Skip to main content

Microfluidics-based Single Cell Analytical Platforms for Characterization of Cancer

  • Chapter
  • First Online:
Nanomedicine

Abstract

Individual cancer cells in a tumor are very diverse both genetically and functionally. Moreover, in many cancers, whether a tumor flourishes or dies after a given treatment depends on a small fraction of cells in the tumor, for instance, the cancer stem cells, rather than the bulk population. Traditionally, scientists only obtain averaged information from the entire population of cells in a bulk tumor, but it is critical to develop an effective and user-friendly platform capable of interrogating single cells in order to understand and treat the disease better. This chapter reviews recent progress of microfluidics-based tools for single cell analysis that are relevant for cancer characterization, as well as how nanotechnology may advance the analysis with improved signal responses. We hope that this general introduction may catalyze the adoption of these advanced single-cell analysis approaches for cancer studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertucci F, Birnbaum D (2008) Reasons for breast cancer heterogeneity. J Biol 7:6

    Article  PubMed  PubMed Central  Google Scholar 

  2. Brouzes E et al (2009) Droplet microfluidic technology for single-cell high-throughput screening. Proc Natl Acad Sci U S A 106:14195–14200

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cai L, Friedman N, Xie XS (2006) Stochastic protein expression in individual cells at the single molecule level. Nature 440:358–362

    Article  PubMed  CAS  Google Scholar 

  4. Levsky JM, Shenoy SM, Pezo RC, Singer RH (2002) Single-cell gene expression profiling. Science 297:836–840

    Article  PubMed  CAS  Google Scholar 

  5. Raj A, Peskin CS, Tranchina D, Vargas DY, Tyagi S (2006) Stochastic mRNA synthesis in mammalian cells. PLoS Biol 4:e309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Chang HH, Hemberg M, Barahona M, Ingber DE, Huang S (2008) Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453:544–547

    Article  PubMed  CAS  Google Scholar 

  7. Nwosu V, Carpten J, Trent JM, Sheridan R (2001) Heterogeneity of genetic alterations in prostate cancer: evidence of the complex nature of the disease. Hum Mol Genet 10:2313–2318

    Article  PubMed  CAS  Google Scholar 

  8. Shackleton M, Quintana E, Fearon ER, Morrison SJ (2009) Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138:822–829

    Article  PubMed  CAS  Google Scholar 

  9. Williams JL (2012) Cancer stem cells. Clin Lab Sci 25:50–57

    PubMed  Google Scholar 

  10. Merlos-Suárez A et al (2011) The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse. Cell Stem Cell 8:511–524

    Article  PubMed  CAS  Google Scholar 

  11. Kumar-Sinha C, Tomlins SA, Chinnaiyan AM (2008) Recurrent gene fusions in prostate cancer. Nat Rev Cancer 8:497–511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Mackinnon AC, Yan BC, Joseph LJ, Al-Ahmadie HA (2009) Molecular biology underlying the clinical heterogeneity of prostate cancer: an update. Arch Pathol Lab Med 133:1033–1040

    PubMed  CAS  Google Scholar 

  13. Devi GR (2006) siRNA-based approaches in cancer therapy. Cancer Gene Ther 13:819–829

    Article  PubMed  CAS  Google Scholar 

  14. Spiller DG, Wood CD, Rand DA, White MRH (2010) Measurement of single-cell dynamics. Nature 465:736–745

    Article  PubMed  CAS  Google Scholar 

  15. Alix-Panabières C, Schwarzenbach H, Pantel K (2012) Circulating tumor cells and circulating tumor DNA. Annu Rev Med 63:199–215

    Article  PubMed  CAS  Google Scholar 

  16. Pantel K, Brakenhoff RH (2004) Dissecting the metastatic cascade. Nat Rev Cancer 4:448–456

    Article  PubMed  CAS  Google Scholar 

  17. Yu M, Stott S, Toner M, Maheswaran S, Haber DA (2011) Circulating tumor cells: approaches to isolation and characterization. J Cell Biol 192:373–382

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Pantel K, Alix-Panabières C, Riethdorf S (2009) Cancer micrometastases. Nat Rev Clin Oncol 6:339–351

