Skip to main content

The Use of Silk in Nanomedicine Applications

  • Chapter
  • First Online:
Nanomedicine

Abstract

Biopolymers made up of silk proteins have been used in numerous drug delivery applications and represent an excellent source of natural biomaterials. In particular silk fibroin has proved valuable as a building block for nanomedicines and drug delivery implants, owing to its favorable biocompatibility, degradation, stabilization and controllability. In this chapter we will discuss the various sources of silk biomaterial and how this naturally occurring biopolymer has been utilized in the development of nanomedicines and implantable drug delivery systems, demonstrating how silk is a unique biological template which has opened up many possibilities for the generation of functional biomaterials and drug delivery systems in a green and cost-effective manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cao Y, Wang B (2009) Biodegradation of silk biomaterials. Int J Mol Sci 10:1514–1524. doi:10.3390/ijms10041514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Acharya C, Ghosh S, Kundu S (2008) Silk fibroin protein from mulberry and non-mulberry silkworms: cytotoxicity, biocompatibility and kinetics of L929 murine fibroblast adhesion. J Mater Sci Mater Med 19:2827–2836. doi:10.1007/s10856-008-3408-3

    Article  PubMed  CAS  Google Scholar 

  3. Panilaitis B et al (2003) Macrophage responses to silk. Biomaterials 24:3079–3085. doi:10.1016/S0142-9612(03)00158-3

    Article  PubMed  CAS  Google Scholar 

  4. Meinel L et al (2005) The inflammatory responses to silk films in vitro and in vivo. Biomaterials 26:147–155. doi:10.1016/j.biomaterials.2004.02.047

    Article  PubMed  CAS  Google Scholar 

  5. Kuhbier J et al (2010) Interactions between spider silk and cells—NIH/3T3 fibroblasts seeded on miniature weaving frames. PLoS One 5:e12032. doi:10.1371/journal.pone.0012032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Allmeling C, Jokuszies A, Reimers K, Kall S, Vogt P (2006) Use of spider silk fibres as an innovative material in a biocompatible artificial nerve conduit. J Cell Mol Med 10:770–777. doi:10.1111/j.1582-4934.2006.tb00436.x

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hakimi O et al (2010) Modulation of cell growth on exposure to silkworm and spider silk fibers. J Biomed Mater Res A 92:1366–1372. doi:10.1002/jbm.a.32462

    PubMed  Google Scholar 

  8. Vollrath F, Barth P, Basedow A, Engstrom W, List H (2002) Local tolerance to spider silks and protein polymers in vivo. In Vivo 16:229–234

    PubMed  CAS  Google Scholar 

  9. Gellynck K et al (2008) Biocompatibility and biodegradability of spider egg sac silk. J Mater Sci Mater Med 19:2963–2970. doi:10.1007/s10856-007-3330-0

    Article  PubMed  CAS  Google Scholar 

  10. Numata K, Kaplan D (2010) Silk-based delivery systems of bioactive molecules. Adv Drug Deliv Rev 62:1497–1508. doi:10.1016/j.addr.2010.03.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Vepari C, Kaplan D (2007) Silk as a biomaterial. Prog Polym Sci 32:991–1007. doi:10.1016/j.progpolymsci.2007.05.013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Omenetto FG, Kaplan DL (2010) New opportunities for an ancient material. Science 329:528–531. doi:10.1126/science.1188936

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Peakall DB (1969) Synthesis of silk, mechanism and location. Integr Comp Biol 9:71. doi:10.1093/icb/9.1.71

    Google Scholar 

  14. Andersson M, Holm L, Ridderstråle Y, Johansson J, Rising A (2013) Morphology and composition of the spider major ampullate gland and dragline silk. Biomacromolecules 14:2945–2952. doi:10.1021/bm400898t

    Article  PubMed  CAS  Google Scholar 

  15. Sponner A et al (2005) Characterization of the protein components of Nephila clavipes dragline silk. Biochemistry 44:4727–4736. doi:10.1021/bi047671k

    Article  PubMed  CAS  Google Scholar 

  16. Jin H-J, Kaplan D (2003) Mechanism of silk processing in insects and spiders. Nature 424:1057–1061. doi:10.1038/nature01809

    Article  PubMed  CAS  Google Scholar 

  17. Hayashi C, Shipley N, Lewis R (1999) Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. Int J Biol Macromol 24:271–275. doi:10.1016/S0141-8130(98)00089-0

    Article  PubMed  CAS  Google Scholar 

  18. Tokareva O, Jacobsen M, Buehler M, Wong J, Kaplan D (2014) Structure-function-property-design interplay in biopolymers: spider silk. Acta Biomater 10:1612–1626. doi:10.1016/j.actbio.2013.08.020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Ayoub N, Garb J, Tinghitella R, Collin M, Hayashi C (2007) Blueprint for a high-performance biomaterial: full-length spider dragline silk genes. PLoS One 2:e514. doi:10.1371/journal.pone.0000514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Tokareva O et al (2014) Effect of sequence features on assembly of spider silk block copolymers. J Struct Biol 186:412. doi:10.1016/j.jsb.2014.03.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Askarieh G et al (2010) Self-assembly of spider silk proteins is controlled by a pH-sensitive relay. Nature 465:236–238. doi:10.1038/nature08962

    Article  PubMed  CAS  Google Scholar 

  22. Gaines W, Sehorn M, Marcotte W (2010) Spidroin N-terminal domain promotes a pH-dependent association of silk proteins during self-assembly. J Biol Chem 285:40745–40753. doi:10.1074/jbc.M110.163121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Kronqvist N et al (2014) Sequential pH-driven dimerization and stabilization of the N-terminal domain enables rapid spider silk formation. Nat Commun 5:3254. doi:10.1038/ncomms4254

    Article  PubMed  CAS  Google Scholar 

  24. Schwarze S, Zwettler F, Johnson C, Neuweiler H (2013) The N-terminal domains of spider silk proteins assemble ultrafast and protected from charge screening. Nat Commun 4:2815. doi:10.1038/ncomms3815

