Skip to main content

Nanotheranostics and In-Vivo Imaging

  • Chapter
  • First Online:
Nanomedicine

Part of the book series: Advances in Delivery Science and Technology ((ADST))

Abstract

Advances in imaging and nanotechnology have provided the opportunity for simultaneous delivery and diagnosis. Modalities such as positron emission tomography (PET), single photon emission computerized tomography (SPECT), magnetic resonance imaging (MRI) and optical imaging have allowed researches to visualize nano-sized drug delivery vehicles which carry payloads in order to coordinate disease treatment. This important tool can be termed “Nanotheranostics.” This chapter describes the potential utility of the combined approach. The importance of selecting the correct components for a particular disease will also be discussed allowing for researchers to design effective delivery systems in order to accelerate the development in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sumer B, Gao J (2008) Theranostic nanomedicine for cancer. Nanomedicine (Lond) 3:137–140

    Article  Google Scholar 

  2. Eifler AC, Thaxton CS (2011) Nanoparticle therapeutics: FDA approval, clinical trials, regulatory pathways, and case study. Methods Mol Biol 726:325–338

    Article  CAS  PubMed  Google Scholar 

  3. Kelkar SS, Reineke TM (2011) Theranostics: combining imaging and therapy. Bioconjug Chem 22:1879–1903

    Article  CAS  PubMed  Google Scholar 

  4. Zieba A, Grannas K, Soderberg O, Gullberg M, Nilsson M, Landegren U (2012) Molecular tools for companion diagnostics. N Biotechnol 29:634–640

    Article  CAS  PubMed  Google Scholar 

  5. Bailey DL (2005) Positron emission tomography: basic sciences. Springer, New York

    Book  Google Scholar 

  6. Chowdhury FU, Scarsbrook AF (2008) The role of hybrid SPECT-CT in oncology: current and emerging clinical applications. Clin Radiol 63:241–251

    Article  CAS  PubMed  Google Scholar 

  7. James ML, Gambhir SS (2012) A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev 92:897–965

    Article  CAS  PubMed  Google Scholar 

  8. Allen HC, Libby RL, Cassen B (1951) The scintillation counter in clinical studies of human thyroid physiology using 131I. J Clin Endocrinol Metab 11:492–511

    Article  PubMed  Google Scholar 

  9. de Haën C (2001) Conception of the first magnetic resonance imaging contrast agents: a brief history. Top Magn Reson Imaging 12:221–230

    Article  PubMed  Google Scholar 

  10. Bremer C, Ntziachristos V, Weissleder R (2003) Optical-based molecular imaging: contrast agents and potential medical applications. Eur Radiol 13:231–243

    PubMed  Google Scholar 

  11. Graves EE, Weissleder R, Ntziachristos V (2004) Fluorescence molecular imaging of small animal tumor models. Curr Mol Med 4:419–430

    Article  CAS  PubMed  Google Scholar 

  12. Ntziachristos V, Bremer C, Weissleder R (2003) Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur Radiol 13:195–208

    PubMed  Google Scholar 

  13. Castle J, Butts M, Healey A, Kent K, Marino M, Feinstein SB (2013) Ultrasound-mediated targeted drug delivery: recent success and remaining challenges. Am J Physiol Heart Circ Physiol 304:H350–H357

    Article  CAS  PubMed  Google Scholar 

  14. Kiessling F, Fokong S, Koczera P, Lederle W, Lammers T (2012) Ultrasound microbubbles for molecular diagnosis, therapy, and theranostics. J Nucl Med 53:345–348

    Article  CAS  PubMed  Google Scholar 

  15. Liang HD, Blomley MJ (2003) The role of ultrasound in molecular imaging. Br J Radiol 76(Spec No 2):S140–S150

    Article  CAS  PubMed  Google Scholar 

  16. Zhao YZ, Du LN, Lu CT, Jin YG, Ge SP (2013) Potential and problems in ultrasound-responsive drug delivery systems. Int J Nanomedicine 8:1621–1633

