Skip to main content

The Application of Nanotechnology for Implant Drug Release

  • Chapter
  • First Online:
Nanomedicine

Part of the book series: Advances in Delivery Science and Technology ((ADST))

  • 1781 Accesses

Abstract

The use of medical implants is a cornerstone of modern medicine. All implants face, however, a number of challenges including infection and inflammation which cause many of them to fail. In addition, tissue engineering implants must also direct stem cell differentiation and tissue regeneration in order to work properly. These problems may be overcome using drugs that are delivered directly from the implant. For this to work the drugs have to be protected until they have performed their function, their release must be timed with when they are needed, they may have to affect specific regions of an implant only and some drugs must be delivered to specific sub-cellular locations in certain cells types. This chapter explores how various forms of nanotechnology may be employed to reach these goals and reviews many of the studies that have used nanotechnology for different implant mediated drug release applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Iskander Z, Harris JE (1977) A skull with a silver bridge to replace a central incisor. Ann Serv Antiq Egypte 62:85–90

    Google Scholar 

  2. Thurston AJ (2007) Pare and prosthetics: the early history of artificial limbs. ANZ J Surg 77(12):1114–1119

    Article  PubMed  Google Scholar 

  3. Sanan A, Haines SJ (1997) Repairing holes in the head: a history of cranioplasty. Neurosurgery 40(3):588–603

    PubMed  CAS  Google Scholar 

  4. Merrill JP, Murray JE, Harrison JH, Guild WR (1956) Successful homotransplantation of the human kidney between identical twins. JAMA 160(4):277–282

    Article  CAS  Google Scholar 

  5. Barnard CN (1968) Human cardiac transplantation. An evaluation of the first two operations performed at the Groote Schuur Hospital, Cape Town. Am J Cardiol 22(4):584–596

    Article  PubMed  CAS  Google Scholar 

  6. DeVries WC, Anderson JL, Joyce LD, Anderson FL, Hammond EH, Jarvik RK, Kolff WJ (1984) Clinical use of the total artificial heart. N Engl J Med 310(5):273–278

    Article  PubMed  CAS  Google Scholar 

  7. Bazaka K, Jacob MV, Crawford RJ, Ivanova EP (2012) Efficient surface modification of biomaterial to prevent biofilm formation and the attachment of microorganisms. Appl Microbiol Biotechnol 95(2):299–311

    Article  PubMed  CAS  Google Scholar 

  8. Kolind K, Leong KW, Besenbacher F, Foss M (2012) Guidance of stem cell fate on 2D patterned surfaces. Biomaterials 33(28):6626–6633

    Article  PubMed  CAS  Google Scholar 

  9. Urban P, Gershlick AH, Guagliumi G, Guyon P, Lotan C, Schofer J, Seth A, Sousa JE, Wijns W, Berge C, Deme M, Stoll HP, e-Cypher Investigators (2006) Safety of coronary sirolimus-eluting stents in daily clinical practice: one-year follow-up of the e-Cypher registry. Circulation 113(11):1434–1441

    Article  PubMed  CAS  Google Scholar 

  10. Zilberman M, Elsner JJ (2008) Antibiotic-eluting medical devices for various applications. J Control Release 130(3):202–215

    Article  PubMed  CAS  Google Scholar 

  11. Those 2012 data are based on the Global Observatory on Donation and Transplantation (GODT) data, produced by the WHO-ONT collaboration

    Google Scholar 

  12. Buckley RH (2003) Transplantation immunology: organ and bone marrow. J Allergy Clin Immunol 111(2 Suppl):S733–S744

    Article  PubMed  CAS  Google Scholar 

  13. van Heurn E, de Vries EE (2009) Kidney transplantation and donation in children. Pediatr Surg Int 25(5):385–393

    Article  PubMed  Google Scholar 

  14. Freeman RB, Bernat JL (2012) Ethical issues in organ transplantation. Prog Cardiovasc Dis 55(3):282–289

    Article  PubMed  Google Scholar 

  15. Fahy GM, Wowk B, Wu J (2006) Cryopreservation of complex systems: the missing link in the regenerative medicine supply chain. Rejuvenation Res 9(2):279–291

    Article  PubMed  CAS  Google Scholar 

  16. The organ procurement and transplantation network. The OPTN Web site offers a wealth of information about transplantation (http://optn.transplant.hrsa.gov)

  17. Burra P, De Bona M (2007) Quality of life following organ transplantation. Transpl Int 20(5):397–409

    Article  PubMed  Google Scholar 

  18. Timms D (2011) A review of clinical ventricular assist devices. Med Eng Phys 33(9):1041–1047

    Article  PubMed  Google Scholar 

  19. Milla F, Pinney SP, Anyanwu AC (2012) Indications for heart transplantation in current era of left ventricular assist devices. Mt Sinai J Med 79(3):305–316

    Article  PubMed  Google Scholar 

  20. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Article  PubMed  CAS  Google Scholar 