    Article  PubMed  CAS  Google Scholar 

  25. Rising A, Widhe M, Johansson J, Hedhammar M (2011) Spider silk proteins: recent advances in recombinant production, structure-function relationships and biomedical applications. Cell Mol Life Sci 68:169–184. doi:10.1007/s00018-010-0462-z

    Article  PubMed  CAS  Google Scholar 

  26. Lefèvre T, Boudreault S, Cloutier C, Pézolet M (2008) Conformational and orientational transformation of silk proteins in the major ampullate gland of Nephila clavipes spiders. Biomacromolecules 9:2399–2407. doi:10.1021/bm800390j

    Article  PubMed  CAS  Google Scholar 

  27. Hronska M, van Beek J, Williamson P, Vollrath F, Meier B (2004) NMR characterization of native liquid spider dragline silk from Nephila edulis. Biomacromolecules 5:834–839. doi:10.1021/bm0343904

    Article  PubMed  CAS  Google Scholar 

  28. Knight D, Vollrath F (2001) Changes in element composition along the spinning duct in a Nephila spider. Naturwissenschaften 88:179–182. doi:10.1007/s001140100220

    Article  PubMed  CAS  Google Scholar 

  29. Vollrath F, Knight DP, Hu XW (1998) Silk production in a spider involves acid bath treatment. Proc R Soc B Biol Sci 265:817. doi:10.1098/rspb.1998.0365

    Article  Google Scholar 

  30. Rousseau M-E, Lefèvre T, Pézolet M (2009) Conformation and orientation of proteins in various types of silk fibers produced by Nephila clavipes spiders. Biomacromolecules 10:2945–2953. doi:10.1021/bm9007919

    Article  PubMed  CAS  Google Scholar 

  31. Lefèvre T, Boudreault S, Cloutier C, Pézolet M (2011) Diversity of molecular transformations involved in the formation of spider silks. J Mol Biol 405:238–253. doi:10.1016/j.jmb.2010.10.052

    Article  PubMed  CAS  Google Scholar 

  32. Hu X et al (2006) Molecular mechanisms of spider silk. Cell Mol Life Sci 63:1986–1999. doi:10.1007/s00018-006-6090-y

    Article  PubMed  CAS  Google Scholar 

  33. Zhou C et al (2000) Fine organization of Bombyx mori fibroin heavy chain gene. Nucleic Acids Res 28:2413–2419. doi:10.1093/nar/28.12.2413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Zhou CZ et al (2001) Silk fibroin: structural implications of a remarkable amino acid sequence. Proteins 44:119–122

    Article  PubMed  CAS  Google Scholar 

  35. Wenk E, Merkle H, Meinel L (2011) Silk fibroin as a vehicle for drug delivery applications. J Control Release 150:128–141. doi:10.1016/j.jconrel.2010.11.007

    Article  PubMed  CAS  Google Scholar 

  36. Asakura T et al (2003) Synthesis and characterization of chimeric silkworm silk. Biomacromolecules 4:815–820. doi:10.1021/bm034020f

    Article  PubMed  CAS  Google Scholar 

  37. Bini E, Knight D, Kaplan D (2004) Mapping domain structures in silks from insects and spiders related to protein assembly. J Mol Biol 335:27–40. doi:10.1016/j.jmb.2003.10.043

    Article  PubMed  CAS  Google Scholar 

  38. Inoue S et al (2000) Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. J Biol Chem 275:40517–40528. doi:10.1074/jbc.M006897200

    Article  PubMed  CAS  Google Scholar 

  39. Takasu Y et al (2007) Identification and characterization of a novel sericin gene expressed in the anterior middle silk gland of the silkworm Bombyx mori. Insect Biochem Mol Biol 37:1234–1240. doi:10.1016/j.ibmb.2007.07.009

    Article  PubMed  CAS  Google Scholar 

  40. Lammel A, Hu X, Park S-H, Kaplan D, Scheibel T (2010) Controlling silk fibroin particle features for drug delivery. Biomaterials 31:4583–4591. doi:10.1016/j.biomaterials.2010.02.024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Jin Y et al (2013) In vitro studies on the structure and properties of silk fibroin aqueous solutions in silkworm. Int J Biol Macromol 62:162–166. doi:10.1016/j.ijbiomac.2013.08.027

    Article  PubMed  CAS  Google Scholar 

  42. Chen X, Shao Z, Knight D, Vollrath F (2007) Conformation transition kinetics of Bombyx mori silk protein. Proteins 68:223–231. doi:10.1002/prot.21414

    Article  PubMed  CAS  Google Scholar 

  43. Foo CWP et al (2005) Role of pH and charge on silk protein assembly in insects and spiders. Appl Phys A 82:223. doi:10.1007/s00339-005-3426-7

    Article  CAS  Google Scholar 

  44. Rockwood D et al (2011) Materials fabrication from Bombyx mori silk fibroin. Nat Protoc 6:1612–1631. doi:10.1038/nprot.2011.379

    Article  PubMed  CAS  Google Scholar 

  45. Banani K et al (2014) Silk proteins for biomedical applications: bioengineering perspectives. Prog Polym Sci 39:251. doi:10.1016/j.progpolymsci.2013.09.002

    Article  CAS  Google Scholar 

  46. Subia B, Kundu S (2013) Drug loading and release on tumor cells using silk fibroin-albumin nanoparticles as carriers. Nanotechnology 24:35103. doi:10.1088/0957-4484/24/3/035103

    Article  CAS  Google Scholar 

  47. Wadbua P, Promdonkoy B, Maensiri S, Siri S (2010) Different properties of electrospun fibrous scaffolds of separated heavy-chain and light-chain fibroins of Bombyx mori. Int J Biol Macromol 46:493–501. doi:10.1016/j.ijbiomac.2010.03.007

    Article  PubMed  CAS  Google Scholar 

  48. Subia B, Chandra S, Talukdar S, Kundu S (2014) Folate conjugated silk fibroin nanocarriers for targeted drug delivery. Integr Biol 6:203–214. doi:10.1039/c3ib40184g

    Article  CAS  Google Scholar 

  49. Fei X et al (2013) Green synthesis of silk fibroin-silver nanoparticle composites with effective antibacterial and biofilm-disrupting properties. Biomacromolecules 14:4483–4488. doi:10.1021/bm4014149