    PubMed  PubMed Central  Google Scholar 

  17. Funkhouser J (2002) Reintroducing pharma: theranostic revolution. Curr Drug Discov 2

    Google Scholar 

  18. Blair ED, Stratton EK, Kaufmann M (2012) The economic value of companion diagnostics and stratified medicines. Expert Rev Mol Diagn 12:791–794

    Article  CAS  PubMed  Google Scholar 

  19. Weissleder R (2009) Molecular imaging: principles and practice. People’s Medical Publishing House, Shelton, CT

    Google Scholar 

  20. Gambhir SS (2002) Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2:683–693

    Article  CAS  PubMed  Google Scholar 

  21. Goldsmith SJ (2010) Radioimmunotherapy of lymphoma: Bexxar and Zevalin. Semin Nucl Med 40:122–135

    Article  PubMed  Google Scholar 

  22. Lammers T, Kiessling F, Hennink WE, Storm G (2010) Nanotheranostics and image-guided drug delivery: current concepts and future directions. Mol Pharm 7:1899–1912

    Article  CAS  PubMed  Google Scholar 

  23. Gormley AJ, Larson N, Banisadr A et al (2013) Plasmonic photothermal therapy increases the tumor mass penetration of HPMA copolymers. J Control Release 166:130–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bowden DJ, Barrett T (2011) Angiogenesis imaging in neoplasia. J Clin Imaging Sci 1:38

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cresce A, Dandu R, Burger A, Cappello J, Ghandehari H (2008) Characterization and real-time imaging of gene expression of adenovirus embedded silk-elastinlike protein polymer hydrogels. Mol Pharm 5:891–897

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Buckway B, Frazier N, Gormley AJ, Ray A, Ghandehari H (2014) Gold nanorod-mediated hyperthermia enhances the efficacy of HPMA copolymer-90Y conjugates in treatment of prostate tumors. Nucl Med Biol 41:282–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rudin M, Weissleder R (2003) Molecular imaging in drug discovery and development. Nat Rev Drug Discov 2:123–131

    Article  CAS  PubMed  Google Scholar 

  28. Plewes DB, Kucharczyk W (2012) Physics of MRI: a primer. J Magn Reson Imaging 35:1038–1054

    Article  PubMed  Google Scholar 

  29. Brown MA, Semelka RC (2010) MRI: basic principles and applications, 4th edn. Wiley-Blackwell/John Wiley & Sons, Hoboken, NJ

    Google Scholar 

  30. Koh TS, Bisdas S, Koh DM, Thng CH (2011) Fundamentals of tracer kinetics for dynamic contrast-enhanced MRI. J Magn Reson Imaging 34:1262–1276

    Article  PubMed  Google Scholar 

  31. Chen J, Lanza GM, Wickline SA (2010) Quantitative magnetic resonance fluorine imaging: today and tomorrow. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:431–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang H, Zhang L, Myerson J et al (2011) Quantifying the evolution of vascular barrier disruption in advanced atherosclerosis with semipermeant nanoparticle contrast agents. PLoS One 6:e26385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kok MB, de Vries A, Abdurrachim D et al (2011) Quantitative (1)H MRI, (19)F MRI, and (19)F MRS of cell-internalized perfluorocarbon paramagnetic nanoparticles. Contrast Media Mol Imaging 6:19–27

    Article  CAS  PubMed  Google Scholar 

  34. Neubauer AM, Myerson J, Caruthers SD et al (2008) Gadolinium-modulated 19F signals from perfluorocarbon nanoparticles as a new strategy for molecular imaging. Magn Reson Med 60:1066–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Waters EA, Chen J, Allen JS, Zhang H, Lanza GM, Wickline SA (2008) Detection and quantification of angiogenesis in experimental valve disease with integrin-targeted nanoparticles and 19-fluorine MRI/MRS. J Cardiovasc Magn Reson 10:43