  21. Shin'oka T, Imai Y, Ikada Y (2001) Transplantation of a tissue-engineered pulmonary artery. N Engl J Med 344:532–533

    Article  PubMed  Google Scholar 

  22. Cebotari S, Lichtenberg A, Tudorache I, Hilfiker A, Mertsching H, Leyh R, Breymann T, Kallenbach K, Maniuc L, Batrinac A, Repin O, Maliga O, Ciubotaru A, Haverich A (2006) Clinical application of tissue engineered human heart valves using autologous progenitor cells. Circulation 114(1 Suppl):I132–I137

    PubMed  Google Scholar 

  23. Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB (2006) Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367(9518):1241–1246

    Article  PubMed  Google Scholar 

  24. Macchiarini P, Jungebluth P, Go T, Asnaghi MA, Rees LE, Cogan TA, Dodson A, Martorell J, Bellini S, Parnigotto PP, Dickinson SC, Hollander AP, Mantero S, Conconi MT, Birchall MA (2008) Clinical transplantation of a tissue-engineered airway. Lancet 372(9655):2023–2030

    Article  PubMed  Google Scholar 

  25. Gonfiotti A, Jaus MO, Barale D, Baiguera S, Comin C, Lavorini F, Fontana G, Sibila O, Rombolà G, Jungebluth P, Macchiarini P (2013) The first tissue-engineered airway transplantation: 5-year follow-up results. Lancet 383(9913):238–244

    Article  PubMed  Google Scholar 

  26. Elliott MJ, De Coppi P, Speggiorin S, Roebuck D, Butler CR, Samuel E, Crowley C, McLaren C, Fierens A, Vondrys D, Cochrane L, Jephson C, Janes S, Beaumont NJ, Cogan T, Bader A, Seifalian AM, Hsuan JJ, Lowdell MW, Birchall MA (2012) Stem-cell-based, tissue engineered tracheal replacement in a child: a 2-year follow-up study. Lancet 380(9846):994–1000

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ott HC (2012) Engineering tissues for children: building grafts that grow. Lancet 380(9846):957–958

    Article  PubMed  Google Scholar 

  28. Vogel G (2013) Trachea transplants test the limits. Science 340:266–268

    Article  PubMed  CAS  Google Scholar 

  29. Russell AJ (2014) The end of the beginning for tissue engineering. Lancet 383(9913):193–195

    Article  PubMed  Google Scholar 

  30. Mannoor MS, Jiang Z, James T, Kong YL, Malatesta KA, Soboyejo WO, Verma N, Gracias DH, McAlpine MC (2013) 3D printed bionic ears. Nano Lett 13(6):2634–2639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Williams DF (2008) One the mechanism of biocompatibility. Biomaterials 29:2941–2953

    Article  PubMed  CAS  Google Scholar 

  32. Williams DF (1987) Definitions in biomaterials. Elsevier, Amsterdam

    Google Scholar 

  33. Elek SD, Conen PE (1957) The virulence of Staphylococcus pyogenes for man. A study of the problems of wound infection. Br J Exp Pathol 38(6):573–586

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Montanaro L, Speziale P, Campoccia D, Ravaioli S, Cangini I, Pietrocola G, Giannini S, Arciola CR (2011) Scenery of Staphylococcus implant infections in orthopedics. Future Microbiol 6(11):1329–1349

    Article  PubMed  CAS  Google Scholar 

  35. Zimmerli W, Zak O, Vosbeck K (1985) Experimental hematogenous infection of subcutaneously implanted foreign bodies. Scand J Infect Dis 17(3):303–310

    Article  PubMed  CAS  Google Scholar 

  36. Hudetz D, Ursic Hudetz S, Harris LG, Luginbühl R, Friederich NF, Landmann R (2008) Weak effect of metal type and ica genes on staphylococcal infection of titanium and stainless steel implants. Clin Microbiol Infect 14(12):1135–1145

    Article  PubMed  CAS  Google Scholar 

  37. Hammermeister K, Sethi GK, Henderson WG, Grover FL, Oprian C, Rahimtoola SH (2000) Outcomes 15 years after valve replacement with a mechanical versus a bioprosthetic valve: final report of the Veterans Affairs randomized trial. J Am Coll Cardiol 36(4):1152–1158

    Article  PubMed  CAS  Google Scholar 

  38. Zimmerli W, Sendi P (2011) Pathogenesis of implant-associated infection: the role of the host. Semin Immunopathol 33:295–306

    Article  PubMed  CAS  Google Scholar 

  39. Götz F (2002) Staphylococcus and biofilms. Mol Microbiol 43(6):1367–1378

    Article  PubMed  Google Scholar 

  40. Kristian SA, Birkenstock TA, Sauder U, Mack D, Götz F, Landmann R (2008) Biofilm formation induces C3a release and protects Staphylococcus epidermidis from IgG and complement deposition and from neutrophil-dependent killing. J Infect Dis 197(7):1028–1035