    Article  PubMed  CAS  Google Scholar 

  50. Hai-Bo Y, Yu-Qing Z, Yong-Lei M, Li-Xia Z (2008) Biosynthesis of insulin-silk fibroin nanoparticles conjugates and in vitro evaluation of a drug delivery system. J Nanopart Res 11:1937. doi:10.1007/s11051-008-9549-y

    Google Scholar 

  51. Wang X, Yucel T, Lu Q, Hu X, Kaplan D (2010) Silk nanospheres and microspheres from silk/pva blend films for drug delivery. Biomaterials 31:1025–1035. doi:10.1016/j.biomaterials.2009.11.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Yu-Qing Z, Yuan-Jing W, Hai-Yan W, Lin Z, Zhen-Zhen Z (2011) Highly efficient processing of silk fibroin nanoparticle-l-asparaginase bioconjugates and their characterization as a drug delivery system. Soft Matter 7:9728. doi:10.1039/c0sm01332c

    Article  CAS  Google Scholar 

  53. Kundu J, Chung Y-I, Kim Y, Tae G, Kundu S (2010) Silk fibroin nanoparticles for cellular uptake and control release. Int J Pharm 388:242–250. doi:10.1016/j.ijpharm.2009.12.052

    Article  PubMed  CAS  Google Scholar 

  54. Chung H, Kim T, Lee S (2012) Recent advances in production of recombinant spider silk proteins. Curr Opin Biotechnol 23:957–964. doi:10.1016/j.copbio.2012.03.013

    Article  PubMed  CAS  Google Scholar 

  55. Lewis R, Hinman M, Kothakota S, Fournier M (1996) Expression and purification of a spider silk protein: a new strategy for producing repetitive proteins. Protein Expr Purif 7:400–406. doi:10.1006/prep.1996.0060

    Article  PubMed  CAS  Google Scholar 

  56. Teulé F et al (2009) A protocol for the production of recombinant spider silk-like proteins for artificial fiber spinning. Nat Protoc 4:341–355. doi:10.1038/nprot.2008.250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Hauptmann V et al (2013) Native-sized spider silk proteins synthesized in planta via intein-based multimerization. Transgenic Res 22:369–377. doi:10.1007/s11248-012-9655-6

    Article  PubMed  CAS  Google Scholar 

  58. Teulé F et al (2012) Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties. Proc Natl Acad Sci U S A 109:923–928. doi:10.1073/pnas.1109420109

    Article  PubMed  PubMed Central  Google Scholar 

  59. Wen H et al (2010) Transgenic silkworms (Bombyx mori) produce recombinant spider dragline silk in cocoons. Mol Biol Rep 37:1815–1821. doi:10.1007/s11033-009-9615-2

    Article  PubMed  CAS  Google Scholar 

  60. Yu-Qing Z et al (2006) Formation of silk fibroin nanoparticles in water-miscible organic solvent and their characterization. J Nanopart Res 9:885. doi:10.1007/s11051-006-9162-x

    Google Scholar 

  61. Wang X, Kaplan D (2011) Functionalization of silk fibroin with NeutrAvidin and biotin. Macromol Biosci 11:100–110. doi:10.1002/mabi.201000173

    Article  PubMed  CAS  Google Scholar 

  62. Liu J et al (2013) Preparation of ZnFe2O4 nanoparticles in the template of silk-fibroin peptide and their neuro-cytocompatibility in PC12 cells. Colloids Surf B Biointerfaces 107:19–26. doi:10.1016/j.colsurfb.2013.01.072

    Article  PubMed  CAS  Google Scholar 

  63. Mandal B, Kundu S (2009) Self-assembled silk sericin/poloxamer nanoparticles as nanocarriers of hydrophobic and hydrophilic drugs for targeted delivery. Nanotechnology 20:355101. doi:10.1088/0957-4484/20/35/355101

    Article  PubMed  CAS  Google Scholar 

  64. Hofer M, Winter G, Myschik J (2012) Recombinant spider silk particles for controlled delivery of protein drugs. Biomaterials 33:1554–1562. doi:10.1016/j.biomaterials.2011.10.053

    Article  PubMed  CAS  Google Scholar 

  65. Cao T-T, Zhou Z-Z, Zhang Y-Q (2014) Processing of β-glucosidase-silk fibroin nanoparticle bioconjugates and their characteristics. Appl Biochem Biotechnol 173:544. doi:10.1007/s12010-014-0861-y

    Article  PubMed  CAS  Google Scholar 

  66. Wu P et al (2013) Facile preparation of paclitaxel loaded silk fibroin nanoparticles for enhanced antitumor efficacy by locoregional drug delivery. ACS Appl Mater Interfaces 5:12638–12645. doi:10.1021/am403992b

    Article  PubMed  CAS  Google Scholar 

  67. Lammel A, Schwab M, Hofer M, Winter G, Scheibel T (2011) Recombinant spider silk particles as drug delivery vehicles. Biomaterials 32:2233–2240. doi:10.1016/j.biomaterials.2010.11.060

    Article  PubMed  CAS  Google Scholar 

  68. Zheng Z et al (2013) Generation of silk fibroin nanoparticles via solution-enhanced dispersion by supercritical CO2. Ind Eng Chem Res 52:3752. doi:10.1021/ie301907f

    Google Scholar 

  69. Zheng Z et al (2012) Fabrication of silk fibroin nanoparticles for controlled drug delivery. J Nanopart Res 14:736. doi:10.1007/s11051-012-0736-5

    Article  CAS  Google Scholar 

  70. Björnmalm M, Yan Y, Caruso F (2014) Engineering and evaluating drug delivery particles in microfluidic devices. J Control Release 190:139–149. doi:10.1016/j.jconrel.2014.04.030

    Article  PubMed  CAS  Google Scholar 

  71. Karnik R et al (2008) Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett 8:2906–2912. doi:10.1021/nl801736q

    Article  PubMed  CAS  Google Scholar 

  72. Mitropoulos A et al (2014) Synthesis of silk fibroin micro- and submicron spheres using a co-flow capillary device. Adv Mater 26:1105–1110. doi:10.1002/adma.201304244