    Article  PubMed  PubMed Central  Google Scholar 

  36. Porsch C, Zhang Y, Ostlund A et al (2013) In vitro evaluation of non-protein adsorbing breast cancer theranostics based on 19F-polymer containing nanoparticles. Part Part Syst Charact 30:381–390

    Article  CAS  Google Scholar 

  37. Hricak H (2011) Oncologic imaging: a guiding hand of personalized cancer care. Radiology 259:633–640

    Article  PubMed  Google Scholar 

  38. Hielscher AH (2005) Optical tomographic imaging of small animals. Curr Opin Biotechnol 16:79–88

    Article  CAS  PubMed  Google Scholar 

  39. Ntziachristos V, Ripoll J, Wang LV, Weissleder R (2005) Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol 23:313–320

    Article  CAS  PubMed  Google Scholar 

  40. Licha K, Olbrich C (2005) Optical imaging in drug discovery and diagnostic applications. Adv Drug Deliv Rev 57:1087–1108

    Article  CAS  PubMed  Google Scholar 

  41. Ntziachristos V, Tung CH, Bremer C, Weissleder R (2002) Fluorescence molecular tomography resolves protease activity in vivo. Nat Med 8:757–760

    Article  CAS  PubMed  Google Scholar 

  42. Prekeges J (2013) Nuclear medicine instrumentation, 2nd edn. Jones & Bartlett Learning, Burlington, MA

    Google Scholar 

  43. Brechbiel MW (2008) Bifunctional chelates for metal nuclides. Q J Nucl Med Mol Imaging 52:166–173

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Khalil MM (2011) Basic sciences of nuclear medicine. Springer, Heidelberg

    Book  Google Scholar 

  45. Seevers RH, Counsell RE (1982) Radioiodination techniques for small organic molecules. Chem Rev 82:575–590

    Article  CAS  Google Scholar 

  46. Saha GB (2010) Fundamentals of nuclear pharmacy, 6th edn. Springer, New York

    Book  Google Scholar 

  47. Srivastava SC (2012) Paving the way to personalized medicine: production of some promising theragnostic radionuclides at Brookhaven National Laboratory. Semin Nucl Med 42:151–163

    Article  PubMed  Google Scholar 

  48. Hijnen NM, de Vries A, Nicolay K, Grull H (2012) Dual-isotope 111In/177Lu SPECT imaging as a tool in molecular imaging tracer design. Contrast Media Mol Imaging 7:214–222

    Article  CAS  PubMed  Google Scholar 

  49. Alberini JL, Edeline V, Giraudet al et al (2011) Single photon emission tomography/computed tomography (SPET/CT) and positron emission tomography/computed tomography (PET/CT) to image cancer. J Surg Oncol 103:602–606

    Google Scholar 

  50. Liu Y, Welch MJ (2012) Nanoparticles labeled with positron emitting nuclides: advantages, methods, and applications. Bioconjug Chem 23:671–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yuan J, Zhang H, Kaur H, Oupicky D, Peng F (2012) Synthesis and characterization of theranostic poly(HPMA)-c(RGDyK)-DOTA-64Cu copolymer targeting tumor angiogenesis: tumor localization visualized by positron emission tomography. Mol Imaging 12:203–212

    Google Scholar 

  52. Fass L (2008) Imaging and cancer: a review. Mol Oncol 2:115–152

    Article  PubMed  Google Scholar 

  53. Prabhu P, Patravale V (2012) The upcoming field of theranostic nanomedicine: an overview. J Biomed Nanotechnol 8:859–882

    Article  CAS  PubMed  Google Scholar 

  54. Zhang XQ, Xu X, Bertrand N, Pridgen E, Swami A, Farokhzad OC (2012) Interactions of nanomaterials and biological systems: implications to personalized nanomedicine. Adv Drug Deliv Rev 64:1363–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Farokhzad OC, Langer R (2006) Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev 58:1456–1459

