Skip to main content

Complement Regulators and Inhibitors in Health and Disease: A Structural Perspective

  • Chapter
  • First Online:
Book cover Nanomedicine

Abstract

The complement system is an important effector within the innate immune system as a defence against pathogens and maintaining homeostasis. Detection of pathogen- and damage-associated molecular patterns triggers the proteolytic cascade in complement. In healthy self-tissues effector proteins are tightly controlled by proteins acting as regulators of complement activation, and absence or malfunction of these regulators contribute to pathogenesis in a number of disease conditions in humans. Complement is highly relevant to nanomedicine due its role in adverse reactions on polymers and nanoparticle drug carriers, but also since complement hyperactivation contributes to pathogenesis in many disease conditions that are frequently addressed within nanomedicine. We review here the regulatory mechanisms that modulate complement activation and some of the most prominent cases linking complement dysregulation/deficiencies to pathogenesis as well as the strategies that have been considered for the development of therapeutic complement inhibitors and modulators to alleviate complement-mediated detrimental effects. In addition, this chapter summarizes the wealth of strategies adopted by pathogens to evade complement, such as inhibition of the proteolytic cascade, degradation of complement effector molecules and interference with transmembrane signaling by effectors, and highlights how structural and functional insight into their mode of function now provides leads for the development of novel complement therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carroll MC (2004) The complement system in regulation of adaptive immunity. Nat Immunol 5:981–986

    Article  PubMed  CAS  Google Scholar 

  2. Ricklin D, Hajishengallis G, Yang K, Lambris JD (2010) Complement: a key system for immune surveillance and homeostasis. Nat Immunol 11:785–797

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Walport MJ (2001) Complement. First of two parts. N Engl J Med 344:1058–1066

    Article  PubMed  CAS  Google Scholar 

  4. Inforzato A, Doni A, Barajon I et al (2013) PTX3 as a paradigm for the interaction of pentraxins with the complement system. Semin Immunol 25:79–85

    Article  PubMed  CAS  Google Scholar 

  5. Kojouharova M, Reid K, Gadjeva M (2010) New insights into the molecular mechanisms of classical complement activation. Mol Immunol 47:2154–2160

    Article  PubMed  CAS  Google Scholar 

  6. Arlaud GJ, Gaboriaud C, Thielens NM et al (2001) Structural biology of C1: dissection of a complex molecular machinery. Immunol Rev 180:136–145

    Article  PubMed  CAS  Google Scholar 

  7. Law SK, Lichtenberg NA, Levine RP (1980) Covalent binding and hemolytic activity of complement proteins. Proc Natl Acad Sci U S A 77:7194–7198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Muller-Eberhard HJ, Polley MJ, Calcott MA (1967) Formation and functional significance of a molecular complex derived from the second and the fourth component of human complement. J Exp Med 125:359–380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Ma YJ, Skjoedt MO, Garred P (2013) Collectin-11/MASP complex formation triggers activation of the lectin complement pathway--the fifth lectin pathway initiation complex. J Innate Immun 5:242–250

    Article  PubMed  CAS  Google Scholar 

  10. Kjaer TR, Thiel S, Andersen GR (2013) Toward a structure-based comprehension of the lectin pathway of complement. Mol Immunol 56:413–422

    Article  PubMed  CAS  Google Scholar 

  11. Degn SE, Jensen L, Hansen AG et al (2012) Mannan-binding lectin-associated serine protease (MASP)-1 is crucial for lectin pathway activation in human serum, whereas neither MASP-1 nor MASP-3 is required for alternative pathway function. J Immunol 189:3957–3969

    Article  PubMed  CAS  Google Scholar 

  12. Heja D, Kocsis A, Dobo J et al (2012) Revised mechanism of complement lectin-pathway activation revealing the role of serine protease MASP-1 as the exclusive activator of MASP-2. Proc Natl Acad Sci U S A 109:10498–10503

    Article  PubMed  PubMed Central  Google Scholar 

  13. Xu Y, Narayana SV, Volanakis JE (2001) Structural biology of the alternative pathway convertase. Immunol Rev 180:123–135

    Article  PubMed  CAS  Google Scholar 

  14. Elsner J, Oppermann M, Czech W, Kapp A (1994) C3a activates the respiratory burst in human polymorphonuclear neutrophilic leukocytes via pertussis toxin-sensitive G-proteins. Blood 83:3324–3331

    PubMed  CAS  Google Scholar 

  15. Tack BF, Harrison RA, Janatova J, Thomas ML, Prahl JW (1980) Evidence for presence of an internal thiolester bond in third component of human complement. Proc Natl Acad Sci U S A 77:5764–5768

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Lesavre PH, Muller-Eberhard HJ (1978) Mechanism of action of factor D of the alternative complement pathway. J Exp Med 148:1498–1509

    Article  PubMed  CAS  Google Scholar 

  17. Harboe M, Ulvund G, Vien L, Fung M, Mollnes TE (2004) The quantitative role of alternative pathway amplification in classical pathway induced terminal complement activation. Clin Exp Immunol 138:439–446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Harboe M, Garred P, Karlstrom E, Lindstad JK, Stahl GL, Mollnes TE (2009) The down-stream effects of mannan-induced lectin complement pathway activation depend quantitatively on alternative pathway amplification. Mol Immunol 47:373–380

    Article  PubMed  CAS  Google Scholar 

  19. Pangburn MK, Schreiber RD, Muller-Eberhard HJ (1981) Formation of the initial C3 convertase of the alternative complement pathway. Acquisition of C3b-like activities by spontaneous hydrolysis of the putative thioester in native C3. J Exp Med 154:856–867

    Article  PubMed  CAS  Google Scholar 

  20. Kemper C, Atkinson JP, Hourcade DE (2010) Properdin: emerging roles of a pattern-recognition molecule. Annu Rev Immunol 28:131–155

    Article  PubMed  CAS  Google Scholar 

  21. Rawal N, Pangburn MK (2001) Structure/function of C5 convertases of complement. Int Immunopharmacol 1:415–422

    Article  PubMed  CAS  Google Scholar 

  22. Laursen NS, Magnani F, Gottfredsen RH, Petersen SV, Andersen GR (2012) Structure, function and control of complement C5 and its proteolytic fragments. Curr Mol Med 12:1083–1097

