropol 19:337–389

    Article  Google Scholar 

  • Midlo C, Cummings H (1942) Palmar and plantar dermatoglyphics in the Primates. Am Anat Mem 20:1–198

    Google Scholar 

  • Munger BL, Pubols LM (1972) The sensorineural organization of the digital skin of the raccoon. Brain Behav Evol 5:367–393

    Article  CAS  PubMed  Google Scholar 

  • Musser GG (1972) The species of Hapalomys (Rodentia, Muridae). Am Mus Novit 2503:1–27

    Google Scholar 

  • Musser GG, Dagosto M (1987) The identity of Tarsius pumilus, a pygmy species endemic to the montane mossy forests of Central Sulawesi. Am Mus Novit 2867:1–53

    Google Scholar 

  • Napier J (1993) Hands. Revised edition by Russell H. Tuttle. Princeton University Press, Princeton

    Google Scholar 

  • Naylor PFD (1955) The skin surface and friction. Br J Dermatol 67:239–248

    Article  CAS  PubMed  Google Scholar 

  • Niemitz C (1990) The evolution of primate skin structures in relation to gravity and locomotor patterns. In: Jouffroy FK, Stack MH, Niemitz C (eds) Gravity, posture and locomotion in primates. Il Sedicesimo, Florence, pp 129–156

    Google Scholar 

  • Nieschalk U, Klauer GJ (1989) Functional morphology of the palmar pads in Loris tardigradus and Galago senegalensis. In: Splechtna H, Hilgers H (eds) Trends in vertebrate morphology. Gustav Fischer Verlag, Stuttgart, pp 605–607

    Google Scholar 

  • Okajima M (1991) Dermal ridge development on the volar pads of the rat (Rattus norvegicus) and comparative study of pattern formation using inbred strains. Am J Anat 191:23–34

    Article  CAS  PubMed  Google Scholar 

  • Okajima M, Asai Y (1985) Anatomical and microscopic study of the volar dermal ridges of the rat (Rattus norvegicus). Am J Phys Anthropol 67:81–88

    Article  CAS  PubMed  Google Scholar 

  • Organ JM, Muchlinski MN, Deane AS (2011) Mechanoreceptivity of prehensile tail skin varies between ateline and cebine primates. Anat Rec 294:2064–2072

    Article  Google Scholar 

  • Panzer W (1932) Beiträge zur biologischen Anatomie des Baumkletterns der Säugetiere. I Das Nagel-Kralle-Problem. Z Anat Entwicklungs 98:147–198

    Article  Google Scholar 

  • Pardo-Castello V (1960) Disease of the nail, 3rd edn. Charles C. Thomas, Springfield

    Google Scholar 

  • Pawluk DTV, Howe RD (1999) Dynamic lumped element response of the human fingerpad. J Biomech Eng 121:178–183

    Article  CAS  PubMed  Google Scholar 

  • Perrin C, Langbein L, Schweizer J (2004) Expression of hair keratins in the adult nail unit: an immunohistochemical analysis of the onychogenesis in the proximal nail fold, matrix and nail bed. Br J Dermatol 151:362–371

    Article  CAS  PubMed  Google Scholar 

  • Pocock RI (1917) The genera of the Hapalidae. Ann Mag Nat Hist 20:247–258

    Article  Google Scholar 

  • Preuschoft H (1970) Functional anatomy of the lower extremity. In: Bourne GH (ed) The chimpanzee, vol 3. Karger, Basel, pp 221–294

    Google Scholar 

  • Preuschoft H (1973) Functional anatomy of the upper extremity. In: Bourne GH (ed) The chimpanzee, vol 6. University Park Press, Baltimore, pp 34–120

    Google Scholar 

  • Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaMantia A-S, McNamara JO, White LE (eds) (2008) Neuroscience, 4th edn. Sinauer, Sunderland

    Google Scholar 

  • Rasmussen DT (1990) Primate origins: lessons from a neotropical marsupial. Am J Primatol 22:263–277

    Article  Google Scholar 

  • Riskin DK, Racey PA (2010) How do sucker-footed bats hold on, and why do they roost head-up? Biol J Linn Soc 99:233–240