    Article  PubMed  Google Scholar 

  41. Campoccia D, Montanaro L, Arciola CR (2013) A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 34(34):8533–8554

    Article  PubMed  CAS  Google Scholar 

  42. Ketonis C, Parvizi J, Jones LC (2012) Evolving strategies to prevent implant-associated infections. J Am Acad Orthop Surg 20:478–480

    Article  PubMed  Google Scholar 

  43. Hook AL, Chang CY, Yang J, Luckett J, Cockayne A, Atkinson S, Mei Y, Bayston R, Irvine DJ, Langer R, Anderson DG, Williams P, Davies MC, Alexander MR (2012) Combinatorial discovery of polymers resistant to bacterial attachment. Nat Biotechnol 30(9):868–875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Hickok NJ, Shapiro IM (2012) Immobilized antibiotics to prevent orthopaedic implant infections. Adv Drug Deliv Rev 64(12):1165–1176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Hetrick EM, Schoenfisch MH (2006) Reducing implant-related infections: active release strategies. Chem Soc Rev 35(9):780–789

    Article  PubMed  CAS  Google Scholar 

  46. Otten H (1986) Domagk and the development of the sulphonamides. J Antimicrob Chemother 17:689–696

    Article  PubMed  CAS  Google Scholar 

  47. Liu H, Zhang L, Shi P, Zou Q, Zuo Y, Li Y (2010) Hydroxyapatite/polyurethane scaffold incorporated with drug-loaded ethyl cellulose microspheres for bone regeneration. J Biomed Mater Res B Appl Biomater 95(1):36–46

    Article  PubMed  CAS  Google Scholar 

  48. Ma T, Shang BC, Tang H, Zhou TH, Xu GL, Li HL, Chen QH, Xu YQ (2011) Nano-hydroxyapatite/chitosan/konjac glucomannan scaffolds loaded with cationic liposomal vancomycin: preparation, in vitro release and activity against Staphylococcus aureus biofilms. J Biomater Sci Polym Ed 22(12):1669–1681

    Article  PubMed  CAS  Google Scholar 

  49. Feng K, Sun H, Bradley MA, Dupler EJ, Giannobile WV, Ma PX (2010) Novel antibacterial nanofibrous PLLA scaffolds. J Control Release 146(3):363–369

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Hong Y, Fujimoto K, Hashizume R, Guan J, Stankus JJ, Tobita K, Wagner WR (2008) Generating elastic, biodegradable polyurethane/poly(lactide-co-glycolide) fibrous sheets with controlled antibiotic release via two-stream electrospinning. Biomacromolecules 9(4):1200–1207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Kim K, Luu YK, Chang C, Fang D, Hsiao BS, Chu B, Hadjiargyrou M (2004) Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds. J Control Release 98(1):47–56

    Article  PubMed  CAS  Google Scholar 

  52. Teo EY, Ong SY, Chong MS, Zhang Z, Lu J, Moochhala S, Ho B, Teoh SH (2011) Polycaprolactone-based fused deposition modeled mesh for delivery of antibacterial agents to infected wounds. Biomaterials 32(1):279–287

    Article  PubMed  CAS  Google Scholar 

  53. Li H, Ogle H, Jiang B, Hagar M, Li B (2010) Cefazolin embedded biodegradable polypeptide nanofilms promising for infection prevention: a preliminary study on cell responses. J Orthop Res 28(8):992–999

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Verreck G, Chun I, Rosenblatt J, Peeters J, Dijck AV, Mensch J, Noppe M, Brewster ME (2003) Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, nonbiodegradable polymer. J Control Release 92(3):349–360

    Article  PubMed  CAS  Google Scholar 

  55. Karbach J, Callaway AS, Willershausen B, Wagner W, Al-Nawas B (2013) Multiple resistance to betalactam antibiotics, azithromycin or moxifloxacin in implant associated bacteria. Clin Lab 59(3–4):381–387

    PubMed  CAS  Google Scholar 

  56. Rams TE, Degener JE, van Winkelhoff AJ (2014) Antibiotic resistance in human peri-implantitis microbiota. Clin Oral Implants Res 25(1):82–90

    Article  PubMed  Google Scholar 

  57. Rodriguez DJ, Afzal A, Evonich R, Haines DE (2012) The prevalence of methicillin resistant organisms among pacemaker and defibrillator implant recipients. Am J Cardiovasc Dis 2(2):116–122

    PubMed  PubMed Central  Google Scholar 

  58. Nablo BJ, Prichard HL, Butler RD, Klitzman B, Schoenfisch MH (2005) Inhibition of implant-associated infections via nitric oxide release. Biomaterials 26(34):6984–6990

    Article  PubMed  CAS  Google Scholar 

  59. Cao H, Liu X (2010) Silver nanoparticles-modified films versus biomedical device-associated infections. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(6):670–684

    Article  PubMed  CAS  Google Scholar 

  60. Schierholz JM, Lucas LJ, Rump A, Pulverer G (1998) Efficacy of silver-coated medical devices. J Hosp Infect 40(4):257–262