    Article  PubMed  CAS  Google Scholar 

  23. Tegla CA, Cudrici C, Patel S et al (2011) Membrane attack by complement: the assembly and biology of terminal complement complexes. Immunol Res 51:45–60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Degn SE, Jensenius JC, Thiel S (2011) Disease-causing mutations in genes of the complement system. Am J Hum Genet 88:689–705

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Degn SE, Thiel S, Jensenius JC (2013) Recombinant expression of the autocatalytic complement protease MASP-1 is crucially dependent on co-expression with its inhibitor, C1 inhibitor. Protein Expr Purif 88:173–182

    Article  PubMed  CAS  Google Scholar 

  26. Liszewski MK, Farries TC, Lublin DM, Rooney IA, Atkinson JP (1996) Control of the complement system. Adv Immunol 61:201–283

    Article  PubMed  CAS  Google Scholar 

  27. Nilsson SC, Sim RB, Lea SM, Fremeaux-Bacchi V, Blom AM (2011) Complement factor I in health and disease. Mol Immunol 48:1611–1620

    Article  PubMed  CAS  Google Scholar 

  28. Pangburn MK, Schreiber RD, Müller-Eberhard HJ (1977) Human complement C3b inactivator: isolation, characterization, and demonstration of an absolute requirement for the serum protein beta1H for cleavage of C3b and C4b in solution. J Exp Med 146:257–270

    Article  PubMed  CAS  Google Scholar 

  29. Ferreira VP, Pangburn MK, Cortes C (2010) Complement control protein factor H: the good, the bad, and the inadequate. Mol Immunol 47:2187–2197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Jokiranta TS, Jaakola VP, Lehtinen MJ, Parepalo M, Meri S, Goldman A (2006) Structure of complement factor H carboxyl-terminus reveals molecular basis of atypical haemolytic uremic syndrome. EMBO J 25:1784–1794

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Hocking HG, Herbert AP, Kavanagh D et al (2008) Structure of the N-terminal region of complement factor H and conformational implications of disease-linked sequence variations. J Biol Chem 283:9475–9487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Prosser BE, Johnson S, Roversi P et al (2007) Structural basis for complement factor H linked age-related macular degeneration. J Exp Med 204:2277–2283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Morgan HP, Mertens HD, Guariento M et al (2012) Structural analysis of the C-terminal region (modules 18–20) of complement regulator factor H (FH). PLoS One 7:e32187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Morgan HP, Schmidt CQ, Guariento M et al (2011) Structural basis for engagement by complement factor H of C3b on a self surface. Nat Struct Mol Biol 18:463–470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Kajander T, Lehtinen MJ, Hyvärinen S et al (2011) Dual interaction of factor H with C3d and glycosaminoglycans in host-nonhost discrimination by complement. Proc Natl Acad Sci U S A 108:2897–2902

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wu J, Wu YQ, Ricklin D, Janssen BJ, Lambris JD, Gros P (2009) Structure of complement fragment C3b-factor H and implications for host protection by complement regulators. Nat Immunol 10:728–733

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Goicoechea de Jorge E, Caesar JJ, Malik TH et al (2013) Dimerization of complement factor H-related proteins modulates complement activation in vivo. Proc Natl Acad Sci U S A 110:4685–4690

    Article  PubMed  PubMed Central  Google Scholar 

  38. Heinen S, Hartmann A, Lauer N et al (2009) Factor H-related protein 1 (CFHR-1) inhibits complement C5 convertase activity and terminal complex formation. Blood 114:2439–2447

    Article  PubMed  CAS  Google Scholar 

  39. Timmann C, Leippe M, Horstmann RD (1991) Two major serum components antigenically related to complement factor H are different glycosylation forms of a single protein with no factor H-like complement regulatory functions. J Immunol 146:1265–1270

    PubMed  CAS  Google Scholar 

  40. Eberhardt HU, Buhlmann D, Hortschansky P et al (2013) Human factor H-related protein 2 (CFHR2) regulates complement activation. PLoS One 8:e78617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Fritsche LG, Lauer N, Hartmann A et al (2010) An imbalance of human complement regulatory proteins CFHR1, CFHR3 and factor H influences risk for age-related macular degeneration (AMD). Hum Mol Genet 19:4694–4704

    Article  PubMed  CAS  Google Scholar 

  42. McRae JL, Cowan PJ, Power DA et al (2001) Human factor H-related protein 5 (FHR-5). A new complement-associated protein. J Biol Chem 276:6747–6754

    Article  PubMed  CAS  Google Scholar 

  43. Blom AM (2002) Structural and functional studies of complement inhibitor C4b-binding protein. Biochem Soc Trans 30:978–982

    Article  PubMed  CAS  Google Scholar 

  44. Dahlback B, Smith CA, Muller-Eberhard HJ (1983) Visualization of human C4b-binding protein and its complexes with vitamin K-dependent protein S and complement protein C4b. Proc Natl Acad Sci U S A 80:3461–3465

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Andrews PW, Knowles BB, Parkar M, Pym B, Stanley K, Goodfellow PN (1985) A human cell-surface antigen defined by a monoclonal antibody and controlled by a gene on human chromosome 1. Ann Hum Genet 49:31–39

    Article  PubMed  CAS  Google Scholar 

  46. Spiller OB, Hanna SM, Morgan BP (1999) Tissue distribution of the rat analogue of decay-accelerating factor. Immunology 97:374–384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Medof ME, Kinoshita T, Nussenzweig V (1984) Inhibition of complement activation on the surface of cells after incorporation of decay-accelerating factor (DAF) into their membranes. J Exp Med 160:1558–1578

    Article  PubMed  CAS  Google Scholar 

  48. Fearon DT (1980) Identification of the membrane glycoprotein that is the C3b receptor of the human erythrocyte, polymorphonuclear leukocyte, B lymphocyte, and monocyte. J Exp Med 152:20–30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Tedder TF, Fearon DT, Gartland GL, Cooper MD (1983) Expression of C3b receptors on human be cells and myelomonocytic cells but not natural killer cells. J Immunol 130:1668–1673

    PubMed  CAS  Google Scholar 

  50. Reynes M, Aubert JP, Cohen JH et al (1985) Human follicular dendritic cells express CR1, CR2, and CR3 complement receptor antigens. J Immunol 135:2687–2694

    PubMed  CAS  Google Scholar 

  51. Heesters BA, Chatterjee P, Kim YA et al (2013) Endocytosis and recycling of immune complexes by follicular dendritic cells enhances B cell antigen binding and activation. Immunity 38:1164–1175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Ross GD, Lambris JD, Cain JA, Newman SL (1982) Generation of three different fragments of bound C3 with purified factor I or serum: I. Requirements for factor H vs CR1 cofactor activity. J Immunol 129:2051–2060