    Article  PubMed  CAS  Google Scholar 

  19. Rolle A et al (2005) Increase in number of circulating disseminated epithelial cells after surgery for non-small cell lung cancer monitored by MAINTRAC(R) is a predictor for relapse: a preliminary report. World J Surg Oncol 3:18

    Article  PubMed  PubMed Central  Google Scholar 

  20. Krivacic RT et al (2004) A rare-cell detector for cancer. Proc Natl Acad Sci U S A 101:10501–10504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Bednarz-Knoll N, Alix-Panabières C, Pantel K (2011) Clinical relevance and biology of circulating tumor cells. Breast Cancer Res 13:228

    Article  PubMed  PubMed Central  Google Scholar 

  22. Pinzani P et al (2006) Isolation by size of epithelial tumor cells in peripheral blood of patients with breast cancer: correlation with real-time reverse transcriptase-polymerase chain reaction results and feasibility of molecular analysis by laser microdissection. Hum Pathol 37:711–718

    Article  PubMed  CAS  Google Scholar 

  23. Hofman VJ et al (2011) Cytopathologic detection of circulating tumor cells using the isolation by size of epithelial tumor cell method: promises and pitfalls. Am J Clin Pathol 135:146–156

    Article  PubMed  Google Scholar 

  24. Vona G et al (2000) Isolation by size of epithelial tumor cells: a new method for the immunomorphological and molecular characterization of circulatingtumor cells. Am J Pathol 156:57–63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Deng G et al (2008) Enrichment with anti-cytokeratin alone or combined with anti-EpCAM antibodies significantly increases the sensitivity for circulating tumor cell detection in metastatic breast cancer patients. Breast Cancer Res 10:R69

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Nagrath S et al (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450:1235–1239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Saliba A-E et al (2010) Microfluidic sorting and multimodal typing of cancer cells in self-assembled magnetic arrays. Proc Natl Acad Sci U S A 107:14524–14529

    Article  PubMed  PubMed Central  Google Scholar 

  28. Went P, Lugli A, Meier S, Bundi M (2004) Frequent EpCam protein expression in human carcinomas. Hum Pathol 35:122–128. doi:10.1016/S0046-8177(03)00502-1

    Article  PubMed  CAS  Google Scholar 

  29. Balzar M, Winter MJ, de Boer CJ, Litvinov SV (1999) The biology of the 17-1A antigen (Ep-CAM). J Mol Med (Berl) 77:699–712

    Article  CAS  Google Scholar 

  30. Stott SL et al (2010) Isolation and characterization of circulating tumor cells from patients with localized and metastatic prostate cancer. Sci Transl Med 2:25ra23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Stott S, Hsu C, Tsukrov D (2010) Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci U S A 107:18392–18397

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dong Y et al (2013) Microfluidics and circulating tumor cells. J Mol Diagn 15:149–157

    Article  PubMed  Google Scholar 

  33. Hyun K-A, Jung H-I (2013) Microfluidic devices for the isolation of circulating rare cells: a focus on affinity-based, dielectrophoresis, and hydrophoresis. Electrophoresis 34:1028–1041

    Article  PubMed  CAS  Google Scholar 

  34. Li P, Stratton ZS, Dao M, Ritz J, Huang TJ (2013) Probing circulating tumor cells in microfluidics. Lab Chip 13:602–609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Stratton MR, Campbell PJ, Futreal PA (2009) The cancer genome. Nature 458:719–724

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Park SY, Gönen M, Kim HJ, Michor F, Polyak K (2010) Cellular and genetic diversity in the progression of in situ human breast carcinomas to an invasive phenotype. J Clin Invest 120:636–644

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Torres L et al (2007) Intratumor genomic heterogeneity in breast cancer with clonal divergence between primary carcinomas and lymph node metastases. Breast Cancer Res Treat 102:143–155

    Article  PubMed  Google Scholar 

  38. Farabegoli F et al (2001) Clone heterogeneity in diploid and aneuploid breast carcinomas as detected by FISH. Cytometry 46:50–56