    Article  PubMed  CAS  Google Scholar 

  73. Chen M, Shao Z, Chen X (2012) Paclitaxel-loaded silk fibroin nanospheres. J Biomed Mater Res A 100:203–210. doi:10.1002/jbm.a.33265

    Article  PubMed  CAS  Google Scholar 

  74. Gupta V, Aseh A, Ríos C, Aggarwal B, Mathur A (2009) Fabrication and characterization of silk fibroin-derived curcumin nanoparticles for cancer therapy. Int J Nanomedicine 4:115–122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Hanjin O, Moo Kon K, Ki Hoon L (2011) Preparation of sericin microparticles by electrohydrodynamic spraying and their application in drug delivery. Macromol Res 19:266. doi:10.1007/s13233-011-0301-6

    Article  CAS  Google Scholar 

  76. Numata K, Yamazaki S, Naga N (2012) Biocompatible and biodegradable dual-drug release system based on silk hydrogel containing silk nanoparticles. Biomacromolecules 13:1383–1389. doi:10.1021/bm300089a

    Article  PubMed  CAS  Google Scholar 

  77. Aramwit P, Kanokpanont S, Nakpheng T, Srichana T (2010) The effect of sericin from various extraction methods on cell viability and collagen production. Int J Mol Sci 11:2200–2211. doi:10.3390/ijms11052200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Lu Y, Yang J, Sega E (2005) Issues related to targeted delivery of proteins and peptides. AAPS J 8:78. doi:10.1208/aapsj080355

    Google Scholar 

  79. McGregor DP (2008) Discovering and improving novel peptide therapeutics. Curr Opin Pharmacol 8:616–619. doi:10.1016/j.coph.2008.06.002

    Article  PubMed  CAS  Google Scholar 

  80. Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC (2012) Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 41:2971–3010. doi:10.1039/c2cs15344k

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Wang S, Low P (1998) Folate-mediated targeting of antineoplastic drugs, imaging agents, and nucleic acids to cancer cells. J Control Release 53:39–48. doi:10.1016/S0168-3659(97)00236-8

    Article  PubMed  CAS  Google Scholar 

  82. Gruner B, Weitman S (1998) The folate receptor as a potential therapeutic anticancer target. Invest New Drugs 16:205–219. doi:10.1023/A:1006147932159

    Article  PubMed  CAS  Google Scholar 

  83. Xia X-X, Xu Q, Hu X, Qin G, Kaplan D (2011) Tunable self-assembly of genetically engineered silk—elastin-like protein polymers. Biomacromolecules 12:3844–3850. doi:10.1021/bm201165h

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Anderson J, Cappello J, Martin D (1994) Morphology and primary crystal structure of a silk-like protein polymer synthesized by genetically engineered Escherichia coli bacteria. Biopolymers 34:1049–1058. doi:10.1002/bip.360340808

    Article  PubMed  CAS  Google Scholar 

  85. Anumolu R et al (2011) Fabrication of highly uniform nanoparticles from recombinant silk-elastin-like protein polymers for therapeutic agent delivery. ACS Nano 5:5374–5382. doi:10.1021/nn103585f

    Article  PubMed  CAS  Google Scholar 

  86. Numata K, Reagan M, Goldstein R, Rosenblatt M, Kaplan D (2011) Spider silk-based gene carriers for tumor cell-specific delivery. Bioconjug Chem 22:1605–1610. doi:10.1021/bc200170u

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Nathwani B, Jaffari M, Juriani A, Mathur A, Meissner K (2009) Fabrication and characterization of silk-fibroin-coated quantum dots. IEEE Trans Nanobiosci 8:72–77. doi:10.1109/TNB.2009.2017295

    Article  Google Scholar 

  88. Martínez-Gutierrez F et al (2012) Antibacterial activity, inflammatory response, coagulation and cytotoxicity effects of silver nanoparticles. Nanomedicine 8:328–336. doi:10.1016/j.nano.2011.06.014

    PubMed  Google Scholar 

  89. Ratan D (2011) Preparation and antibacterial activity of silver nanoparticles. J Biomater Nanobiotechnol 2:472. doi:10.4236/jbnb.2011.24057

    Article  CAS  Google Scholar 

  90. Suliman YA et al (2015) Evaluation of cytotoxic, oxidative stress, proinflammatory and genotoxic effect of silver nanoparticles in human lung epithelial cells. Environ Toxicol 30(2):149–160. doi:10.1002/tox.21880

    Article  CAS  Google Scholar 

  91. Prasad R et al (2013) Investigating oxidative stress and inflammatory responses elicited by silver nanoparticles using high-throughput reporter genes in HepG2 cells: effect of size, surface coating, and intracellular uptake. Toxicol In Vitro 27:2013–2021. doi:10.1016/j.tiv.2013.07.005

    Article  PubMed  CAS  Google Scholar 

  92. Avalos A, Haza A, Mateo D, Morales P (2014) Cytotoxicity and ROS production of manufactured silver nanoparticles of different sizes in hepatoma and leukemia cells. J Appl Toxicol 34:413–423. doi:10.1002/jat.2957

    Article  PubMed  CAS  Google Scholar 

  93. Ramírez-Lee M et al (2014) Silver nanoparticles induce anti-proliferative effects on airway smooth muscle cells. Role of nitric oxide and muscarinic receptor signaling pathway. Toxicol Lett 224:246–256. doi:10.1016/j.toxlet.2013.10.027

    Article  PubMed  CAS  Google Scholar 

  94. Aramwit P, Bang N, Ratanavaraporn J, Ekgasit S (2014) Green synthesis of silk sericin-capped silver nanoparticles and their potent anti-bacterial activity. Nanoscale Res Lett 9:79. doi:10.1186/1556-276X-9-79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Bruchez M Jr (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013. doi:10.1126/science.281.5385.2013

    Article  PubMed  CAS  Google Scholar 

  96. Jamieson T et al (2007) Biological applications of quantum dots. Biomaterials 28:4717–4732. doi:10.1016/j.biomaterials.2007.07.014

    Article  PubMed  CAS  Google Scholar 

  97. Teak Kwan K, Kun Bin L, Jin-Chul K (2011) Solid lipid nanoparticles coated with silk fibroin. J Ind Eng Chem 17:10. doi:10.1016/j.jiec.2010.10.001