    Article  Google Scholar 

  • Rosenberg HI, Rose R (1999) Volar adhesive pads of the feathertail glider, Acrobates pygmaeus (Marsupialia; Acrobatidae). Can J Zool 77:233–248

    Article  Google Scholar 

  • Rosenberger AL (1977) Xenothrix and ceboid phylogeny. J Hum Evol 6:461–481

    Article  Google Scholar 

  • Russell EM (1986) Observations on the behaviour of the honey possum, Tarsipes rostratus (Marsupialia: Tarsipedidae) in captivity. Aust J Zool Suppl Ser 34:1–63

    Article  Google Scholar 

  • Sakai N, Shimawaki S (2007) Strain in the nail at fingertip compression. Skin Res Technol 13:449–453

    Article  PubMed  Google Scholar 

  • Schliemann H, Goodman SM (2011) A new study on the structure and function of the adhesive organs of the Old World sucker-footed bat (Myzopoda: Myzopodidae) of Madagascar. Verh Naturwiss Ver Hamburg 46:313–330

    Google Scholar 

  • Soligo C (2005) Anatomy of the hand and arm in Daubentonia madagascariensis: a functional and phylogenetic outlook. Folia Primatol 76:262–300

    Article  PubMed  Google Scholar 

  • Soligo C, Müller AE (1999) Nails and claws in primate evolution. J Hum Evol 36:97–114

    Article  CAS  PubMed  Google Scholar 

  • Spearman RIC (1985) Phylogeny of the nail. J Hum Evol 14:57–61

    Article  Google Scholar 

  • Sprankel H (1969a) Comparative microscopic studies of nail plate and surrounding soft tissue of some Hominoidea. In: Hofer HO (ed) Proceedings of the second international congress of primatology, Atlanta 1968, vol 2, Recent advances in primatology. S. Karger, Basel, pp 82–86

    Google Scholar 

  • Sprankel H (1969b) Observation on growth structure of the nail in Hominoidea. Folia Primatol 10:161–171

    Article  CAS  PubMed  Google Scholar 

  • Springer MS, Stanhope MJ, Madsen O, de Jong WW (2004) Molecules consolidate the placental mammal tree. Trends Ecol Evol 19:430–438

    Article  PubMed  Google Scholar 

  • Stenn K, Fleckman P (2000) Hair and nail physiology. In: Hordinsky MK, Sawaya ME, Scher RK (eds) Atlas of hair and nails. Churchill Livingstone, Philadelphia, pp 3–8

    Google Scholar 

  • Stone M, Styles AR, Cockerell CJ (2000) Histology of the normal nail unit. In: Hordinsky MK, Sawaya ME, Scher RK (eds) Atlas of hair and nails. Churchill Livingstone, Philadelphia, pp 18–26

    Google Scholar 

  • Szalay FS (1994) Evolutionary history of the marsupials and an analysis of osteological characters. Cambridge University Press, Cambridge

    Google Scholar 

  • Szalay FS, Dagosto M (1980) Locomotor adaptations as reflected on the humerus of Paleogene primates. Folia Primatol 34:1–45

    Article  CAS  PubMed  Google Scholar 

  • Thewissen JGM, Etnier SA (1995) Adhesive devices on the thumb of vespertilionoid bats (Chiroptera). J Mammal 76:925–936

    Article  Google Scholar 

  • Thorndike E (1968) A microscopic study of marmoset claw and nail. Am J Phys Anthropol 28:247–268

    Article  CAS  PubMed  Google Scholar 

  • Tilden CD (1990) A study of locomotor behavior in a captive colony of red-bellied lemurs (Eulemur rubriventer). Am J Primatol 22:87–100

    Article  Google Scholar 

  • Tomlinson SE, Lewis R, Carré MJ (2007) Review of the frictional properties of finger-object when grasping. Proc Inst Mech J Eng J Eng Tribol 221:841–850

    Article  Google Scholar 

  • Turner V, McKay GM (1989) Burramyidae. In: Walton DW, Richardson BJ (eds) Fauna of Australia, vol 1B, Mammalia. Australian Government Publishing Services, Canberra, pp 652–664