    PubMed  CAS  Google Scholar 

  53. Moskovich O, Fishelson Z (2007) Live cell imaging of outward and inward vesiculation induced by the complement c5b-9 complex. J Biol Chem 282:29977–29986

    Article  PubMed  CAS  Google Scholar 

  54. Podack ER, Kolb WP, Muller-Eberhard HJ (1978) The C5b-6 complex: formation, isolation, and inhibition of its activity by lipoprotein and the S-protein of human serum. J Immunol 120:1841–1848

    PubMed  CAS  Google Scholar 

  55. Tschopp J, French LE (1994) Clusterin: modulation of complement function. Clin Exp Immunol 97(Suppl 2):11–14

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Meri S, Waldmann H, Lachmann PJ (1991) Distribution of protectin (CD59), a complement membrane attack inhibitor, in normal human tissues. Lab Invest 65:532–537

    PubMed  CAS  Google Scholar 

  57. Ricklin D, Lambris JD (2013) Progress and trends in complement therapeutics. Adv Exp Med Biol 735:1–22

    Article  CAS  Google Scholar 

  58. Sturfelt G, Truedsson L (2012) Complement in the immunopathogenesis of rheumatic disease. Nat Rev Rheumatol 8:458–468

    Article  PubMed  CAS  Google Scholar 

  59. Wagner E, Frank MM (2010) Therapeutic potential of complement modulation. Nat Rev Drug Discov 9:43–56

    Article  PubMed  CAS  Google Scholar 

  60. Ambati J, Atkinson JP, Gelfand BD (2013) Immunology of age-related macular degeneration. Nat Rev Immunol 13:438–451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Zipfel PF, Lauer N, Skerka C (2010) The role of complement in AMD. Adv Exp Med Biol 703:9–24

    Article  PubMed  CAS  Google Scholar 

  62. Seddon JM, Yu Y, Miller EC et al (2013) Rare variants in CFI, C3 and C9 are associated with high risk of advanced age-related macular degeneration. Nat Genet 45:1366

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Zhan X, Larson DE, Wang C et al (2013) Identification of a rare coding variant in complement 3 associated with age-related macular degeneration. Nat Genet 45:1375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Khandhadia S, Cipriani V, Yates JR, Lotery AJ (2012) Age-related macular degeneration and the complement system. Immunobiology 217:127–146

    Article  PubMed  CAS  Google Scholar 

  65. Heurich M, Martinez-Barricarte R, Francis NJ et al (2011) Common polymorphisms in C3, factor B, and factor H collaborate to determine systemic complement activity and disease risk. Proc Natl Acad Sci U S A 108:8761–8766

    Article  PubMed  PubMed Central  Google Scholar 

  66. van de Ven JP, Nilsson SC, Tan PL et al (2013) A functional variant in the CFI gene confers a high risk of age-related macular degeneration. Nat Genet 45:813–817

    Article  PubMed  CAS  Google Scholar 

  67. Montes T, Tortajada A, Morgan BP, Rodriguez de Cordoba S, Harris CL (2009) Functional basis of protection against age-related macular degeneration conferred by a common polymorphism in complement factor B. Proc Natl Acad Sci U S A 106:4366–4371

    Article  PubMed  PubMed Central  Google Scholar 

  68. Cohen J (2002) The immunopathogenesis of sepsis. Nature 420:885–891

    Article  PubMed  CAS  Google Scholar 

  69. Ward PA (2010) The harmful role of c5a on innate immunity in sepsis. J Innate Immun 2:439–445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Czermak BJ, Sarma V, Pierson CL et al (1999) Protective effects of C5a blockade in sepsis. Nat Med 5:788–792

    Article  PubMed  CAS  Google Scholar 

  71. Laudes IJ, Chu JC, Sikranth S et al (2002) Anti-c5a ameliorates coagulation/fibrinolytic protein changes in a rat model of sepsis. Am J Pathol 160:1867–1875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Huber-Lang MS, Sarma JV, McGuire SR et al (2001) Protective effects of anti-C5a peptide antibodies in experimental sepsis. FASEB J 15:568–570

    PubMed  CAS  Google Scholar 

  73. Rittirsch D, Flierl MA, Nadeau BA et al (2008) Functional roles for C5a receptors in sepsis. Nat Med 14:551–557

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Damman J, Daha MR, van Son WJ, Leuvenink HG, Ploeg RJ, Seelen MA (2011) Crosstalk between complement and Toll-like receptor activation in relation to donor brain death and renal ischemia-reperfusion injury. Am J Transplant 11:660–669

    Article  PubMed  CAS  Google Scholar 

  75. Gorsuch WB, Chrysanthou E, Schwaeble WJ, Stahl GL (2012) The complement system in ischemia-reperfusion injuries. Immunobiology 217:1026–1033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Vieyra MB, Heeger PS (2010) Novel aspects of complement in kidney injury. Kidney Int 77:495–499

    Article  PubMed  CAS  Google Scholar 

  77. Sacks SH, Zhou W (2012) The role of complement in the early immune response to transplantation. Nat Rev Immunol 12:431–442

    Article  PubMed  CAS  Google Scholar 

  78. Zhou W, Farrar CA, Abe K et al (2000) Predominant role for C5b-9 in renal ischemia/reperfusion injury. J Clin Invest 105:1363–1371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Arumugam TV, Shiels IA, Strachan AJ, Abbenante G, Fairlie DP, Taylor SM (2003) A small molecule C5a receptor antagonist protects kidneys from ischemia/reperfusion injury in rats. Kidney Int 63:134–142

    Article  PubMed  CAS  Google Scholar 

  80. Moller-Kristensen M, Wang W, Ruseva M et al (2005) Mannan-binding lectin recognizes structures on ischaemic reperfused mouse kidneys and is implicated in tissue injury. Scand J Immunol 61:426–434

    Article  PubMed  CAS  Google Scholar 

  81. Schwaeble WJ, Lynch NJ, Clark JE et al (2011) Targeting of mannan-binding lectin-associated serine protease-2 confers protection from myocardial and gastrointestinal ischemia/reperfusion injury. Proc Natl Acad Sci U S A 108:7523–7528

