Skip to main content

Remodeling of Mitochondria in Apoptosis

  • Chapter
  • First Online:
Mitochondria and Cell Death

Part of the book series: Cell Death in Biology and Diseases ((CELLDEATH))

Abstract

This chapter addresses the cellular remodeling that occurs in apoptosis with a focus on the structural changes to mitochondria, which sit in the center of the apoptotic pathway. Accumulating evidence points to the intricate timing and complex interplay of six events involved with the complete release of cytochrome c, called the execution phase or “point of no return” of apoptosis: (1) the activation of specific signaling pathways converging on mitochondria, (2) the arrival and interplay of DRP1, tBID, BAX and BAK at the mitochondrial outer membrane, (3) ER-actin filament-mitochondria association leading to mitochondrial fission remodeling, (4) the opening of crista junctions triggered by disassembly of OPA1 oligomers, (5) the dissolution of the cardiolipin–cytochrome c association leading to passage of cytochrome c from the intracristal space to the intermembrane space, and (6) the formation of mitochondrial outer membrane pores for the relatively rapid and complete release of cytochrome c from the intermembrane space to the cytosol. Each of these six events is a checkpoint for strategies that would enhance or impede apoptotic progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acehan D, Xu Y, Stokes DL, Schlame M (2007) Comparison of lymphoblast mitochondria from normal subjects and patients with Barth syndrome using electron microscopic tomography. Lab Invest 87:40–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alirol E, James D, Huber D et al (2006) The mitochondrial fission protein hFis1 requires the endoplasmic reticulum gateway to induce apoptosis. Mol Biol Cell 17:4593–4605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amutha B, Gordon DM, Gu Y, Pain D (2004) A novel role of Mgm1p, a dynamin related GTPase, in ATP synthase assembly and cristae formation/maintenance. Biochem J 381:19–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ardail D, Privat JP, Egret-Charlier M, Levrat C, Lerme F, Louisot P (1990) Mitochondrial contact sites. Lipid composition and dynamics. J Biol Chem 265:18797–18802

    CAS  PubMed  Google Scholar 

  • Arnoult D, Grodet A, Lee YJ, Estaquier J, Blackstone C (2005) Release of Opa1 during apoptosis participates in the rapid and complete release of cytochrome c and subsequent mitochondrial fragmentation. J Biol Chem 280:35742–35750

    Article  CAS  PubMed  Google Scholar 

  • Barsoum MJ, Yuan H, Gerencser AA, Liot G, Kushnareva Y, Gräber S, Kovacs I, Lee WD, Waggoner J, Cui J, White AD, Bossy B, Martinou JC, Youle RJ, Lipton SA, Ellisman MH, Perkins GA, Bossy-Wetzel E (2006) Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons. EMBO J 25:3900–3911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benard G, Bellance N, James D, Parrone P, Fernandez H, Letellier T, Rossignol R (2007) Mitochondrial bioenergetics and structural network organization. J Cell Sci 120:838–848

    Article  CAS  PubMed  Google Scholar 

  • Bereiter-Hahn J, Vöth M, Mai S, Jendrach M (2008) Structural implications of mitochondrial dynamics. Biotechnol J 3:765–780

    Article  CAS  PubMed  Google Scholar 

  • Brooks C, Dong Z (2007) Regulation of mitochondrial morphological dynamics during apoptosis by Bcl-2 family proteins: a key in Bak? Cell Cycle 6:3043–3047

    Google Scholar 

  • Brooks C, Wei Q, Feng L, Dong G, Tao Y, Mei L, Xie Z-J, Dong Z (2007) Bak regulates mitochondrial morphology and pathology during apoptosis by interacting with mitofusins. Proc Natl Acad Sci U S A 104:11649–11654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks C, Cho SG, Wang CY, Yang T, Dong Z (2011) Fragmented mitochondria are sensitized to Bax insertion and activation during apoptosis. Am J Physiol Cell Physiol 300:C447–C455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bui M, Gilady SY, Fitzsimmons RE, Benson MD, Lynes EM, Gesson K, Alto NM, Strack S, Scott JD, Simmen T (2010) Rab32 modulates apoptosis onset and mitochondria-associated membrane (MAM) properties. J Biol Chem 285:31590–31602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cassidy-Stone A, Chipuk JE, Ingerman E, Song C, Yoo C, Kuwana T, Kurth MJ, Shaw JT, Hinshaw JE, Green DR, Nunnari J (2008) Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev Cell 14:193–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cereghetti GM, Stangherlin A, Martins de Brito O, Chang CR, Blackstone C, Bernardi P, Scorrano L (2008) Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc Natl Acad Sci U S A 105:15803–15808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerqua C et al (2010) Trichoplein/mitostatin regulates endoplasmic reticulum-mitochondria juxtaposition. EMBO Rep 11:854–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang CR, Blackstone C (2010) Dynamic regulation of mitochondrial fission through modification of the dynamin-related protein Drp1. Ann N Y Acad Sci 1201:34–39