    Article  CAS  PubMed  Google Scholar 

  56. Zhang H (2012) Multifunctional nanomedicine platforms for cancer therapy. J Nanosci Nanotechnol 12:4012–4018

    Article  CAS  PubMed  Google Scholar 

  57. Liu Y, Miyoshi H, Nakamura M (2007) Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. Int J Cancer 120:2527–2537

    Article  CAS  PubMed  Google Scholar 

  58. Lee PY, Wong KK (2011) Nanomedicine: a new frontier in cancer therapeutics. Curr Drug Deliv 8:245–253

    Article  CAS  PubMed  Google Scholar 

  59. Kopecek J, Kopeckova P, Minko T, Lu ZR, Peterson CM (2001) Water soluble polymers in tumor targeted delivery. J Control Release 74:147–158

    Article  CAS  PubMed  Google Scholar 

  60. Torchilin VP (2008) Multifunctional pharmaceutical nanocarriers. Springer, New York

    Book  Google Scholar 

  61. Kopecek J, Kopeckova P (2010) HPMA copolymers: origins, early developments, present, and future. Adv Drug Deliv Rev 62:122–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Luo K, Yang J, Kopečková P, Kopeček J (2011) Biodegradable multiblock poly[N-(2-hydroxypropyl)methacrylamide] via reversible addition-fragmentation chain transfer polymerization and click chemistry. Macromolecules 44:2481–2488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pan H, Sima M, Miller SC, Kopečková P, Yang J, Kopeček J (2013) Efficiency of high molecular weight backbone degradable HPMA copolymer-prostaglandin E1 conjugate in promotion of bone formation in ovariectomized rats. Biomaterials 34:6528–6538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pan H, Sima M, Yang J, Kopeček J (2013) Synthesis of long-circulating, backbone degradable HPMA copolymer-doxorubicin conjugates and evaluation of molecular-weight-dependent antitumor efficacy. Macromol Biosci 13:155–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rihova B, Kovar M (2010) Immunogenicity and immunomodulatory properties of HPMA-based polymers. Adv Drug Deliv Rev 62:184–191

    Article  CAS  PubMed  Google Scholar 

  66. Pasut G, Veronese FM (2009) PEG conjugates in clinical development or use as anticancer agents: an overview. Adv Drug Deliv Rev 61:1177–1188

    Article  CAS  PubMed  Google Scholar 

  67. Ulbrich K, Subr V (2010) Structural and chemical aspects of HPMA copolymers as drug carriers. Adv Drug Deliv Rev 62:150–166

    Article  CAS  PubMed  Google Scholar 

  68. Duncan R (2011) Polymer therapeutics as nanomedicines: new perspectives. Curr Opin Biotechnol 22:492–501

    Article  CAS  PubMed  Google Scholar 

  69. Webster R, Elliott V, Park BK, Walker D (2009) PEG and PEG conjugate toxicity: towards an understanding of toxicity of PEG and its relevance to pegylated biologicals. In: Veronese FM (ed) PEGylated protein drugs: basic science and clinical applications. Birkhauser, Basel, pp 127–146

    Chapter  Google Scholar 

  70. Duncan R, Vicent MJ (2010) Do HPMA copolymer conjugates have a future as clinically useful nanomedicines? A critical overview of current status and future opportunities. Adv Drug Deliv Rev 62:272–282

    Article  CAS  PubMed  Google Scholar 

  71. Julyan PJ, Seymour LW, Ferry DR et al (1999) Preliminary clinical study of the distribution of HPMA copolymers bearing doxorubicin and galactosamine. J Control Release 57:281–290

    Article  CAS  PubMed  Google Scholar 

  72. Duncan R (2009) Development of HPMA copolymer-anticancer conjugates: clinical experience and lessons learnt. Adv Drug Deliv Rev 61:1131–1148

    Article  CAS  PubMed  Google Scholar 

  73. Gong J, Chen M, Zheng Y, Wang S, Wang Y (2012) Polymeric micelles drug delivery system in oncology. J Control Release 159:312–323

    Article  CAS  PubMed  Google Scholar 

  74. Li G, Liu J, Pang Y et al (2011) Polymeric micelles with water-insoluble drug as hydrophobic moiety for drug delivery. Biomacromolecules 12:2016–2026