    Article  PubMed  CAS  Google Scholar 

  61. Xiu ZM, Zhang QB, Puppala HL, Colvin VL, Alvarez PJ (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12(8):4271–4275

    Article  PubMed  CAS  Google Scholar 

  62. Chernousova S, Epple M (2013) Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed 52:1636–1653

    Article  CAS  Google Scholar 

  63. Gravante G, Caruso R, Sorge R, Nicoli F, Gentile P, Cervelli V (2009) Nanocrystalline silver: a systematic review of randomized trials conducted on burned patients and an evidence-based assessment of potential advantages over older silver formulations. Ann Plast Surg 63(2):201–205

    Article  PubMed  CAS  Google Scholar 

  64. Lo SF, Hayter M, Chang CJ, Hu WY, Lee LL (2008) A systematic review of silver-releasing dressings in the management of infected chronic wounds. J Clin Nurs 17(15):1973–1985

    Article  PubMed  Google Scholar 

  65. Verbelen J, Hoeksema H, Heyneman A, Pirayesh A, Monstrey S (2014) Aquacel® Ag dressing versus Acticoat™ dressing in partial thickness burns: a prospective, randomized, controlled study in 100 patients. Part 1: Burn wound healing. Burns 40(3):416–427, pii: S0305-4179(13)00230-1

    Article  PubMed  Google Scholar 

  66. Rupp ME, Fitzgerald T, Marion N, Helget V, Puumala S, Anderson JR, Fey PD (2004) Effect of silver-coated urinary catheters: efficacy, cost-effectiveness, and antimicrobial resistance. Am J Infect Control 32(8):445–450

    Article  PubMed  Google Scholar 

  67. Lackner P, Beer R, Broessner G, Helbok R, Galiano K, Pleifer C, Pfausler B, Brenneis C, Huck C, Engelhardt K, Obwegeser AA, Schmutzhard E (2008) Efficacy of silver nanoparticles-impregnated external ventricular drain catheters in patients with acute occlusive hydrocephalus. Neurocrit Care 8(3):360–365

    Article  PubMed  Google Scholar 

  68. Kalfon P, de Vaumas C, Samba D, Boulet E, Lefrant JY, Eyraud D, Lherm T, Santoli F, Naija W, Riou B (2007) Comparison of silver-impregnated with standard multi-lumen central venous catheters in critically ill patients. Crit Care Med 35(4):1032–1039

    Article  PubMed  Google Scholar 

  69. Antonelli M, De Pascale G, Ranieri VM, Pelaia P, Tufano R, Piazza O, Zangrillo A, Ferrario A, De Gaetano A, Guaglianone E, Donelli G (2012) Comparison of triple-lumen central venous catheters impregnated with silver nanoparticles (AgTive®) vs conventional catheters in intensive care unit patients. J Hosp Infect 82(2):101–107

    Article  PubMed  CAS  Google Scholar 

  70. Beer C, Foldbjerg R, Hayashi Y, Sutherland DS, Autrup H (2012) Toxicity of silver nanoparticles—nanoparticle or silver ion? Toxicol Lett 208(3):286–292

    Article  PubMed  CAS  Google Scholar 

  71. Pauksch L, Hartmann S, Rohnke M, Szalay G, Alt V, Schnettler R, Lips KS (2014) Biocompatibility of silver nanoparticles and silver ions in primary human mesenchymal stem cells and osteoblasts. Acta Biomater 10(1):439–449

    Article  PubMed  CAS  Google Scholar 

  72. Albers CE, Hofstetter W, Siebenrock KA, Landmann R, Klenke FM (2013) In vitro cytotoxicity of silver nanoparticles on osteoblasts and osteoclasts at antibacterial concentrations. Nanotoxicology 7(1):30–36

    Article  PubMed  CAS  Google Scholar 

  73. Taglietti A, Arciola CR, D’Agostino A, Dacarro G, Montanaro L, Campoccia D, Cucca L, Vercellino M, Poggi A, Pallavicini P, Visai L (2014) Antibiofilm activity of a monolayer of silver nanoparticles anchored to an amino-silanized glass surface. Biomaterials 35(6):1779–1788

    Article  PubMed  CAS  Google Scholar 

  74. Gordon O, Slenters TV, Brunetto PS, Villaruz AE, Sturdevant DE, Otto M (2010) Silver coordination polymers for prevention of implant infection: thiol interaction, impact on respiratory chain enzymes, and hydroxyl radical induction. Antimicrob Agents Chemother 54:4208–4218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Wang H, Cheng M, Hu J, Wang C, Xu S, Han CC (2013) Preparation and optimization of silver nanoparticles embedded electrospun membrane for implant associated infections prevention. ACS Appl Mater Interfaces 5(21):11014–11021