    Article  PubMed  PubMed Central  Google Scholar 

  82. Elvington A, Atkinson C, Zhu H et al (2012) The alternative complement pathway propagates inflammation and injury in murine ischemic stroke. J Immunol 189:4640–4647

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Walsh MC, Bourcier T, Takahashi K et al (2005) Mannose-binding lectin is a regulator of inflammation that accompanies myocardial ischemia and reperfusion injury. J Immunol 175:541–546

    Article  PubMed  CAS  Google Scholar 

  84. Pavlov VI, Skjoedt MO, Siow Tan Y, Rosbjerg A, Garred P, Stahl GL (2012) Endogenous and natural complement inhibitor attenuates myocardial injury and arterial thrombogenesis. Circulation 126:2227–2235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. McInnes IB, O'Dell JR (2010) State-of-the-art: rheumatoid arthritis. Ann Rheum Dis 69:1898–1906

    Article  PubMed  CAS  Google Scholar 

  86. Okroj M, Heinegard D, Holmdahl R, Blom AM (2007) Rheumatoid arthritis and the complement system. Ann Med 39:517–530

    Article  PubMed  CAS  Google Scholar 

  87. Weissmann G (2004) Pathogenesis of rheumatoid arthritis. J Clin Rheumatol 10:S26–S31

    Article  PubMed  Google Scholar 

  88. Linton SM, Morgan BP (1999) Complement activation and inhibition in experimental models of arthritis. Mol Immunol 36:905–914

    Article  PubMed  CAS  Google Scholar 

  89. Wang Y, Rollins SA, Madri JA, Matis LA (1995) Anti-C5 monoclonal antibody therapy prevents collagen-induced arthritis and ameliorates established disease. Proc Natl Acad Sci U S A 92:8955–8959

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Lee H, Zahra D, Vogelzang A et al (2006) Human C5aR knock-in mice facilitate the production and assessment of anti-inflammatory monoclonal antibodies. Nat Biotechnol 24:1279–1284

    Article  PubMed  CAS  Google Scholar 

  91. Grant EP, Picarella D, Burwell T et al (2002) Essential role for the C5a receptor in regulating the effector phase of synovial infiltration and joint destruction in experimental arthritis. J Exp Med 196:1461–1471

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Woodruff TM, Strachan AJ, Dryburgh N et al (2002) Antiarthritic activity of an orally active C5a receptor antagonist against antigen-induced monarticular arthritis in the rat. Arthritis Rheum 46:2476–2485

    Article  PubMed  CAS  Google Scholar 

  93. Nandakumar KS, Jansson A, Xu B et al (2010) A recombinant vaccine effectively induces c5a-specific neutralizing antibodies and prevents arthritis. PLoS One 5:e13511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Vergunst CE, Gerlag DM, Dinant H et al (2007) Blocking the receptor for C5a in patients with rheumatoid arthritis does not reduce synovial inflammation. Rheumatology (Oxford) 46:1773–1778

    Article  CAS  Google Scholar 

  95. Parker C (2009) Eculizumab for paroxysmal nocturnal haemoglobinuria. Lancet 373:759–767

    Article  PubMed  CAS  Google Scholar 

  96. Waters AM, Licht C (2011) aHUS caused by complement dysregulation: new therapies on the horizon. Pediatr Nephrol 26:41–57

    Article  PubMed  PubMed Central  Google Scholar 

  97. Armstrong C, Schubert J, Ueda E et al (1992) Affected paroxysmal nocturnal hemoglobinuria T lymphocytes harbor a common defect in assembly of N-acetyl-d-glucosamine inositol phospholipid corresponding to that in class A Thy-1- murine lymphoma mutants. J Biol Chem 267:25347–25351

    PubMed  CAS  Google Scholar 

  98. Hillmen P, Bessler M, Mason PJ, Watkins WM, Luzzatto L (1993) Specific defect in N-acetylglucosamine incorporation in the biosynthesis of the glycosylphosphatidylinositol anchor in cloned cell lines from patients with paroxysmal nocturnal hemoglobinuria. Proc Natl Acad Sci U S A 90:5272–5276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Takeda J, Miyata T, Kawagoe K et al (1993) Deficiency of the GPI anchor caused by a somatic mutation of the PIG-A gene in paroxysmal nocturnal hemoglobinuria. Cell 73:703–711

    Article  PubMed  CAS  Google Scholar 

  100. Wiedmer T, Hall SE, Ortel TL, Kane WH, Rosse WF, Sims PJ (1993) Complement-induced vesiculation and exposure of membrane prothrombinase sites in platelets of paroxysmal nocturnal hemoglobinuria. Blood 82:1192–1196

    PubMed  CAS  Google Scholar 

  101. Rother RP, Rollins SA, Mojcik CF, Brodsky RA, Bell L (2007) Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria. Nat Biotechnol 25:1256–1264

    Article  PubMed  CAS  Google Scholar 

  102. Kudo M, Ishigatsubo Y, Aoki I (2013) Pathology of asthma. Front Microbiol 4:263

    Article  PubMed  PubMed Central  Google Scholar 

  103. Zhang X, Kohl J (2010) A complex role for complement in allergic asthma. Expert Rev Clin Immunol 6:269–277

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Kohl J, Baelder R, Lewkowich IP et al (2006) A regulatory role for the C5a anaphylatoxin in type 2 immunity in asthma. J Clin Invest 116:783–796

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Humbles AA, Lu B, Nilsson CA et al (2000) A role for the C3a anaphylatoxin receptor in the effector phase of asthma. Nature 406:998–1001

    Article  PubMed  CAS  Google Scholar 

  106. Taube C, Rha YH, Takeda K et al (2003) Inhibition of complement activation decreases airway inflammation and hyperresponsiveness. Am J Respir Crit Care Med 168:1333–1341

    Article  PubMed  Google Scholar 

  107. Krug N, Tschernig T, Erpenbeck VJ, Hohlfeld JM, Kohl J (2001) Complement factors C3a and C5a are increased in bronchoalveolar lavage fluid after segmental allergen provocation in subjects with asthma. Am J Respir Crit Care Med 164:1841–1843

    Article  PubMed  CAS  Google Scholar 

  108. Abe M, Shibata K, Akatsu H et al (2001) Contribution of anaphylatoxin C5a to late airway responses after repeated exposure of antigen to allergic rats. J Immunol 167:4651–4660

    Article  PubMed  CAS  Google Scholar 

  109. Ricklin D (2012) Manipulating the mediator: modulation of the alternative complement pathway C3 convertase in health, disease and therapy. Immunobiology 217:1057–1066