    Article  PubMed  CAS  Google Scholar 

  75. Kedar U, Phutane P, Shidhaye S, Kadam V (2010) Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine 6:714–729

    CAS  PubMed  Google Scholar 

  76. Oerlemans C, Bult W, Bos M, Storm G, Nijsen JF, Hennink WE (2010) Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res 27:2569–2589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lee HJ, Ponta A, Bae Y (2010) Polymer nanoassemblies for cancer treatment and imaging. Ther Deliv 1:803–817

    Article  CAS  PubMed  Google Scholar 

  78. Liu Z, Zhang N (2012) pH-Sensitive polymeric micelles for programmable drug and gene delivery. Curr Pharm Des 18:3442–3451

    Article  CAS  PubMed  Google Scholar 

  79. Tsai HC, Chang WH, Lo CL et al (2010) Graft and diblock copolymer multifunctional micelles for cancer chemotherapy and imaging. Biomaterials 31:2293–2301

    Article  CAS  PubMed  Google Scholar 

  80. Decato S, Bemis T, Madsen E, Mecozzi S (2014) Synthesis and characterization of perfluoro-tert-butyl semifluorinated amphiphilic polymers and their potential application in hydrophobic drug delivery. Polym Chem 5:6461–6471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fréchet JMJ, Tomalia DA (2001) Dendrimers and other dendritic polymers. Wiley, Chichester, NY

    Book  Google Scholar 

  82. Tomalia DA, Baker H, Dewald J et al (1985) A new class of polymers: starburst-dendritic macromolecules. Polym J 17:117–132

    Article  CAS  Google Scholar 

  83. Gillies ER, Frechet JM (2005) Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 10:35–43

    Article  CAS  PubMed  Google Scholar 

  84. Zolnik BS, Sadrieh N (2009) Regulatory perspective on the importance of ADME assessment of nanoscale material containing drugs. Adv Drug Deliv Rev 61:422–427

    Article  CAS  PubMed  Google Scholar 

  85. Walter MV, Malkoch M (2012) Simplifying the synthesis of dendrimers: accelerated approaches. Chem Soc Rev 41:4593–4609

    Article  CAS  PubMed  Google Scholar 

  86. Yellepeddi VK, Kumar A, Palakurthi S (2009) Surface modified poly(amido)amine dendrimers as diverse nanomolecules for biomedical applications. Expert Opin Drug Deliv 6:835–850

    Article  CAS  PubMed  Google Scholar 

  87. Sadekar S, Ghandehari H (2012) Transepithelial transport and toxicity of PAMAM dendrimers: implications for oral drug delivery. Adv Drug Deliv Rev 64:571–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Duncan R, Izzo L (2005) Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev 57:2215–2237

    Article  CAS  PubMed  Google Scholar 

  89. Caminade AM, Laurent R, Delavaux-Nicot B, Majoral JP (2012) “Janus” dendrimers: syntheses and properties. New J Chem 36:217–226

    Article  CAS  Google Scholar 

  90. Ornelas C, Pennell R, Liebes LF, Weck M (2011) Construction of a well-defined multifunctional dendrimer for theranostics. Org Lett 13:976–979

    Article  CAS  PubMed  Google Scholar 

  91. Kumar P, Gulbake A, Jain SK (2012) Liposomes as vesicular nanocarriers: potential advancements in cancer chemotherapy. Crit Rev Ther Drug Carrier Syst 29:355–419

    Article  CAS  PubMed  Google Scholar 

  92. Al-Jamal WT, Kostarelos K (2011) Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Acc Chem Res 44:1094–1104

    Article  CAS  PubMed  Google Scholar 

  93. Barenholz Y (2012) Doxil(R)—the first FDA-approved nano-drug: lessons learned. J Control Release 160:117–134

    Article  CAS  PubMed  Google Scholar 

  94. Meyerhoff A (1999) U.S. Food and Drug Administration approval of Am Bisome (liposomal amphotericin B) for treatment of visceral leishmaniasis. Clin Infect Dis 28:42–48, discussion 49–51