    Article  PubMed  CAS  Google Scholar 

  76. Mohiti-Asli M, Pourdeyhimi B, Loboa EG (2014) Novel, silver-ion-releasing nanofibrous scaffolds exhibit excellent antibacterial efficacy without the use of silver nanoparticles. Acta Biomater 10(5):2096–2104, pii: S1742-7061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Sheikh FA, Woo Ju H, Mi Moon B, Jung Park H, Kim JH, Joo Lee O, Hum Park C (2014) Facile and highly efficient approach for the fabrication of multifunctional silk nanofibers containing hydroxyapatite and silver nanoparticles. J Biomed Mater Res A 102(10):3459–3469

    Article  PubMed  CAS  Google Scholar 

  78. Samberg ME, Mente P, He T, King MW, Monteiro-Riviere NA (2013) In vitro biocompatibility and antibacterial efficacy of a degradable poly(l-lactide-co-epsilon-caprolactone) copolymer incorporated with silver nanoparticles. Ann Biomed Eng 42:1482–1493

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cheng H, Li Y, Huo K, Gao B, Xiong W (2013) Long-lasting in vivo and in vitro antibacterial ability of nanostructured titania coating incorporated with silver nanoparticles. J Biomed Mater Res A 102:3488–3499

    Article  PubMed  CAS  Google Scholar 

  80. Mijnendonckx K, Leys N, Mahillon J, Silver S, Van Houdt R (2013) Antimicrobial silver: uses, toxicity and potential for resistance. Biometals 26(4):609–621

    Article  PubMed  CAS  Google Scholar 

  81. Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials. Semin Immunol 20(2):86–100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Cobelli N, Scharf B, Crisi GM, Hardin J, Santambrogio L (2011) Mediators of the inflammatory response to joint replacement devices. Nat Rev Rheumatol 7(10):600–608

    PubMed  CAS  Google Scholar 

  83. Maitra R, Clement CC, Scharf B, Crisi GM, Chitta S, Paget D, Purdue PE, Cobelli N, Santambrogio L (2009) Endosomal damage and TLR2 mediated inflammasome activation by alkane particles in the generation of aseptic osteolysis. Mol Immunol 47(2–3):175–184

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Ingham E, Fisher J (2005) The role of macrophages in osteolysis of total joint replacement. Biomaterials 26(11):1271–1286

    Article  PubMed  CAS  Google Scholar 

  85. Thomas MV, Puleo DA (2011) Infection, inflammation, and bone regeneration: a paradoxical relationship. J Dent Res 90(9):1052–1061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Jayant RD, McShane MJ, Srivastava R (2011) In vitro and in vivo evaluation of anti-inflammatory agents using nanoengineered alginate carriers: towards localized implant inflammation suppression. Int J Pharm 403(1–2):268–275

    Article  PubMed  CAS  Google Scholar 

  87. Vacanti NM, Cheng H, Hill PS, Guerreiro JD, Dang TT, Ma M, Watson S, Hwang NS, Langer R, Anderson DG (2012) Localized delivery of dexamethasone from electrospun fibers reduces the foreign body response. Biomacromolecules 13(10):3031–3038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Rujitanaroj PO, Jao B, Yang J, Wang F, Anderson JM, Wang J, Chew SY, Rujitanaroj PO, Jao B, Yang J, Wang F, Anderson JM, Wang J, Chew SY (2013) Controlling fibrous capsule formation through long-term down-regulation of collagen type I (COL1A1) expression by nanofiber-mediated siRNA gene silencing. Acta Biomater 9(1):4513–4524

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Takahashi H, Wang Y, Grainger DW (2010) Device-based local delivery of siRNA against mammalian target of rapamycin (mTOR) in a murine subcutaneous implant model to inhibit fibrous encapsulation. J Control Release 147(3):400–407

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Weldon CB, Tsui JH, Shankarappa SA, Nguyen VT, Ma M, Anderson DG, Kohane DS (2012) Electrospun drug-eluting sutures for local anesthesia. J Control Release 161(3):903–909

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Polikov VS, Tresco PA, Reichert WM (2005) Response of brain tissue to chronically implanted neural electrodes. J Neurosci Methods 148(1):1–18

    Article  PubMed  Google Scholar 

  92. Yue Z, Moulton SE, Cook M, O'Leary S, Wallace GG (2013) Controlled delivery for neuro-bionic devices. Adv Drug Deliv Rev 65(4):559–569

    Article  PubMed  CAS  Google Scholar 

  93. Mercanzini A, Reddy ST, Velluto D, Colin P, Maillard A, Bensadoun JC, Hubbell JA, Renaud P (2010) Controlled release nanoparticle-embedded coatings reduce the tissue reaction to neuroprostheses. J Control Release 145(3):196–202

    Article  PubMed  CAS  Google Scholar 

  94. Kim DH, Martin DC (2006) Sustained release of dexamethasone from hydrophilic matrices using PLGA nanoparticles for neural drug delivery. Biomaterials 27(15):3031–3037

    Article  PubMed  CAS  Google Scholar 

  95. Li B, McKeague AL (2011) Emerging ideas: interleukin-12 nanocoatings prevent open fracture-associated infections. Clin Orthop Relat Res 469(11):3262–3265