    Article  CAS  Google Scholar 

  98. Barichello J et al (2006) Inducing effect of liposomalization on the transdermal delivery of hydrocortisone: creation of a drug supersaturated state. J Control Release 115:94–102. doi:10.1016/j.jconrel.2006.07.008

    Article  PubMed  CAS  Google Scholar 

  99. Acharya A (2013) Luminescent magnetic quantum dots for in vitro/in vivo imaging and applications in therapeutics. J Nanosci Nanotechnol 13:3753–3768. doi:10.1166/jnn.2013.7460

    Article  PubMed  CAS  Google Scholar 

  100. Larrondo L, Manley RSJ (1981) Electrostatic fiber spinning from polymer melts: I. Experimental observations on fiber formation and properties. J Polym Sci Polym Phys Ed 19:909. doi:10.1002/pol.1981.180190601

    Article  CAS  Google Scholar 

  101. Shin YM, Hohman MM, Brenner MP, Rutledge GC (2001) Experimental characterization of electrospinning: the electrically forced jet and instabilities. Polymer 42:9955. doi:10.1016/S0032-3861(01)00540-7

    Article  CAS  Google Scholar 

  102. Sill T, von Recum H (2008) Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29:1989–2006. doi:10.1016/j.biomaterials.2008.01.011

    Article  PubMed  CAS  Google Scholar 

  103. Thangaraju E, Govindaswamy M, Sheeja R, Thirupathur Srinivasan N (2014) Curcumin loaded electrospun Bombyx mori silk nanofibers for drug delivery. Polym Int 63:100. doi:10.1002/pi.4499

    Article  CAS  Google Scholar 

  104. Jingwen Q et al (2013) Evaluation of drug release property and blood compatibility of aspirin-loaded electrospun PLA/RSF composite nanofibers. Iran Polym J 22:729. doi:10.1007/s13726-013-0171-1

    Article  CAS  Google Scholar 

  105. Sheikh F et al (2013) Facile and highly efficient approach for the fabrication of multifunctional silk nanofibers containing hydroxyapatite and silver nanoparticles. J Biomed Mater Res A 102:3459. doi:10.1002/jbm.a.35024

    Article  PubMed  CAS  Google Scholar 

  106. David MW, Padma S, Mark EB (2013) Injectable nanomaterials for drug delivery: carriers, targeting moieties, and therapeutics. Eur J Pharm Biopharm 84:1. doi:10.1016/j.ejpb.2012.12.009

    Article  CAS  Google Scholar 

  107. Couvreur P (2013) Nanoparticles in drug delivery: past, present and future. Adv Drug Deliv Rev 65:21–23. doi:10.1016/j.addr.2012.04.010

    Article  PubMed  CAS  Google Scholar 

  108. Sheikh F et al (2013) A novel approach to fabricate silk nanofibers containing hydroxyapatite nanoparticles using a three-way stopcock connector. Nanoscale Res Lett 8:303. doi:10.1186/1556-276X-8-303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Gregory HA et al (2003) Silk-based biomaterials. Biomaterials 24:401

    Article  Google Scholar 

  110. Yongzhong W et al (2008) In vivo degradation of three-dimensional silk fibroin scaffolds. Biomaterials 29:3415. doi:10.1016/j.biomaterials.2008.05.002

    Article  CAS  Google Scholar 

  111. Keiji N, Peggy C, David LK (2010) Mechanism of enzymatic degradation of beta-sheet crystals. Biomaterials 31:2926. doi:10.1016/j.biomaterials.2009.12.026

    Article  CAS  Google Scholar 

  112. Zhang J et al (2012) Stabilization of vaccines and antibiotics in silk and eliminating the cold chain. Proc Natl Acad Sci U S A 109:11981–11986. doi:10.1073/pnas.1206210109

    Article  PubMed  PubMed Central  Google Scholar 

  113. Nicholas AG, Andrew JM, Bernardo JP-R, David LK (2013) Mechanisms of monoclonal antibody stabilization and release from silk biomaterials. Biomaterials 34(31):7766–7775

    Article  CAS  Google Scholar 

  114. Shenzhou L et al (2009) Stabilization of enzymes in silk films. Biomacromolecules 10:1032. doi:10.1021/bm800956n

    Article  CAS  Google Scholar 

  115. Claudia B, Alfons N, Thomas S (2014) Spider silk capsules as protective reaction containers for enzymes. Adv Funct Mater 24:763. doi:10.1002/adfm.201302100

    Article  CAS  Google Scholar 

  116. Pritchard EM, Szybala C, Boison D, Kaplan DL (2010) Silk fibroin encapsulated powder reservoirs for sustained release of adenosine. J Control Release 144:159–167. doi:10.1016/j.jconrel.2010.01.035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Bayraktar O, Malay O, Ozgarip Y, Batigün A (2005) Silk fibroin as a novel coating material for controlled release of theophylline. Eur J Pharm Biopharm 60(3):373–381. doi:10.1016/j.ejpb.2005.02.002

    Article  PubMed  CAS  Google Scholar 

  118. Hofmann S et al (2006) Silk fibroin as an organic polymer for controlled drug delivery. J Control Release 111:219. doi:10.1016/j.jconrel.2005.12.009

    Article  PubMed  CAS  Google Scholar 

  119. Olga S, Irina D, Maneesh KG, Jeffrey L, Vladimir VT (2011) Silk-on-silk layer-by-layer microcapsules. Adv Mater 23(40):4655–4660. doi:10.1002/adma.201102234

    Article  CAS  Google Scholar 

  120. Hermanson KD, Harasim MB, Scheibel T, Bausch AR (2007) Permeability of silk microcapsules made by the interfacial adsorption of protein. Phys Chem Chem Phys 9:6442–6446. doi:10.1039/b709808a

    Article  PubMed  CAS  Google Scholar 

  121. Langer R (1980) Invited review polymeric delivery systems for controlled drug release. Chem Eng Commun 6:148. doi:10.1080/00986448008912519