    Article  CAS  PubMed  Google Scholar 

  95. Sawant RR, Torchilin VP (2012) Challenges in development of targeted liposomal therapeutics. AAPS J 14:303–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. FDA (2002) Guidance for industry: liposome drug products

    Google Scholar 

  97. Desai N (2012) Challenges in development of nanoparticle-based therapeutics. AAPS J 14:282–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Immordino ML, Dosio F, Cattel L (2006) Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 1:297–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ranjan A, Jacobs GC, Woods DL et al (2012) Image-guided drug delivery with magnetic resonance guided high intensity focused ultrasound and temperature sensitive liposomes in a rabbit Vx2 tumor model. J Control Release 158:487–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Oldham RK, Dillman RO (2008) Monoclonal antibodies in cancer therapy: 25 years of progress. J Clin Oncol 26:1774–1777

    Article  PubMed  Google Scholar 

  101. Barbet J, Bardies M, Bourgeois M et al (2012) Radiolabeled antibodies for cancer imaging and therapy. Methods Mol Biol 907:681–697

    Article  CAS  PubMed  Google Scholar 

  102. Mirick GR, Bradt BM, Denardo SJ, Denardo GL (2004) A review of human anti-globulin antibody (HAGA, HAMA, HACA, HAHA) responses to monoclonal antibodies. Not four letter words. Q J Nucl Med Mol Imaging 48:251–257

    CAS  PubMed  Google Scholar 

  103. Jeong H, Huh M, Lee SJ et al (2011) Photosensitizer-conjugated human serum albumin nanoparticles for effective photodynamic therapy. Theranostics 1:230–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kennedy LC, Bickford LR, Lewinski NA et al (2011) A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 7:169–183

    Article  CAS  PubMed  Google Scholar 

  105. Fernandez-Fernandez A, Manchanda R, McGoron AJ (2011) Theranostic applications of nanomaterials in cancer: drug delivery, image-guided therapy, and multifunctional platforms. Appl Biochem Biotechnol 165:1628–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Huang HC, Barua S, Sharma G, Dey SK, Rege K (2011) Inorganic nanoparticles for cancer imaging and therapy. J Control Release 155:344–357

    Article  CAS  PubMed  Google Scholar 

  107. Espinosa E, Zamora P, Feliu J, Gonzalez Baron M (2003) Classification of anticancer drugs—a new system based on therapeutic targets. Cancer Treat Rev 29:515–523

    Article  CAS  PubMed  Google Scholar 

  108. Ulbrich K, Zacharieva EI, Obereigner B, Kopecek J (1980) Polymers containing enzymatically degradable bonds: V. Hydrophilic polymers degradable by papain. Biomaterials 1:199–204

    Article  CAS  PubMed  Google Scholar 

  109. Ray A, Larson N, Pike DB et al (2011) Comparison of active and passive targeting of docetaxel for prostate cancer therapy by HPMA copolymer-RGDfK conjugates. Mol Pharm 8:1090–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lammers T, Subr V, Ulbrich K et al (2009) Simultaneous delivery of doxorubicin and gemcitabine to tumors in vivo using prototypic polymeric drug carriers. Biomaterials 30:3466–3475

    Article  CAS  PubMed  Google Scholar 

  111. Kramer-Marek G, Capala J (2012) The role of nuclear medicine in modern therapy of cancer. Tumour Biol 33:629–640

    Article  CAS  PubMed  Google Scholar 

  112. Griggs WS, Divgi C (2008) Radioiodine imaging and treatment in thyroid disorders. Neuroimaging Clin N Am 18:505–515, viii

    Article  PubMed  Google Scholar 

  113. Zhang L, Chen H, Wang L et al (2010) Delivery of therapeutic radioisotopes using nanoparticle platforms: potential benefit in systemic radiation therapy. Nanotechnol Sci Appl 3:159–170