    Google Scholar 

  • Verendeev A, Thomas C, McFarlin SC, Hopkins WD, Phillips KA, Sherwood CC (2015) Comparative analysis of Meissner’s corpuscles in the fingertips of primates. J Anat 227:72–80

    Article  PubMed  Google Scholar 

  • Warman PH, Ennos R (2009) Fingerprints are unlikely to increase the friction of primate fingerpads. J Exp Biol 212:2016–2022

    Article  PubMed  Google Scholar 

  • Whipple IL (1904) The ventral surface of the mammalian chiridium. Z Morphol Anthropol 7:261–368

    Google Scholar 

  • Wible JR, Covert HH (1987) Primates: cladistic diagnosis and relationships. J Hum Evol 16:1–22

    Article  Google Scholar 

  • Williams PL (ed) (1995) Gray’s anatomy, 38th edn. Churchill Livingstone, New York

    Google Scholar 

  • Wimsatt WA, Villa-R B (1970) Locomotor adaptations in disc-winged bat Thyroptera tricolor. 1. Functional organization of adhesive discs. Am J Anat 129:89–119

    Article  CAS  PubMed  Google Scholar 

  • Winkelmann RK (1962) Cutaneous sensory end organs of some anthropoid apes. Science 136:384–386

    Article  CAS  PubMed  Google Scholar 

  • Winkelmann RK (1963) Nerve ending in the skin of primates. In: Buettner-Janusch J (ed) Evolutionary and genetic biology of Primates, vol 1. Academic Press, New York, pp 229–259

    Chapter  Google Scholar 

  • Winkelmann RK (1964) Nerve endings of the North American opossum (Didelphis virginiana): a comparison with nerve endings of primates. Am J Phys Anthropol 22:253–258

    Article  CAS  PubMed  Google Scholar 

  • Winkelmann RK (1965) Innervation of the skin: notes on a comparison of primate and marsupial nerve endings. In: Lyne AG, Short BF (eds) Biology of the skin and hair growth. American Elsevier, New York, pp 171–182

    Google Scholar 

  • Wood Jones F (1916) Arboreal man. Edward Arnold, London

    Google Scholar 

  • Wood Jones F (1942) The principles of anatomy as seen in the hand, 2nd edn. Ballière Tindall, and Cox, London

    Google Scholar 

  • Zook EH (2003) Anatomy and physiology of the perionychium. Clin Anat 16:1–8

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are very grateful to David Begg, Tracy Kivell, Brian Richmond, and Daniel Schmitt for providing insightful comments on a draft of this chapter. S.M. acknowledges Neil Duncan and especially Eileen Westwig for access to the mammalogy collections at the American Museum of Natural History and Drs. John Fleagle and Susan Larson for access to specimens held at Stony Brook University. Her work was funded by grants from the National Science Foundation (BCS-1341075) and the Leakey Foundation. A.K. acknowledges Drs. Susan Larson (University at Stony Brook), Magdalena Muchlinski (University of Kentucky), and Nathan Kley (University at Stony Brook) and the Duke Lemur Center for guidance, access to study specimens, and access to histology equipment. Her work was funded by a grant from the National Science Foundation (BCS-1097438). P.L. acknowledges Drs. Matt Cartmill (Boston University), John Fleagle (University at Stony Brook), Norman Taslitz (University of New Mexico), and Hans Thewissen (Northeast Ohio Medical University), the Duke Lemur Center, and the Carnegie Museum of Natural History (Sue MacLaren) for access to primate and non-primate volar skin specimens, Jeannette Killius and Janice Walas (Northeast Ohio Medical University) for their expertise and help during preparation of the histological slides, Dr. Daniel Livy (University of Alberta) for access to photomicroscopic equipment, and Elizabeth Hodges for her invaluable help with bibliographical research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Lemelin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Maiolino, S.A., Kingston, A.K., Lemelin, P. (2016). Comparative and Functional Morphology of the Primate Hand Integument. In: Kivell, T., Lemelin, P., Richmond, B., Schmitt, D. (eds) The Evolution of the Primate Hand. Developments in Primatology: Progress and Prospects. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3646-5_8

Download citation

Publish with us

Policies and ethics