    Article  Google Scholar 

  122. Pritchard EM, Hu X, Finley V, Kuo CK, Kaplan DL (2013) Effect of silk protein processing on drug delivery from silk films. Macromol Biosci 13:311–320. doi:10.1002/mabi.201200323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Oroudjev E et al (2002) Segmented nanofibers of spider dragline silk: atomic force microscopy and single-molecule force spectroscopy. Proc Natl Acad Sci U S A 99:6460–6465. doi:10.1073/pnas.082526499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Jia-You F, Jyh-Ping C, Yann-Lii L, Hsin-Yuan W (2006) Characterization and evaluation of silk protein hydrogels for drug delivery. Chem Pharm Bull 54:156

    Article  Google Scholar 

  125. Uebersax L, Merkle HP, Meinel L (2008) Insulin-like growth factor I releasing silk fibroin scaffolds induce chondrogenic differentiation of human mesenchymal stem cells. J Control Release 127:12–21. doi:10.1016/j.jconrel.2007.11.006

    Article  PubMed  CAS  Google Scholar 

  126. Wei K, Kim I-S (2013) Fabrication of nanofibrous scaffolds by electrospinning. In: Russell M (ed) Nanotechnology and nanomaterials, Advances in nanofibers, book edited by Russell Maguire. InTech, Rijeka, Croatia. doi:10.5772/57093. ISBN 978-953-51-1209-9

    Google Scholar 

  127. Hongbin F, Haifeng L, Siew LT, James CHG (2009) Anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold in large animal model. Biomaterials 30:4967

    Article  CAS  Google Scholar 

  128. CeledÓN JC et al (2001) Asthma, rhinitis, and skin test reactivity to aeroallergens in families of asthmatic subjects in Anqing. China Am J Respir Crit Care Med 163:1108–1112. doi:10.1164/ajrccm.163.5.2005086

    Article  PubMed  Google Scholar 

  129. Wray LS et al (2011) Effect of processing on silk-based biomaterials: reproducibility and biocompatibility. J Biomed Mater Res B Appl Biomater 99:89–101. doi:10.1002/jbm.b.31875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Banani K, Rangam R, Subhas CK, Xungai W (2013) Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 65:457

    Article  CAS  Google Scholar 

  131. Yongzhong W, Hyeon-Joo K, Gordana V-N, David LK (2006) Stem cell-based tissue engineering with silk biomaterials. Biomaterials 27:6064. doi:10.1016/j.biomaterials.2006.07.008

    Article  CAS  Google Scholar 

  132. Pritchard EM, Kaplan DL (2011) Silk fibroin biomaterials for controlled release drug delivery. Expert Opin Drug Deliv 8:797–811. doi:10.1517/17425247.2011.568936

    Article  PubMed  CAS  Google Scholar 

  133. Ute KS, Sebastian R, Stanislav G, Thomas S (2008) An engineered spider silk protein forms microspheres. Angew Chem Int Ed Engl 47(24):4592–4594. doi:10.1002/anie.200800683

    Article  CAS  Google Scholar 

  134. Yucel T, Kojic N, Leisk GG, Lo TJ, Kaplan DL (2010) Non-equilibrium silk fibroin adhesives. J Struct Biol 170:406–412. doi:10.1016/j.jsb.2009.12.012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Ribeiro M, de Moraes MA, Beppu MM, Monteiro FJ, Ferraz MP (2014) The role of dialysis and freezing on structural conformation, thermal properties and morphology of silk fibroin hydrogels. Biomatter 4:e28536

    Article  PubMed  PubMed Central  Google Scholar 

  136. Kim UJ et al (2004) Structure and properties of silk hydrogels. Biomacromolecules 5:786–792. doi:10.1021/bm0345460

    Article  PubMed  CAS  Google Scholar 

  137. Minoura N, Tsukada M, Nagura M (1990) Physico-chemical properties of silk fibroin membrane as a biomaterial. Biomaterials 11:430–434

    Article  PubMed  CAS  Google Scholar 

  138. Jin HJ et al (2005) Water-stable silk films with reduced β-sheet content. Adv Funct Mater 15:1241. doi:10.1002/adfm.200400405

    Article  CAS  Google Scholar 

  139. Hu X et al (2011) Regulation of silk material structure by temperature-controlled water vapor annealing. Biomacromolecules 12:1686–1696. doi:10.1021/bm200062a

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Wang X et al (2007) Silk microspheres for encapsulation and controlled release. J Control Release 117:360–370. doi:10.1016/j.jconrel.2006.11.021

    Article  PubMed  CAS  Google Scholar 

  141. Kojthung A et al (2008) Effects of gamma radiation on biodegradation of Bombyx mori silk fibroin. Int Biodeterior Biodegradation 62:487–490. doi:10.1016/j.ibiod.2007.12.012

    Article  CAS  Google Scholar 

  142. Li C, Vepari C, Jin H-JJ, Kim HJ, Kaplan DL (2006) Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 27:3115–3124. doi:10.1016/j.biomaterials.2006.01.022

    Article  PubMed  CAS  Google Scholar 

  143. Kim UJ, Park J, Kim HJ, Wada M, Kaplan DL (2005) Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials 26:2775–2785. doi:10.1016/j.biomaterials.2004.07.044

    Article  PubMed  CAS  Google Scholar 

  144. Xianyan W et al (2007) Nanolayer biomaterial coatings of silk fibroin for controlled release. J Control Release 121:190. doi:10.1016/j.jconrel.2007.06.006

    Article  CAS  Google Scholar 

  145. Wang X et al (2008) Controlled release from multilayer silk biomaterial coatings to modulate vascular cell responses. Biomaterials 29:894–903. doi:10.1016/j.biomaterials.2007.10.055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Xiaoqin W et al (2007) Silk coatings on PLGA and alginate microspheres for protein delivery. Biomaterials 28:4161. doi:10.1016/j.biomaterials.2007.05.036

    Article  CAS  Google Scholar 

  147. Wang X, Kluge JA, Leisk GG, Kaplan DL (2008) Sonication-induced gelation of silk fibroin for cell encapsulation. Biomaterials 29:1054–1064. doi:10.1016/j.biomaterials.2007.11.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Tuna Y, Peggy C, David LK (2009) Vortex-induced injectable silk fibroin hydrogels. Biophys J 97:2044. doi:10.1016/j.bpj.2009.07.028