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Wang AZ, Yuet K, Zhang L et al (2010) ChemoRad nanoparticles: a novel multifunctional nanoparticle platform for targeted delivery of concurrent chemoradiation. Nanomedicine (Lond) 5:361–368

    Article  CAS  Google Scholar 

  115. Whitehead KA, Langer R, Anderson DG (2009) Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 8:129–138

    Article  CAS  PubMed  Google Scholar 

  116. Lee H, Kim IK, Park TG (2010) Intracellular trafficking and unpacking of siRNA/quantum dot-PEI complexes modified with and without cell penetrating peptide: confocal and flow cytometric FRET analysis. Bioconjug Chem 21:289–295

    Article  CAS  PubMed  Google Scholar 

  117. Medarova Z, Pham W, Farrar C, Petkova V, Moore A (2007) In vivo imaging of siRNA delivery and silencing in tumors. Nat Med 13:372–377

    Article  CAS  PubMed  Google Scholar 

  118. Lee YC, Byfield JE (1976) Induction of DNA degradation in vivo by adriamycin. J Natl Cancer Inst 57:221–224

    CAS  PubMed  Google Scholar 

  119. Choppin GR, Liljenzin J-O, Rydberg J, Ekberg C (2013) Radiochemistry and nuclear chemistry, 4th edn. Elsevier/Academic Press, Amsterdam/Boston

    Google Scholar 

  120. Garland MJ, Cassidy CM, Woolfson D, Donnelly RF (2009) Designing photosensitizers for photodynamic therapy: strategies, challenges and promising developments. Future Med Chem 1:667–691

    Article  CAS  PubMed  Google Scholar 

  121. Shirasu N, Nam SO, Kuroki M (2013) Tumor-targeted photodynamic therapy. Anticancer Res 33:2823–2831

    CAS  PubMed  Google Scholar 

  122. Allison RR, Downie GH, Cuenca R, Hu XH, Childs CJ, Sibata CH (2004) Photosensitizers in clinical PDT. Photodiagnosis Photodyn Ther 1:27–42

    Article  CAS  PubMed  Google Scholar 

  123. Vergnon JM, Huber RM, Moghissi K (2006) Place of cryotherapy, brachytherapy and photodynamic therapy in therapeutic bronchoscopy of lung cancers. Eur Respir J 28:200–218

    Article  PubMed  Google Scholar 

  124. Bown SG, Rogowska AZ, Whitelaw DE et al (2002) Photodynamic therapy for cancer of the pancreas. Gut 50:549–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Pandey SK, Gryshuk AL, Sajjad M et al (2005) Multimodality agents for tumor imaging (PET, fluorescence) and photodynamic therapy. A possible “see and treat” approach. J Med Chem 48:6286–6295

    Article  CAS  PubMed  Google Scholar 

  126. Capella MA, Capella LS (2003) A light in multidrug resistance: photodynamic treatment of multidrug-resistant tumors. J Biomed Sci 10:361–366

    Article  CAS  PubMed  Google Scholar 

  127. Oh IH, Min HS, Li L et al (2013) Cancer cell-specific photoactivity of pheophorbide a-glycol chitosan nanoparticles for photodynamic therapy in tumor-bearing mice. Biomaterials 34:6454–6463

    Article  CAS  PubMed  Google Scholar 

  128. Rong P, Yang K, Srivastan A et al (2014) Photosensitizer loaded nano-graphene for multimodality imaging guided tumor photodynamic therapy. Theranostics 4:229–239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Vaidya A, Sun Y, Ke T, Jeong EK, Lu ZR (2006) Contrast enhanced MRI-guided photodynamic therapy for site-specific cancer treatment. Magn Reson Med 56:761–767

    Article  CAS  PubMed  Google Scholar 

  130. Vaidya A, Sun Y, Feng Y, Emerson L, Jeong EK, Lu ZR (2008) Contrast-enhanced MRI-guided photodynamic cancer therapy with a pegylated bifunctional polymer conjugate. Pharm Res 25:2002–2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Xu J, Zeng F, Wu H, Hu C, Wu S (2014) Enhanced photodynamic efficiency achieved via a dual-targeted strategy based on photosensitizer/micelle structure. Biomacromolecules 15:4249–4259