    Article  PubMed  PubMed Central  Google Scholar 

  96. Li B, Jiang B, Boyce BM, Lindsey BA (2009) Multilayer polypeptide nanoscale coatings incorporating IL-12 for the prevention of biomedical device-associated infections. Biomaterials 30(13):2552–2558

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Li B, Jiang B, Dietz MJ, Smith ES, Clovis NB, Rao KM (2010) Evaluation of local MCP-1 and IL-12 nanocoatings for infection prevention in open fractures. J Orthop Res 28(1):48–54

    PubMed  CAS  Google Scholar 

  98. Kolios G, Moodley Y (2013) Introduction to stem cells and regenerative medicine. Respiration 85(1):3–10

    Article  PubMed  Google Scholar 

  99. Tomisa AP, Launey ME, Lee JS, Mankani MH, Wegst UG, Saiz E (2011) Nanotechnology approaches to improve dental implants. Int J Oral Maxillofac Implants 26(Suppl):25–44, discussion 45–49

    PubMed  Google Scholar 

  100. Luginbuehl V, Meinel L, Merkle HP, Gander B (2004) Localized delivery of growth factors for bone repair. Eur J Pharm Biopharm 58(2):197–208

    Article  PubMed  CAS  Google Scholar 

  101. Yoon SJ, Park KS, Kim MS, Rhee JM, Khang G, Lee HB (2007) Repair of diaphyseal bone defects with calcitriol-loaded PLGA scaffolds and marrow stromal cells. Tissue Eng 13(5):1125–1133

    Article  PubMed  CAS  Google Scholar 

  102. Storrie H, Mooney DJ (2006) Sustained delivery of plasmid DNA from polymeric scaffolds for tissue engineering. Adv Drug Deliv Rev 58(4):500–514

    Article  PubMed  CAS  Google Scholar 

  103. Andersen MØ, Dillschneider P, Kjems J (2013) The role of MicroRNAs in natural tissue development and application in regenerative medicine. In: RNA interference from biology to therapeutics. Advances in delivery science and technology, vol 15. Springer, New York, pp 57–78

    Google Scholar 

  104. Andersen MØ, Kjems J (2011) RNA interference enhanced implants. In: Active implants and scaffolds for tissue regeneration. Studies in mechanobiology, tissue engineering and biomaterials, vol 8. Springer, New York, pp 145–165

    Google Scholar 

  105. Wadagaki R, Mizuno D, Yamawaki-Ogata A, Satake M, Kaneko H, Hagiwara S, Yamamoto N, Narita Y, Hibi H, Ueda M (2011) Osteogenic induction of bone marrow-derived stromal cells on simvastatin-releasing, biodegradable, nano- to microscale fiber scaffolds. Ann Biomed Eng 39(7):1872–1881

    Article  PubMed  Google Scholar 

  106. Shah NJ, Hyder MN, Moskowitz JS, Quadir MA, Morton SW, Seeherman HJ, Padera RF, Spector M, Hammond PT (2013) Surface-mediated bone tissue morphogenesis from tunable nanolayered implant coatings. Sci Transl Med 5(191):191ra83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Nie H, Wang CH (2007) Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA. J Control Release 120(1–2):111–121

    Article  PubMed  CAS  Google Scholar 

  108. Zhao J, Zhang N, Prestwich GD, Wen X (2008) Recruitment of endogenous stem cells for tissue repair. Macromol Biosci 8(9):836–842

    Article  PubMed  CAS  Google Scholar 

  109. Li X, Liu X, Zhao W, Wen X, Zhang N (2012) Manipulating neural-stem-cell mobilization and migration in vitro. Acta Biomater 8(6):2087–2095

    Article  PubMed  CAS  Google Scholar 

  110. Radisic M, Malda J, Epping E, Geng W, Langer R, Vunjak-Novakovic G (2006) Oxygen gradients correlate with cell density and cell viability in engineered cardiac tissue. Biotechnol Bioeng 93(2):332–343

    Article  PubMed  CAS  Google Scholar 

  111. Wittenborn T, Nielsen T, Nygaard JV, Larsen EK, Thim T, Rydtoft LM, Vorup-Jensen T, Kjems J, Nielsen NC, Horsman MR, Falk E (2012) Ultrahigh-field DCE-MRI of angiogenesis in a novel angiogenesis mouse model. J Magn Reson Imaging 35(3):703–710

    Article  PubMed  Google Scholar 

  112. Nelson CE, Kim AJ, Adolph EJ, Gupta MK, Yu F, Hocking KM, Davidson JM, Guelcher SA, Duvall CL (2014) Tunable delivery of siRNA from a biodegradable scaffold to promote angiogenesis in vivo. Adv Mater 26(4):607–614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Wadee A, Pillay V, Choonara YE, du Toit LC, Penny C, Ndesendo VM, Kumar P, Murphy CS (2011) Recent advances in the design of drug-loaded polymeric implants for the treatment of solid tumors. Expert Opin Drug Deliv 8(10):1323–1340