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Forneris F, Ricklin D, Wu J et al (2010) Structures of C3b in complex with factors B and D give insight into complement convertase formation. Science 330:1816–1820

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Torreira E, Tortajada A, Montes T, Rodriguez de Cordoba S, Llorca O (2009) 3D structure of the C3bB complex provides insights into the activation and regulation of the complement alternative pathway convertase. Proc Natl Acad Sci U S A 106:882–887

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Katschke KJ Jr, Wu P, Ganesan R et al (2012) Inhibiting alternative pathway complement activation by targeting the factor D exosite. J Biol Chem 287:12886–12892

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Rooijakkers SH, Wu J, Ruyken M et al (2009) Structural and functional implications of the alternative complement pathway C3 convertase stabilized by a staphylococcal inhibitor. Nat Immunol 10:721–727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Laursen NS, Andersen KR, Braren I, Spillner E, Sottrup-Jensen L, Andersen GR (2011) Substrate recognition by complement convertases revealed in the C5-cobra venom factor complex. EMBO J 30:606–616

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Fredslund F, Laursen NS, Roversi P et al (2008) Structure of and influence of a tick complement inhibitor on human complement component 5. Nat Immunol 9:753–760

    Article  PubMed  CAS  Google Scholar 

  116. Janssen BJ, Huizinga EG, Raaijmakers HC et al (2005) Structures of complement component C3 provide insights into the function and evolution of immunity. Nature 437:505–511

    Article  PubMed  CAS  Google Scholar 

  117. Fredslund F, Jenner L, Husted LB, Nyborg J, Andersen GR, Sottrup-Jensen L (2006) The structure of bovine complement component 3 reveals the basis for thioester function. J Mol Biol 361:115–127

    Article  PubMed  CAS  Google Scholar 

  118. Kinoshita T, Takata Y, Kozono H, Takeda J, Hong KS, Inoue K (1988) C5 convertase of the alternative complement pathway: covalent linkage between two C3b molecules within the trimolecular complex enzyme. J Immunol 141:3895–3901

    PubMed  CAS  Google Scholar 

  119. Pangburn MK, Rawal N (2002) Structure and function of complement C5 convertase enzymes. Biochem Soc Trans 30:1006–1010

    Article  PubMed  CAS  Google Scholar 

  120. Takata Y, Kinoshita T, Kozono H et al (1987) Covalent association of C3b with C4b within C5 convertase of the classical complement pathway. J Exp Med 165:1494–1507

    Article  PubMed  CAS  Google Scholar 

  121. Rawal N, Pangburn M (2001) Formation of high-affinity C5 convertases of the alternative pathway of complement. J Immunol 166:2635–2642

    Article  PubMed  CAS  Google Scholar 

  122. Rawal N, Pangburn MK (2003) Formation of high affinity C5 convertase of the classical pathway of complement. J Biol Chem 278:38476–38483

    Article  PubMed  CAS  Google Scholar 

  123. Katschke KJ Jr, Stawicki S, Yin J et al (2009) Structural and functional analysis of a C3b-specific antibody that selectively inhibits the alternative pathway of complement. J Biol Chem 284:10473–10479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Helmy KY, Katschke KJ Jr, Gorgani NN et al (2006) CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell 124:915–927

    Article  PubMed  CAS  Google Scholar 

  125. Wiesmann C, Katschke KJ, Yin J et al (2006) Structure of C3b in complex with CRIg gives insights into regulation of complement activation. Nature 444:217–220

    Article  PubMed  CAS  Google Scholar 

  126. Ricklin D, Lambris JD (2008) Compstatin: a complement inhibitor on its way to clinical application. Adv Exp Med Biol 632:273–292

    PubMed  PubMed Central  CAS  Google Scholar 

  127. Qu H, Ricklin D, Bai H et al (2013) New analogs of the clinical complement inhibitor compstatin with subnanomolar affinity and enhanced pharmacokinetic properties. Immunobiology 218:496–505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Janssen BJ, Halff EF, Lambris JD, Gros P (2007) Structure of compstatin in complex with complement component C3c reveals a new mechanism of complement inhibition. J Biol Chem 282:29241–29247

    Article  PubMed  CAS  Google Scholar 

  129. Nishimura J, Yamamoto M, Hayashi S, et al (2012) A rare genetic polymorphism in C5 confers poor response to the anti-C5 monoclonal antibody eculizumab by nine Japanese patients with PNH. Abstract at 54th ASH annual meeting and exposition, Atlanta

    Google Scholar 

  130. Zuber J, Fakhouri F, Roumenina LT, Loirat C, Fremeaux-Bacchi V (2012) Use of eculizumab for atypical haemolytic uraemic syndrome and C3 glomerulopathies. Nat Rev Nephrol 8:643–657

    Article  PubMed  CAS  Google Scholar 

  131. Rohrer B, Long Q, Coughlin B et al (2009) A targeted inhibitor of the alternative complement pathway reduces angiogenesis in a mouse model of age-related macular degeneration. Invest Ophthalmol Vis Sci 50:3056–3064

    Article  PubMed  PubMed Central  Google Scholar 

  132. Schmidt CQ, Bai H, Lin Z et al (2013) Rational engineering of a minimized immune inhibitor with unique triple-targeting properties. J Immunol 190:5712–5721

    Article  PubMed  CAS  Google Scholar 

  133. Hebecker M, Alba-Dominguez M, Roumenina LT et al (2013) An engineered construct combining complement regulatory and surface-recognition domains represents a minimal-size functional factor H. J Immunol 191:912–921

    Article  PubMed  CAS  Google Scholar 

  134. Fridkis-Hareli M, Storek M, Mazsaroff I et al (2011) Design and development of TT30, a novel C3d-targeted C3/C5 convertase inhibitor for treatment of human complement alternative pathway-mediated diseases. Blood 118:4705–4713

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Mollnes TE, Brekke OL, Fung M et al (2002) Essential role of the C5a receptor in E coli-induced oxidative burst and phagocytosis revealed by a novel lepirudin-based human whole blood model of inflammation. Blood 100:1869–1877

    PubMed  CAS  Google Scholar 

  136. Sperling C, Houska M, Brynda E, Streller U, Werner C (2006) In vitro hemocompatibility of albumin-heparin multilayer coatings on polyethersulfone prepared by the layer-by-layer technique. J Biomed Mater Res A 76:681–689