    Article  CAS  PubMed  Google Scholar 

  132. Yoon HY, Koo H, Choi KY et al (2012) Tumor-targeting hyaluronic acid nanoparticles for photodynamic imaging and therapy. Biomaterials 33:3980–3989

    Article  CAS  PubMed  Google Scholar 

  133. Marchosky JA, Welsh DM, Moran CJ (1990) Hyperthermia treatment of brain tumors. Mo Med 87:29–33

    CAS  PubMed  Google Scholar 

  134. Matsumine A, Takegami K, Asanuma K et al (2011) A novel hyperthermia treatment for bone metastases using magnetic materials. Int J Clin Oncol 16:101–108

    Article  PubMed  Google Scholar 

  135. Zablow A, Shecterle LM, Dorian R et al (1997) Extracorporeal whole body hyperthermia treatment of HIV patients, a feasibility study. Int J Hyperthermia 13:577–586

    Article  CAS  PubMed  Google Scholar 

  136. Link S, El-Sayed MA (2000) Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem 19:409–453

    Article  CAS  Google Scholar 

  137. Gormley AJ, Greish K, Ray A, Robinson R, Gustafson JA, Ghandehari H (2011) Gold nanorod mediated plasmonic photothermal therapy: a tool to enhance macromolecular delivery. Int J Pharm 415:315–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lynn JG, Zwemer RL, Chick AJ (1942) The biological application of focused ultrasonic waves. Science 96:119–120

    Article  CAS  PubMed  Google Scholar 

  139. Grull H, Langereis S (2012) Hyperthermia-triggered drug delivery from temperature-sensitive liposomes using MRI-guided high intensity focused ultrasound. J Control Release 161:317–327

    Article  PubMed  CAS  Google Scholar 

  140. Yudina A, de Smet M, Lepetit-Coiffe M et al (2011) Ultrasound-mediated intracellular drug delivery using microbubbles and temperature-sensitive liposomes. J Control Release 155:442–448

    Article  CAS  PubMed  Google Scholar 

  141. de Smet M, Heijman E, Langereis S, Hijnen NM, Grull H (2011) Magnetic resonance imaging of high intensity focused ultrasound mediated drug delivery from temperature-sensitive liposomes: an in vivo proof-of-concept study. J Control Release 150:102–110

    Article  PubMed  CAS  Google Scholar 

  142. van Elk M, Deckers R, Oerlemans C et al (2014) Triggered release of doxorubicin from temperature-sensitive poly(N-(2-hydroxypropyl)-methacrylamide mono/dilactate) grafted liposomes. Biomacromolecules 15:1002–1009

    Article  PubMed  CAS  Google Scholar 

  143. Rapoport N, Nam KH, Gupta R et al (2011) Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions. J Control Release 153:4–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zhou W, Meng F, Engbers GH, Feijen J (2006) Biodegradable polymersomes for targeted ultrasound imaging. J Control Release 116:e62–e64

    Article  CAS  PubMed  Google Scholar 

  145. Chakravarty R, Valdovinos HF, Chen F et al (2014) Intrinsically germanium-69-labeled iron oxide nanoparticles: synthesis and in-vivo dual-modality PET/MR imaging. Adv Mater 26:5119–5123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Choi HS, Frangioni JV (2010) Nanoparticles for biomedical imaging: fundamentals of clinical translation. Mol Imaging 9:291–310

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamidreza Ghandehari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Controlled Release Society

About this chapter

Cite this chapter

Buckway, B., Ghandehari, H. (2016). Nanotheranostics and In-Vivo Imaging. In: Howard, K., Vorup-Jensen, T., Peer, D. (eds) Nanomedicine. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3634-2_6

Download citation

Publish with us

Policies and ethics