    Article  CAS  Google Scholar 

  149. Benjamin PP et al (2014) Highly tunable elastomeric silk biomaterials. Adv Funct Mater 24:4615. doi:10.1002/adfm.201400526

    Article  CAS  Google Scholar 

  150. Charu PV, David LK (2006) Covalently immobilized enzyme gradients within three‐dimensional porous scaffolds. Biotechnol Bioeng 93(6):1130–1137. doi:10.1002/bit.20833

    Article  CAS  Google Scholar 

  151. Susan S, Mary Beth M, Gloria G, David LK (2001) Functionalized silk-based biomaterials for bone formation. J Biomed Mater Res 54:139. doi:10.1002/1097-4636(200101)54:1<139::AID-JBM17>3.0.CO;2-7

    Article  Google Scholar 

  152. Meinel L et al (2006) Silk based biomaterials to heal critical sized femur defects. Bone 39:922. doi:10.1016/j.bone.2006.04.019

    Article  PubMed  CAS  Google Scholar 

  153. Esther W et al (2010 Feb) The use of sulfonated silk fibroin derivatives to control binding, delivery and potency of FGF-2 in tissue regeneration. Biomaterials 31(6):1403–1413. doi:10.1016/j.biomaterials.2009.11.006

    Google Scholar 

  154. Amanda RM, Peter St J, David LK (2008 Jul) Modification of silk fibroin using diazonium coupling chemistry and the effects on hMSC proliferation and differentiation. Biomaterials 29(19):2829–2838. doi:10.1016/j.biomaterials.2008.03.039

    Google Scholar 

  155. Yasushi T (2004) Sulfation of silk fibroin by chlorosulfonic acid and the anticoagulant activity. Biomaterials 25:377. doi:10.1016/S0142-9612(03)00533-7

    Article  CAS  Google Scholar 

  156. Mona W et al (2010) Recombinant spider silk as matrices for cell culture. Biomaterials 31:9575. doi:10.1016/j.biomaterials.2010.08.061

    Article  CAS  Google Scholar 

  157. Keiji N, Juliana H, Balajikarthick S, David LK (2010) Gene delivery mediated by recombinant silk proteins containing cationic and cell binding motifs. J Control Release 146:136. doi:10.1016/j.jconrel.2010.05.006

    Article  CAS  Google Scholar 

  158. Keiji N, Balajikarthick S, Heather AC, David LK (2009) Bioengineered silk protein-based gene delivery systems. Biomaterials 30:5775. doi:10.1016/j.biomaterials.2009.06.028

    Article  CAS  Google Scholar 

  159. Germershaus O, Werner V, Kutscher M, Meinel L (2014) Deciphering the mechanism of protein interaction with silk fibroin for drug delivery systems. Biomaterials 35:3427–3434. doi:10.1016/j.biomaterials.2013.12.083

    Article  PubMed  CAS  Google Scholar 

  160. Manunya O, Ratthapol R, Sorada K, Siriporn D (2010) Preparation of Thai silk fibroin/gelatin electrospun fiber mats for controlled release applications. Int J Biol Macromol 46:544. doi:10.1016/j.ijbiomac.2010.02.008

    Article  CAS  Google Scholar 

  161. Wenk E, Wandrey AJ, Merkle HP, Meinel L (2008) Silk fibroin spheres as a platform for controlled drug delivery. J Control Release 132:26–34. doi:10.1016/j.jconrel.2008.08.005

    Article  PubMed  CAS  Google Scholar 

  162. Guziewicz N, Best A, Perez-Ramirez B, Kaplan DL (2011) Lyophilized silk fibroin hydrogels for the sustained local delivery of therapeutic monoclonal antibodies. Biomaterials 32:2642–2650. doi:10.1016/j.biomaterials.2010.12.023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Lauzon MA, Bergeron E, Marcos B, Faucheux N (2012) Bone repair: new developments in growth factor delivery systems and their mathematical modeling. J Control Release 162:502–520. doi:10.1016/j.jconrel.2012.07.041

    Article  PubMed  CAS  Google Scholar 

  164. Naresh K, Utpal B (2012) Silk fibroin in tissue engineering advanced healthcare. Materials 1:393. doi:10.1002/adhm.201200097

    Google Scholar 

  165. Hardy JG, Scheibel TR (2010) Composite materials based on silk proteins. Prog Polym Sci 35:1093–1115. doi:10.1016/j.progpolymsci.2010.04.005

    Article  CAS  Google Scholar 

  166. Tomoaki H, Masao T, Saburo S (2003) Change in secondary structure of silk fibroin during preparation of its microspheres by spray-drying and exposure to humid atmosphere. J Colloid Interface Sci 266:68. doi:10.1016/S0021-9797(03)00584-8

    Article  CAS  Google Scholar 

  167. Lammel A, Schwab M, Slotta U, Winter G, Scheibel T (2007) Processing conditions for the formation of spider silk microspheres. ChemSusChem 1:413–416. doi:10.1002/cssc.200800030

    Article  CAS  Google Scholar 

  168. Rammensee S, Slotta U, Scheibel T, Bausch AR (2008) Assembly mechanism of recombinant spider silk proteins. Proc Natl Acad Sci U S A 105:6590–6595. doi:10.1073/pnas.0709246105

    Article  PubMed  PubMed Central  Google Scholar 

  169. Cheng C, Teasdale I, Brüggemann O (2014) Stimuli-responsive capsules prepared from regenerated silk fibroin microspheres. Macromol Biosci 14:807. doi:10.1002/mabi.201300497

    Article  PubMed  CAS  Google Scholar 

  170. Donath E, Sukhorukov G, Caruso F, Davis S, Möhwald H (1998) Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew Chem Int Ed 37:2201. doi:10.1002/(SICI)1521-3773(19980904)37:16<2201::AID-ANIE2201>3.0.CO;2-E

    Article  Google Scholar 

  171. Yi-You H, Ching-Hua W (2006) Pulmonary delivery of insulin by liposomal carriers. J Control Release 113:9. doi:10.1016/j.jconrel.2006.03.014