    Article  PubMed  CAS  Google Scholar 

  114. Xie J, Wang CH (2006) Electrospun micro- and nanofibers for sustained delivery of paclitaxel to treat C6 glioma in vitro. Pharm Res 23(8):1817–1826

    Article  PubMed  CAS  Google Scholar 

  115. Yohe ST, Herrera VL, Colson YL, Grinstaff MW (2012) 3D superhydrophobic electrospun meshes as reinforcement materials for sustained local drug delivery against colorectal cancer cells. J Control Release 162(1):92–101

    Article  PubMed  CAS  Google Scholar 

  116. Calışkan N, Bayram C, Erdal E, Karahaliloğlu Z, Denkbaş EB (2014) Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion. Mater Sci Eng C Mater Biol Appl 35:100–105

    Article  PubMed  CAS  Google Scholar 

  117. Yarin AL (2011) Coaxial electrospinning and emulsion electrospinning of core-shell fibers. Polym Adv Technol 22(3):310–317

    Article  CAS  Google Scholar 

  118. Korehei R, Kadla JF (2014) Encapsulation of T4 bacteriophage in electrospun poly(ethylene oxide)/cellulose diacetate fibers. Carbohydr Polym 100:150–157

    Article  PubMed  CAS  Google Scholar 

  119. Zhao L, Chu PK, Zhang Y, Wu Z (2009) Antibacterial coatings on titanium implants. J Biomed Mater Res B Appl Biomater 91(1):470–480

    Article  PubMed  CAS  Google Scholar 

  120. Wenke JC, Guelcher SA (2011) Dual delivery of an antibiotic and a growth factor addresses both the microbiological and biological challenges of contaminated bone fractures. Expert Opin Drug Deliv 8(12):1555–1569

    Article  PubMed  CAS  Google Scholar 

  121. Chen FM, Zhang M, Wu ZF (2010) Toward delivery of multiple growth factors in tissue engineering. Biomaterials 31(24):6279–6308

    Article  PubMed  CAS  Google Scholar 

  122. Chen M, Andersen MØ, Dillschneider P, Chang C-C, Gao S, Le DQS, Yang C, Hein S, Bünger C, Kjems J (2015) Co-delivery of siRNA and doxorubicin to cancer cells from additively manufactured implants. RSC Adv 5:101718–101725

    Google Scholar 

  123. Zheng Z, Yin W, Zara JN, Li W, Kwak J, Mamidi R, Lee M, Siu RK, Ngo R, Wang J, Carpenter D, Zhang X, Wu B, Ting K, Soo C (2010) The use of BMP-2 coupled—nanosilver-PLGA composite grafts to induce bone repair in grossly infected segmental defects. Biomaterials 31(35):9293–9300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Stevanović M, Uskoković V, Filipović M, Škapin SD, Uskoković D (2013) Composite PLGA/AgNpPGA/AscH nanospheres with combined osteoinductive, antioxidative, and antimicrobial activities. ACS Appl Mater Interfaces 5(18):9034–9042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. He S, Xia T, Wang H, Wei L, Luo X, Li X (2012) Multiple release of polyplexes of plasmids VEGF and bFGF from electrospun fibrous scaffolds towards regeneration of mature blood vessels. Acta Biomater 8(7):2659–2669

    Article  PubMed  CAS  Google Scholar 

  126. Clark A, Milbrandt TA, Hilt JZ, Puleo DA (2014) Mechanical properties and dual drug delivery application of poly(lactic-co-glycolic acid) scaffolds fabricated with a poly(β-amino ester) porogen. Acta Biomater 10(5):2125–2132. doi:10.1016/j.actbio.2013.12.061, pii: S1742-7061(14)00011-7

    Article  PubMed  CAS  Google Scholar 

  127. Min J, Braatz RD, Hammond PT (2014) Tunable staged release of therapeutics from layer-by-layer coatings with clay interlayer barrier. Biomaterials 35(8):2507–2517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Shah NJ, Macdonald ML, Beben YM, Padera RF, Samuel RE, Hammond PT (2011) Tunable dual growth factor delivery from polyelectrolyte multilayer films. Biomaterials 32(26):6183–6193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Basmanav FB, Kose GT, Hasirci V (2008) Sequential growth factor delivery from complexed microspheres for bone tissue engineering. Biomaterials 29(31):4195–4204

    Article  PubMed  CAS  Google Scholar 

  130. Yilgor P, Sousa RA, Reis RL, Hasirci N, Hasirci V (2010) Effect of scaffold architecture and BMP-2/BMP-7 delivery on in vitro bone regeneration. J Mater Sci Mater Med 21(11):2999–3008

    Article  PubMed  CAS  Google Scholar 

  131. Yilgor P, Hasirci N, Hasirci V (2010) Sequential BMP-2/BMP-7 delivery from polyester nanocapsules. J Biomed Mater Res A 93(2):528–536