    Article  PubMed  CAS  Google Scholar 

  39. Jordan CT, Guzman ML, Noble M (2006) Cancer stem cells. N Engl J Med 355:1253–1261

    Article  PubMed  CAS  Google Scholar 

  40. Larzabal L et al (2013) Differential effects of drugs targeting cancer stem cell (CSC) and non-CSC populations on lung primary tumors and metastasis. PLoS One 8:e79798

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kuan W-C, Horák D, Plichta Z, Lee W-C (2014) Immunocapture of CD133-positive cells from human cancer cell lines by using monodisperse magnetic poly(glycidyl methacrylate) microspheres containing amino groups. Mater Sci Eng C Mater Biol Appl 34C:193–200

    Article  CAS  Google Scholar 

  42. Ahmad A, Li Y, Bao B, Kong D, Sarkar FH (2013) Epigenetic regulation of miRNA-cancer stem cells nexus by nutraceuticals. Mol Nutr Food Res 58:79–86. doi:10.1002/mnfr.201300528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Nahi H, Sutlu T, Jansson M, Alici E, Gahrton G (2011) Clinical impact of chromosomal aberrations in multiple myeloma. J Intern Med 269:137–147

    Article  PubMed  CAS  Google Scholar 

  44. Neben K et al (2013) Progression in smoldering myeloma is independently determined by the chromosomal abnormalities del(17p), t(4;14), gain 1q, hyperdiploidy, and tumor load. J Clin Oncol 31:4325–4332

    Article  PubMed  Google Scholar 

  45. Sawyer JR (2011) The prognostic significance of cytogenetics and molecular profiling in multiple myeloma. Cancer Genet 204:3–12

    Article  PubMed  Google Scholar 

  46. Wu S-M et al (2006) Quantum-dot-labeled DNA probes for fluorescence in situ hybridization (FISH) in the microorganism Escherichia coli. Chemphyschem 7:1062–1067

    Article  PubMed  CAS  Google Scholar 

  47. Iacobucci I, Lonetti A, Papayannidis C, Martinelli G (2013) Use of single nucleotide polymorphism array technology to improve the identification of chromosomal lesions in leukemia. Curr Cancer Drug Targets 13:791–810

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Frumkin D et al (2008) Cell lineage analysis of a mouse tumor. Cancer Res 68:5924–5931

    Article  PubMed  CAS  Google Scholar 

  49. Navin N et al (2011) Tumour evolution inferred by single-cell sequencing. Nature 472:90–94

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Alberts B et al (2007) Molecular biology of the cell, 5th edn. http://www.google.dk/books?hl=da&lr=&id=DjMmAgAAQBAJ&pgis=1

  51. Tay S et al (2010) Single-cell NF-kappaB dynamics reveal digital activation and analogue information processing. Nature 466:267–271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Narsinh KH et al (2011) Brief report: Single cell transcriptional profiling reveals heterogeneity of human induced pluripotent stem cells. J Clin Invest 121:1217–1221

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Diercks A, Kostner H, Ozinsky A (2009) Resolving cell population heterogeneity: real-time PCR for simultaneous multiplexed gene detection in multiple single-cell samples. PLoS One 4:e6326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Kantarjian HM et al (2009) Significance of increasing levels of minimal residual disease in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in complete cytogenetic response. J Clin Oncol 27:3659–3663

    Article  PubMed  PubMed Central  Google Scholar 

  55. Graziano F et al (2011) Genetic activation of the MET pathway and prognosis of patients with high-risk, radically resected gastric cancer. J Clin Oncol 29:4789–4795

    Article  PubMed  CAS  Google Scholar 

  56. Hoshimoto S et al (2012) Association between circulating tumor cells and prognosis in patients with stage III melanoma with sentinel lymph node metastasis in a phase III international multicenter trial. J Clin Oncol 30:3819–3826

    Article  PubMed  PubMed Central  Google Scholar 

  57. Dalerba P et al (2011) Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat Biotechnol 29:1120–1127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Diehn M, Cho R, Lobo N, Kalisky T (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458:780–783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Spike BT et al (2012) A mammary stem cell population identified and characterized in late embryogenesis reveals similarities to human breast cancer. Cell Stem Cell 10:183–197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Kikushige Y et al (2011) Self-renewing hematopoietic stem cell is the primary target in pathogenesis of human chronic lymphocytic leukemia. Cancer Cell 20:246–259