    Article  PubMed  CAS  Google Scholar 

  137. Kopp R, Bernsberg R, Kashefi A, Mottaghy K, Rossaint R, Kuhlen R (2005) Effect of hirudin versus heparin on hemocompatibility of blood contacting biomaterials: an in vitro study. Int J Artif Organs 28:1272–1277

    PubMed  CAS  Google Scholar 

  138. Andersson J, Sanchez J, Ekdahl KN, Elgue G, Nilsson B, Larsson R (2003) Optimal heparin surface concentration and antithrombin binding capacity as evaluated with human non-anticoagulated blood in vitro. J Biomed Mater Res A 67:458–466

    Article  PubMed  CAS  Google Scholar 

  139. Wu YQ, Qu H, Sfyroera G et al (2011) Protection of nonself surfaces from complement attack by factor H-binding peptides: implications for therapeutic medicine. J Immunol 186:4269–4277

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Couser WG, Johnson RJ, Young BA, Yeh CG, Toth CA, Rudolph AR (1995) The effects of soluble recombinant complement receptor 1 on complement-mediated experimental glomerulonephritis. J Am Soc Nephrol 5:1888–1894

    PubMed  CAS  Google Scholar 

  141. Weisman HF, Bartow T, Leppo MK et al (1990) Soluble human complement receptor type 1: in vivo inhibitor of complement suppressing post-ischemic myocardial inflammation and necrosis. Science 249:146–151

    Article  PubMed  CAS  Google Scholar 

  142. Metcalfe RA, McIntosh RS, Morgan BP, Levin JL, Weetman AP (1996) The effect of soluble complement receptor 1 (sCR1) and human thyroid antibodies on the course of experimental autoimmune thyroiditis in rats. Autoimmunity 23:1–8

    Article  PubMed  CAS  Google Scholar 

  143. Rioux P (2001) TP-10 (AVANT immunotherapeutics). Curr Opin Investig Drugs 2:364–371

    PubMed  CAS  Google Scholar 

  144. Weisman HF, Bartow T, Leppo MK et al (1990) Recombinant soluble CR1 suppressed complement activation, inflammation, and necrosis associated with reperfusion of ischemic myocardium. Trans Assoc Am Physicians 103:64–72

    PubMed  CAS  Google Scholar 

  145. Dodd I, Mossakowska DE, Camilleri P et al (1995) overexpression in Escherichia coli, folding, purification, and characterization of the first three short consensus repeat modules of human complement receptor type 1. Protein Expr Purif 6:727–736

    Article  PubMed  CAS  Google Scholar 

  146. Fodor WL, Rollins SA, Bianco-Caron S et al (1995) Primate terminal complement inhibitor homologues of human CD59. Immunogenetics 41:51

    Article  PubMed  CAS  Google Scholar 

  147. Song H, He C, Knaak C, Guthridge JM, Holers VM, Tomlinson S (2003) Complement receptor 2-mediated targeting of complement inhibitors to sites of complement activation. J Clin Invest 111:1875–1885

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Klos A, Wende E, Wareham KJ, Monk PN (2013) International union of pharmacology: LXXXVII. Complement peptide C5a, C4a, and C3a receptors. Pharmacol Rev 65:500–543

    Article  PubMed  CAS  Google Scholar 

  149. Bokisch VA, Muller-Eberhard HJ (1970) Anaphylatoxin inactivator of human plasma: its isolation and characterization as a carboxypeptidase. J Clin Invest 49:2427–2436

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Cain SA, Monk PN (2002) The orphan receptor C5L2 has high affinity binding sites for complement fragments C5a and C5a des-Arg(74). J Biol Chem 277:7165–7169

    Article  PubMed  CAS  Google Scholar 

  151. Khan MA, Maasch C, Vater A et al (2013) Targeting complement component 5a promotes vascular integrity and limits airway remodeling. Proc Natl Acad Sci U S A 110:6061–6066

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Woodruff TM, Nandakumar KS, Tedesco F (2011) Inhibiting the C5-C5a receptor axis. Mol Immunol 48:1631–1642

    Article  PubMed  CAS  Google Scholar 

  153. Zhang X, Boyar W, Toth MJ, Wennogle L, Gonnella NC (1997) Structural definition of the C5a C terminus by two-dimensional nuclear magnetic resonance spectroscopy. Proteins 28:261–267

    Article  PubMed  CAS  Google Scholar 

  154. Cook WJ, Galakatos N, Boyar WC, Walter RL, Ealick SE (2010) Structure of human desArg-C5a. Acta Crystallogr D Biol Crystallogr 66:190–197

    Article  PubMed  CAS  Google Scholar 

  155. Ward PA, Guo RF, Riedemann NC (2012) Manipulation of the complement system for benefit in sepsis. Crit Care Res Pract 2012:427607

    PubMed  PubMed Central  Google Scholar 

  156. Stevens JH, O'Hanley P, Shapiro JM et al (1986) Effects of anti-C5a antibodies on the adult respiratory distress syndrome in septic primates. J Clin Invest 77:1812–1816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Sprong T, Brandtzaeg P, Fung M et al (2003) Inhibition of C5a-induced inflammation with preserved C5b-9-mediated bactericidal activity in a human whole blood model of meningococcal sepsis. Blood 102:3702–3710

    Article  PubMed  CAS  Google Scholar 

  158. Sarma JV, Ward PA (2012) New developments in C5a receptor signaling. Cell Health Cytoskelet 4:73–82

    PubMed  PubMed Central  Google Scholar 

  159. Noris M, Mescia F, Remuzzi G (2012) STEC-HUS, atypical HUS and TTP are all diseases of complement activation. Nat Rev Nephrol 8:622–633

    Article  PubMed  CAS  Google Scholar 

  160. Vater A, Klussmann S (2003) Toward third-generation aptamers: spiegelmers and their therapeutic prospects. Curr Opin Drug Discov Devel 6:253–261

    PubMed  CAS  Google Scholar 

  161. Hoehlig K, Maasch C, Shushakova N et al (2013) A novel C5a-neutralizing mirror-image (l-)aptamer prevents organ failure and improves survival in experimental sepsis. Mol Ther 21:2236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Kessel C, Nandakumar KS, Peters FB, Gauba V, Schultz PG, Holmdahl R (2013) A single functional group substitution in C5a breaks B and T cell tolerance and protects from experimental arthritis. Arthritis Rheum 66:610