    Article  CAS  Google Scholar 

  172. Huang X, Brazel CS (2001) On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J Control Release 73:121

    Article  PubMed  CAS  Google Scholar 

  173. Xiao H et al (2010) Biomaterials from ultrasonication-induced silk fibroin-hyaluronic acid hydrogels. Biomacromolecules 11:3178. doi:10.1021/bm1010504

    Article  CAS  Google Scholar 

  174. Kristin S, Thomas S (2011) Controlled hydrogel formation of a recombinant spider silk protein. Biomacromolecules 12:2488. doi:10.1021/bm200154k

    Article  CAS  Google Scholar 

  175. Gyung-Don K et al (2000) Effects of poloxamer on the gelation of silk fibroin. Macromol Rapid Commun 21:788. doi:10.1002/1521-3927(20000701)21:11<788::AID-MARC788>3.0.CO;2-X

    Article  Google Scholar 

  176. Emmett PB et al (2005) Enzymatic stabilization of gelatin-based scaffolds. J Biomed Mater Res 72:37. doi:10.1002/jbm.b.30119

    Google Scholar 

  177. Liora A, Dror S (2005) Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures. Biomaterials 26:2467

    Article  CAS  Google Scholar 

  178. Rowley JA, Madlambayan G, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20:45

    Article  PubMed  CAS  Google Scholar 

  179. Pritchard EM, Valentin T, Panilaitis B, Omenetto F, Kaplan DL (2013) Antibiotic-releasing silk biomaterials for infection prevention and treatment. Adv Funct Mater 23:854–861. doi:10.1002/adfm.201201636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Nogueira GM, de Moraes MA, Rodas ACD, Higa OZ, Beppu MM (2011) Hydrogels from silk fibroin metastable solution: formation and characterization from a biomaterial perspective. Mater Sci Eng C 31:997–1001. doi:10.1016/j.msec.2011.02.019

    Article  CAS  Google Scholar 

  181. Matsumoto A et al (2006) Mechanisms of silk fibroin sol-gel transitions. J Phys Chem B 110:21630–21638. doi:10.1021/jp056350v

    Article  PubMed  CAS  Google Scholar 

  182. Gary GL, Tim JL, Tuna Y, Qiang L, David LK (2010) Electrogelation for protein adhesives. Adv Mater 22:711. doi:10.1002/adma.200902643

    Article  CAS  Google Scholar 

  183. Wang X et al (2009) Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering. J Control Release 134:81–90. doi:10.1016/j.jconrel.2008.10.021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Uebersax L et al (2007) Silk fibroin matrices for the controlled release of nerve growth factor (NGF). Biomaterials 28:4449–4460. doi:10.1016/j.biomaterials.2007.06.034

    Article  PubMed  CAS  Google Scholar 

  185. Greish K et al (2009) Silk-elastinlike protein polymer hydrogels for localized adenoviral gene therapy of head and neck tumors. Biomacromolecules 10:2183–2188. doi:10.1021/bm900356j

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Megeed Z et al (2004) In vitro and in vivo evaluation of recombinant silk-elastinlike hydrogels for cancer gene therapy. J Control Release 94:433–445. doi:10.1016/j.jconrel.2003.10.027

    Article  PubMed  CAS  Google Scholar 

  187. Fischell TA (1996) Polymer coatings for stents. Can we judge a stent by its cover? Circulation 94:1494–1495

    Article  PubMed  CAS  Google Scholar 

  188. Kang Y et al (2008) Preparation of PLLA/PLGA microparticles using solution enhanced dispersion by supercritical fluids (SEDS). J Colloid Interface Sci 322:87–94. doi:10.1016/j.jcis.2008.02.031

    Article  PubMed  CAS  Google Scholar 

  189. Peter GC (2008) Breast reconstruction after surgery for breast cancer. N Engl J Med 359:1590. doi:10.1056/NEJMct0802899

    Article  Google Scholar 

  190. Zeplin PH et al (2014) Spider silk coatings as a bioshield to reduce periprosthetic fibrous capsule formation. Adv Funct Mater 24:2658. doi:10.1002/adfm.201302813

    Article  CAS  Google Scholar 

  191. Jeffrey JR et al (2013) Engineering the regenerative microenvironment with biomaterials. Adv Healthc Mater 2:57. doi:10.1002/adhm.201200197

    Article  CAS  Google Scholar 

  192. Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428:487–492. doi:10.1038/nature02388

    Article  PubMed  CAS  Google Scholar 

  193. Eun Seok G, Bruce P, Evangelia B, David LK (2013) Functionalized silk biomaterials for wound healing. Adv Healthc Mater 2:206. doi:10.1002/adhm.201200192

    Article  CAS  Google Scholar 

  194. Schneider A, Wang XY, Kaplan DL, Garlick JA, Egles C (2009) Biofunctionalized electrospun silk mats as a topical bioactive dressing for accelerated wound healing. Acta Biomater 5(7):2570–2578. doi:10.1016/j.actbio.2008.12.013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Wenk E, Meinel AJ, Wildy S, Merkle HP, Meinel L (2009) Microporous silk fibroin scaffolds embedding PLGA microparticles for controlled growth factor delivery in tissue engineering. Biomaterials 30:2571–2581. doi:10.1016/j.biomaterials.2008.12.073

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Program of Excellence in Nanotechnology (PEN) Award, Contract #HHSN268201000045C, from the National Heart, Lung, and Blood Institute, National Institutes of Health (NIH). This work was also supported by NIH grants CA151884 and the David Koch-Prostate Cancer Foundation Award in Nanotherapeutics.

Conflict of interest statement Dr. Farokhzad declares financial interests in BIND Therapeutics, Selecta Biosciences, Tarveda Therapeutics and Playcon Therapeutics, four biotechnology companies developing nanoparticle technologies for medical applications. All other authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid C. Farokhzad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Controlled Release Society

About this chapter

Cite this chapter

Chiasson, R., Hasan, M., Al Nazer, Q., Farokhzad, O.C., Kamaly, N. (2016). The Use of Silk in Nanomedicine Applications. In: Howard, K., Vorup-Jensen, T., Peer, D. (eds) Nanomedicine. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3634-2_11

Download citation

Publish with us

Policies and ethics