    Article  PubMed  CAS  Google Scholar 

  61. Lambolez B, Audinat E, Bochet P, Crépel F, Rossier J (1992) AMPA receptor subunits expressed by single Purkinje cells. Neuron 9:247–258

    Article  PubMed  CAS  Google Scholar 

  62. Bengtsson M, Ståhlberg A, Rorsman P, Kubista M (2005) Gene expression profiling in single cells from the pancreatic islets of Langerhans reveals lognormal distribution of mRNA levels. Genome Res 15:1388–1392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Tang F et al (2006) 220-plex microRNA expression profile of a single cell. Nat Protoc 1:1154–1159

    Article  PubMed  CAS  Google Scholar 

  64. Marcus JS, Anderson WF, Quake SR (2006) Microfluidic single-cell mRNA isolation and analysis. Anal Chem 78:3084–3089

    Article  PubMed  CAS  Google Scholar 

  65. Melin J, Quake SR (2007) Microfluidic large-scale integration: the evolution of design rules for biological automation. Annu Rev Biophys Biomol Struct 36:213–231

    Article  PubMed  CAS  Google Scholar 

  66. White AK et al (2011) High-throughput microfluidic single-cell RT-qPCR. Proc Natl Acad Sci U S A 108:13999–14004

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ramsköld D, Luo S, Wang Y, Li R (2012) Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol 30:777–782

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Venter JC et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  PubMed  CAS  Google Scholar 

  69. Han J, Xiong J, Wang D, Fu X-D (2011) Pre-mRNA splicing: where and when in the nucleus. Trends Cell Biol 21:336–343

    Article  PubMed  CAS  Google Scholar 

  70. Hamada S, Masamune A, Shimosegawa T (2013) Novel therapeutic strategies targeting tumor-stromal interactions in pancreatic cancer. Front Physiol 4:331

    PubMed  PubMed Central  Google Scholar 

  71. Kümler I, Brünner N, Stenvang J, Balslev E, Nielsen DL (2013) A systematic review on topoisomerase 1 inhibition in the treatment of metastatic breast cancer. Breast Cancer Res Treat 138:347–358

    Article  PubMed  CAS  Google Scholar 

  72. Burden D, Osheroff N (1998) Mechanism of action of eukaryotic topoisomerase II and drugs targeted to the enzyme. Biochim Biophys Acta 1400:139–154

    Article  PubMed  CAS  Google Scholar 

  73. Fortune J, Osheroff N (2000) Topoisomerase II as a target for anticancer drugs: when enzymes stop being nice. Prog Nucleic Acid Res Mol Biol 64:221–253

    Article  PubMed  CAS  Google Scholar 

  74. Poletto M et al (2012) Acetylation on critical lysine residues of Apurinic/apyrimidinic endonuclease 1 (APE1) in triple negative breast cancers. Biochem Biophys Res Commun 424:34–39

    Article  PubMed  CAS  Google Scholar 

  75. Fosbrink M, Aye-Han N-N, Cheong R, Levchenko A, Zhang J (2010) Visualization of JNK activity dynamics with a genetically encoded fluorescent biosensor. Proc Natl Acad Sci U S A 107:5459–5464

    Article  PubMed  PubMed Central  Google Scholar 

  76. Huang B et al (2007) Counting low-copy number proteins in a single cell. Science 315:81–84

    Article  PubMed  CAS  Google Scholar 

  77. Mellors JS, Jorabchi K, Smith LM, Ramsey JM (2010) Integrated microfluidic device for automated single cell analysis using electrophoretic separation and electrospray ionization mass spectrometry. Anal Chem 82:967–973

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Shi Q et al (2012) Single-cell proteomic chip for profiling intracellular signaling pathways in single tumor cells. Proc Natl Acad Sci U S A 109:419–424