    PubMed  CAS  Google Scholar 

  132. Yilgor P, Tuzlakoglu K, Reis RL, Hasirci N, Hasirci V (2009) Incorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering. Biomaterials 30(21):3551–3559

    Article  PubMed  CAS  Google Scholar 

  133. Sheehy EJ, Vinardell T, Buckley CT, Kelly DJ (2013) Engineering osteochondral constructs through spatial regulation of endochondral ossification. Acta Biomater 9(3):5484–5492

    Article  PubMed  CAS  Google Scholar 

  134. Keeney M, Pandit A (2009) The osteochondral junction and its repair via bi-phasic tissue engineering scaffolds. Tissue Eng Part B Rev 15(1):55–73

    Article  PubMed  CAS  Google Scholar 

  135. Cook JL, Kuroki K, Bozynski CC, Stoker AM, Pfeiffer FM, Cook CR (2014) Evaluation of synthetic osteochondral implants. J Knee Surg 27(4):295–302

    Article  PubMed  Google Scholar 

  136. Kon E, Filardo G, Robinson D, Eisman JA, Levy A, Zaslav K, Shani J, Altschuler N (2014) Osteochondral regeneration using a novel aragonite-hyaluronate bi-phasic scaffold in a goat model. Knee Surg Sports Traumatol Arthrosc 22(6):1452–1464

    Article  PubMed  CAS  Google Scholar 

  137. Filardo G, Kon E, Di Martino A, Busacca M, Altadonna G, Marcacci M (2013) Treatment of knee osteochondritis dissecans with a cell-free biomimetic osteochondral scaffold: clinical and imaging evaluation at 2-year follow-up. Am J Sports Med 41(8):1786–1793

    Article  PubMed  Google Scholar 

  138. Schleicher I, Lips KS, Sommer U, Schappat I, Martin AP, Szalay G, Hartmann S, Schnettler R (2013) Biphasic scaffolds for repair of deep osteochondral defects in a sheep model. J Surg Res 183(1):184–192

    Article  PubMed  CAS  Google Scholar 

  139. Wang X, Wenk E, Zhang X, Meinel L, Vunjak-Novakovic G, Kaplan DL (2009) Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering. J Control Release 134(2):81–90

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Dormer NH, Singh M, Zhao L, Mohan N, Berkland CJ, Detamore MS (2012) Osteochondral interface regeneration of the rabbit knee with macroscopic gradients of bioactive signals. J Biomed Mater Res A 100(1):162–170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Mohan N, Dormer NH, Caldwell KL, Key VH, Berkland CJ, Detamore MS (2011) Continuous gradients of material composition and growth factors for effective regeneration of the osteochondral interface. Tissue Eng Part A 17(21–22):2845–2855

    Article  PubMed  CAS  Google Scholar 

  142. Andersen MØ, Nygaard JV, Burns JS, Raarup MK, Nyengaard JR, Bünger C, Besenbacher F, Howard KA, Kassem M, Kjems J (2010) siRNA nanoparticle functionalization of nanostructured scaffolds enables controlled multilineage differentiation of stem cells. Mol Ther 18(11):2018–2027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Melchels FPW, Domingos MAN, Klein TJ, Malda J, Bartolo PJ, Hutmacher DW (2012) Additive manufacturing of tissues and organs. Prog Polym Sci 37(8):1079–1104

    Article  CAS  Google Scholar 

  144. Xu T, Zhao W, Zhu JM, Albanna MZ, Yoo JJ, Atala A (2013) Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials 34(1):130–139

    Article  PubMed  CAS  Google Scholar 

  145. Jakab K, Norotte C, Marga F, Murphy K, Vunjak-Novakovic G, Forgacs G (2010) Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication 2(2):022001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA (2014) 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 26(19):3124–3130

    Article  PubMed  CAS  Google Scholar 

  147. Lee JS, Hong JM, Jung JW, Shim JH, Oh JH, Cho DW (2014) 3D printing of composite tissue with complex shape applied to ear regeneration. Biofabrication 6(2):024103

    Article  PubMed  CAS  Google Scholar 

  148. Andersen MØ et al (2013) Spatially controlled delivery of siRNAs to stem cells in implants generated by multi-component additive manufacturing. Adv Funct Mater 23(45):5599–5607

    Article  CAS  Google Scholar 

  149. Xu T, Rohozinski J, Zhao W, Moorefield EC, Atala A, Yoo JJ (2009) Inkjet-mediated gene transfection into living cells combined with targeted delivery. Tissue Eng Part A 15(1):95–101

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morten Østergaard Andersen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Controlled Release Society

About this chapter

Cite this chapter

Andersen, M.Ø. (2016). The Application of Nanotechnology for Implant Drug Release. In: Howard, K., Vorup-Jensen, T., Peer, D. (eds) Nanomedicine. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3634-2_13

Download citation

Publish with us

Policies and ethics