    Article  CAS  Google Scholar 

  163. Finch AM, Wong AK, Paczkowski NJ et al (1999) Low-molecular-weight peptidic and cyclic antagonists of the receptor for the complement factor C5a. J Med Chem 42:1965–1974

    Article  PubMed  CAS  Google Scholar 

  164. Zhang L, Mallik B, Morikis D (2008) Structural study of Ac-Phe-[Orn-Pro-dCha-Trp-Arg], a potent C5a receptor antagonist, by NMR. Biopolymers 90:803–815

    Article  PubMed  CAS  Google Scholar 

  165. Sumichika H, Sakata K, Sato N et al (2002) Identification of a potent and orally active non-peptide C5a receptor antagonist. J Biol Chem 277:49403–49407

    Article  PubMed  CAS  Google Scholar 

  166. Scola AM, Higginbottom A, Partridge LJ et al (2007) The role of the N-terminal domain of the complement fragment receptor C5L2 in ligand binding. J Biol Chem 282:3664–3671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Brodbeck RM, Cortright DN, Kieltyka AP et al (2008) Identification and characterization of NDT 9513727 [N,N-bis(1,3-benzodioxol-5-ylmethyl)-1-butyl-2,4-diphenyl-1H-imidazole-5-methanamine], a novel, orally bioavailable C5a receptor inverse agonist. J Pharmacol Exp Ther 327:898–909

    Article  PubMed  CAS  Google Scholar 

  168. Klco JM, Wiegand CB, Narzinski K, Baranski TJ (2005) Essential role for the second extracellular loop in C5a receptor activation. Nat Struct Mol Biol 12:320–326

    Article  PubMed  CAS  Google Scholar 

  169. Heller T, Hennecke M, Baumann U et al (1999) Selection of a C5a receptor antagonist from phage libraries attenuating the inflammatory response in immune complex disease and ischemia/reperfusion injury. J Immunol 163:985–994

    PubMed  CAS  Google Scholar 

  170. Otto M, Hawlisch H, Monk PN et al (2004) C5a mutants are potent antagonists of the C5a receptor (CD88) and of C5L2: position 69 is the locus that determines agonism or antagonism. J Biol Chem 279:142–151

    Article  PubMed  CAS  Google Scholar 

  171. Ember JA, Johansen NL, Hugli TE (1991) Designing synthetic superagonists of C3a anaphylatoxin. Biochemistry 30:3603–3612

    Article  PubMed  CAS  Google Scholar 

  172. Scully CC, Blakeney JS, Singh R et al (2010) Selective hexapeptide agonists and antagonists for human complement C3a receptor. J Med Chem 53:4938–4948

    Article  PubMed  CAS  Google Scholar 

  173. Ames RS, Lee D, Foley JJ et al (2001) Identification of a selective nonpeptide antagonist of the anaphylatoxin C3a receptor that demonstrates antiinflammatory activity in animal models. J Immunol 166:6341–6348

    Article  PubMed  CAS  Google Scholar 

  174. Allendorf DJ, Yan J, Ross GD et al (2005) C5a-mediated leukotriene B4-amplified neutrophil chemotaxis is essential in tumor immunotherapy facilitated by anti-tumor monoclonal antibody and beta-glucan. J Immunol 174:7050–7056

    Article  PubMed  CAS  Google Scholar 

  175. Mathieu MC, Sawyer N, Greig GM et al (2005) The C3a receptor antagonist SB 290157 has agonist activity. Immunol Lett 100:139–145

    Article  PubMed  CAS  Google Scholar 

  176. Monk PN, Scola AM, Madala P, Fairlie DP (2007) Function, structure and therapeutic potential of complement C5a receptors. Br J Pharmacol 152:429–448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Lambris JD, Ricklin D, Geisbrecht BV (2008) Complement evasion by human pathogens. Nat Rev Microbiol 6:132–142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Jongerius I, Kohl J, Pandey MK et al (2007) Staphylococcal complement evasion by various convertase-blocking molecules. J Exp Med 204:2461–2471

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Hammel M, Sfyroera G, Ricklin D, Magotti P, Lambris JD, Geisbrecht BV (2007) A structural basis for complement inhibition by Staphylococcus aureus. Nat Immunol 8:430–437

    Article  PubMed  CAS  Google Scholar 

  180. Hammel M, Sfyroera G, Pyrpassopoulos S et al (2007) Characterization of Ehp, a secreted complement inhibitory protein from Staphylococcus aureus. J Biol Chem 282:30051–30061

    Article  PubMed  CAS  Google Scholar 

  181. Clark EA, Crennell S, Upadhyay A et al (2011) A structural basis for Staphylococcal complement subversion: X-ray structure of the complement-binding domain of Staphylococcus aureus protein Sbi in complex with ligand C3d. Mol Immunol 48:452–462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Ricklin D, Ricklin-Lichtsteiner SK, Markiewski MM, Geisbrecht BV, Lambris JD (2008) Cutting edge: members of the Staphylococcus aureus extracellular fibrinogen-binding protein family inhibit the interaction of C3d with complement receptor 2. J Immunol 181:7463–7467

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Nunn MA, Sharma A, Paesen GC et al (2005) Complement inhibitor of C5 activation from the soft tick Ornithodoros moubata. J Immunol 174:2084–2091

    Article  PubMed  CAS  Google Scholar 

  184. Halstead SK, Humphreys PD, Zitman FM, Hamer J, Plomp JJ, Willison HJ (2008) C5 inhibitor rEV576 protects against neural injury in an in vitro mouse model of Miller Fisher syndrome. J Peripher Nerv Syst 13:228–235

    Article  PubMed  Google Scholar 

  185. Soltys J, Kusner LL, Young A et al (2009) Novel complement inhibitor limits severity of experimentally myasthenia gravis. Ann Neurol 65:67–75

    Article  PubMed  PubMed Central  Google Scholar 

  186. Barratt-Due A, Thorgersen EB, Lindstad JK et al (2011) Ornithodoros moubata complement inhibitor is an equally effective C5 inhibitor in pigs and humans. J Immunol 187:4913–4919

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Laursen NS, Gordon N, Hermans S et al (2010) Structural basis for inhibition of complement C5 by the SSL7 protein from Staphylococcus aureus. Proc Natl Acad Sci U S A 107:3681–3686

    Article  PubMed  PubMed Central  Google Scholar 

  188. Fernie-King BA, Seilly DJ, Willers C, Wurzner R, Davies A, Lachmann PJ (2001) Streptococcal inhibitor of complement (SIC) inhibits the membrane attack complex by preventing uptake of C567 onto cell membranes. Immunology 103:390–398