    Article  PubMed  PubMed Central  Google Scholar 

  79. Sun J et al (2010) A microfluidic platform for systems pathology: multiparameter single-cell signaling measurements of clinical brain tumor specimens. Cancer Res 70:6128–6138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Stougaard M, Juul S, Andersen FF, Knudsen BR (2011) Strategies for highly sensitive biomarker detection by Rolling Circle Amplification of signals from nucleic acid composed sensors. Integr Biol (Camb) 3:982–992

    Article  CAS  Google Scholar 

  81. Perez-Hernandez D et al (2013) The intracellular interactome of tetraspanin-enriched microdomains reveals their function as sorting machineries toward exosomes. J Biol Chem 288:11649–11661

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Varjosalo M et al (2013) Interlaboratory reproducibility of large-scale human protein-complex analysis by standardized AP-MS. Nat Methods 10:307–314

    Article  PubMed  CAS  Google Scholar 

  83. Chen Y et al (2013) Bcl2-associated athanogene 3 interactome analysis reveals a new role in modulating proteasome activity. Mol Cell Proteomics 12:2804–2819

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Davies CC, Chakraborty A, Diefenbacher ME, Skehel M, Behrens A (2013) Arginine methylation of the c-Jun coactivator RACO-1 is required for c-Jun/AP-1 activation. EMBO J 32:1556–1567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Juul S, Ho Y, Stougaard M (2011) Microfluidics-mediated isothermal detection of enzyme activity at the single molecule level. Conf Proc IEEE Eng Med Biol Soc 2011:3258–3261, http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6090885

    PubMed  Google Scholar 

  86. Andersen FF et al (2009) Multiplexed detection of site specific recombinase and DNA topoisomerase activities at the single molecule level. ACS Nano 3:4043–4054

    Article  PubMed  CAS  Google Scholar 

  87. Marcussen LB et al (2013) DNA-based sensor for real-time measurement of the enzymatic activity of human topoisomerase I. Sensors (Basel) 13:4017–4028

    Article  PubMed Central  CAS  Google Scholar 

  88. Kristoffersen EL, Givskov A, Jørgensen LA, Andersen AH, Stougaard M, Jensen PW. Ho Y-P, Knudsen BR “Topoisomerase II enzymatic activity detection using self-assembled small catenated DNA circles,” in preparation

    Google Scholar 

  89. Jensen PW et al (2013) Real-time detection of TDP1 activity using a fluorophore-quencher coupled DNA-biosensor. Biosens Bioelectron 48C:230–237

    Article  CAS  Google Scholar 

  90. Jakobsen A-K, Stougaard M (2015) Combining a nanosensor and ELISA for measurement of Tyrosyl-DNA Phosphodiesterase 1 (TDP1) activity and protein amount in cell and tissue extract. Nano Life 05:1541001

    Article  CAS  Google Scholar 

  91. Weltin A et al (2013) Cell culture monitoring for drug screening and cancer research: a transparent, microfluidic, multi-sensor microsystem. Lab Chip 14:138–146

    Article  PubMed  Google Scholar 

  92. Selck DA, Karymov MA, Sun B, Ismagilov RF (2013) Increased robustness of single-molecule counting with microfluidics, digital isothermal amplification, and a mobile phone versus real-time kinetic measurements. Anal Chem 85:11129–11136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Demello AJ (2006) Control and detection of chemical reactions in microfluidic systems. Nature 442:394–402

    Article  PubMed  CAS  Google Scholar 

  94. Van de Stolpe A, Pantel K, Sleijfer S, Terstappen LW, den Toonder JMJ (2011) Circulating tumor cell isolation and diagnostics: toward routine clinical use. Cancer Res 71:5955–5960

    Article  PubMed  CAS  Google Scholar 

  95. Smith DM, Simon JK, Baker JR (2013) Applications of nanotechnology for immunology. Nat Rev Immunol 13:592–605

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Ping Ho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Controlled Release Society

About this chapter

Cite this chapter

Kristoffersen, E.L., Jepsen, M.L., Knudsen, B.R., Ho, YP. (2016). Microfluidics-based Single Cell Analytical Platforms for Characterization of Cancer. In: Howard, K., Vorup-Jensen, T., Peer, D. (eds) Nanomedicine. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3634-2_5

Download citation

Publish with us

Policies and ethics