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Pramoonjago P, Kaneko M, Kinoshita T et al (1992) Role of TraT protein, an anticomplementary protein produced in Escherichia coli by R100 factor, in serum resistance. J Immunol 148:827–836

    PubMed  CAS  Google Scholar 

  190. Pausa M, Pellis V, Cinco M et al (2003) Serum-resistant strains of Borrelia burgdorferi evade complement-mediated killing by expressing a CD59-like complement inhibitory molecule. J Immunol 170:3214–3222

    Article  PubMed  CAS  Google Scholar 

  191. Jagels MA, Ember JA, Travis J, Potempa J, Pike R, Hugli TE (1996) Cleavage of the human C5A receptor by proteinases derived from Porphyromonas gingivalis: cleavage of leukocyte C5a receptor. Adv Exp Med Biol 389:155–164

    Article  PubMed  CAS  Google Scholar 

  192. Postma B, Poppelier MJ, van Galen JC et al (2004) Chemotaxis inhibitory protein of Staphylococcus aureus binds specifically to the C5a and formylated peptide receptor. J Immunol 172:6994–7001

    Article  PubMed  CAS  Google Scholar 

  193. Ippel JH, de Haas CJ, Bunschoten A et al (2009) Structure of the tyrosine-sulfated C5a receptor N terminus in complex with chemotaxis inhibitory protein of Staphylococcus aureus. J Biol Chem 284:12363–12372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Wright AJ, Higginbottom A, Philippe D et al (2007) Characterisation of receptor binding by the chemotaxis inhibitory protein of Staphylococcus aureus and the effects of the host immune response. Mol Immunol 44:2507–2517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Gustafsson E, Rosen A, Barchan K et al (2010) Directed evolution of chemotaxis inhibitory protein of Staphylococcus aureus generates biologically functional variants with reduced interaction with human antibodies. Protein Eng Des Sel 23:91–101

    Article  PubMed  CAS  Google Scholar 

  196. Bunschoten A, Feitsma LJ, Kruijtzer JA, de Haas CJ, Liskamp RM, Kemmink J (2010) CHIPS binds to the phosphorylated N-terminus of the C5a-receptor. Bioorg Med Chem Lett 20:3338–3340

    Article  PubMed  CAS  Google Scholar 

  197. Caesar JJ, Wallich R, Kraiczy P, Zipfel PF, Lea SM (2013) Further structural insights into the binding of complement factor H by complement regulator-acquiring surface protein 1 (CspA) of Borrelia burgdorferi. Acta Crystallogr Sect F Struct Biol Cryst Commun 69:629–633

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Bhattacharjee A, Oeemig JS, Kolodziejczyk R et al (2013) Structural basis for complement evasion by Lyme disease pathogen Borrelia burgdorferi. J Biol Chem 288:18685–18695

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Schneider MC, Prosser BE, Caesar JJ et al (2009) Neisseria meningitidis recruits factor H using protein mimicry of host carbohydrates. Nature 458:890–893

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Sfyroera G, Katragadda M, Morikis D, Isaacs SN, Lambris JD (2005) Electrostatic modeling predicts the activities of orthopoxvirus complement control proteins. J Immunol 174:2143–2151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Ricklin D, Lambris JD (2013) Complement in immune and inflammatory disorders: pathophysiological mechanisms. J Immunol 190:3831–3838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Kidmose RT, Laursen NS, Dobo J et al (2012) Structural basis for activation of the complement system by component C4 cleavage. Proc Natl Acad Sci U S A 109:15425–15430

    Article  PubMed  PubMed Central  Google Scholar 

  203. Risitano AM, Perna F, Selleri C (2011) Achievements and limitations of complement inhibition by eculizumab in paroxysmal nocturnal hemoglobinuria: the role of complement component 3. Mini Rev Med Chem 11:528–535

    Article  PubMed  CAS  Google Scholar 

  204. Struijk GH, Bouts AH, Rijkers GT, Kuin EA, ten Berge IJ, Bemelman FJ (2013) Meningococcal sepsis complicating eculizumab treatment despite prior vaccination. Am J Transplant 13:819–820

    Article  PubMed  CAS  Google Scholar 

  205. Barnett ANR, Asgari E, Chowdhury P, Sacks SH, Dorling A, Mamode N (2013) The use of eculizumab in renal transplantation. Clin Transplant 27:E216–E229

    Article  PubMed  CAS  Google Scholar 

  206. Smith GP, Smith RA (2001) Membrane-targeted complement inhibitors. Mol Immunol 38:249–255

    Article  PubMed  CAS  Google Scholar 

  207. Fraser DA, Harris CL, Williams AS et al (2003) Generation of a recombinant, membrane-targeted form of the complement regulator CD59: activity in vitro and in vivo. J Biol Chem 278:48921–48927

    Article  PubMed  CAS  Google Scholar 

  208. Souza DG, Esser D, Bradford R, Vieira AT, Teixeira MM (2005) APT070 (Mirococept), a membrane-localised complement inhibitor, inhibits inflammatory responses that follow intestinal ischaemia and reperfusion injury. Br J Pharmacol 145:1027–1034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Moghimi SM, Andersen AJ, Ahmadvand D, Wibroe PP, Andresen TL, Hunter AC (2011) Material properties in complement activation. Adv Drug Deliv Rev 63:1000–1007

    Article  PubMed  CAS  Google Scholar 

  210. Janssen BJC, Christodoulidou A, McCarthy A, Lambris JD, Gros P (2006) Structure of C3b reveals conformational changes that underlie complement activity. Nature 444:213–216

    Article  PubMed  CAS  Google Scholar 

  211. Ramsland PA, Willoughby N, Trist HM et al (2007) Structural basis for evasion of IgA immunity by Staphylococcus aureus revealed in the complex of SSL7 with Fc of human IgA1. Proc Natl Acad Sci U S A 104:15051–15056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Laure Yatime or Gregers Rom Andersen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Controlled Release Society

About this chapter

Cite this chapter

Yatime, L., Bajic, G., Schatz-Jakobsen, J.A., Andersen, G.R. (2016). Complement Regulators and Inhibitors in Health and Disease: A Structural Perspective. In: Howard, K., Vorup-Jensen, T., Peer, D. (eds) Nanomedicine. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3634-2_2

Download citation

Publish with us

Policies and ethics