    Article  CAS  PubMed  Google Scholar 

  • Chen H, McCaffery JM, Chan DC (2007) Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell 130:548–562

    Article  CAS  PubMed  Google Scholar 

  • Chipuk JE, McStay GP, Bharti A et al (2012) Sphingolipid metabolism cooperates with BAK and BAX to promote the mitochondrial pathway of apoptosis. Cell 148:988–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho D-H, Nakamura T, Fang J, Cieplak P, Godzik A, Gu Z, Lipton SA (2009) S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science 324:102–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi SY, Gonzalvez F, Jenkins GM, Slomianny C, Chretien D, Arnoult D, Petit PX, Frohman MA (2007) Cardiolipin deficiency releases cytochrome c from the inner mitochondrial membrane and accelerates stimuli-elicited apoptosis. Cell Death Differ 14:597–606

    Article  CAS  PubMed  Google Scholar 

  • Chou CH, Lin CC, Yang MC, Wei CC, Liao HD, Lin RC, Tu WY, Kao TC, Hsu CM, Cheng JT, Chou AK, Lee CI, Loh JK, Howng SL, Hong YR (2012) GSK3beta-mediated Drp1 phosphorylation induced elongated mitochondrial morphology against oxidative stress. PLoS One 7(11):e49112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cipolat S, Rudka T, Hartmann D, Costa V, Serneels L, Craessaerts K, Metzger K, Frezza C, Annaert W, D’Adamio L et al (2006) Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via Opa1-dependent cristae remodeling. Cell 126:163–175

    Article  CAS  PubMed  Google Scholar 

  • Cleland MM, Youle RJ (2011) Chapter 4: Mitochondrial dynamics and apoptosis. In: Lu B (ed) Mitochondrial dynamics and neurodegeneration. Springer Science, Berlin

    Google Scholar 

  • Cleland MM, Norris KL, Karbowski M, Wang C, Suen DF, Jiao S, George NM, Luo X, Li Z, Youle RJ (2011) Bcl-2 family interaction with the mitochondrial morphogenesis machinery. Cell Death Differ 18:235–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colombini M (2013) Membrane channels formed by ceramide. Handbook Exp Pharmacol 215:109–126

    Article  CAS  Google Scholar 

  • Costa V, Giacomello M, Hudec R, Lopreiato R, Ermak G, Lim D et al (2010) Mitochondrial fission and cristae disruption increase the response of cell models of Huntington’s disease to apoptotic stimuli. EMBO Mol Med 2:490–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cribbs JT, Strack S (2007) Reversible phosphorylation of Drp1 by cyclic AMP‐dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep 8:939–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Brito OM, Scorrano L (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456:605–610

    Article  PubMed  CAS  Google Scholar 

  • de Kroon AI, Dolis D, Mayer A, Lill R, de Kruijff B (1997) Phospholipid composition of highly purified mitochondrial outer membranes of rat liver and Neurospora crassa. Is cardiolipin present in the mitochondrial outer membrane. Biochim Biophys Acta 1325:108–116

    Article  PubMed  Google Scholar 

  • De Vos KJ, Allan VJ, Grierson AJ, Sheetz MP (2005) Mitochondrial function and actin regulate dynamin-related protein 1-dependent mitochondrial fission. Curr Biol 15:678–683

    Article  PubMed  CAS  Google Scholar 

  • Dickey AS, Strack S (2011) PKA/AKAP1 and PP2A/Bβ2 regulate neuronal morphogenesis via Drp1 phosphorylation and mitochondrial bioenergetics. J Neurosci 31:15716–15726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dikov D, Reichert AS (2011) How to split up: lessons from mitochondria. EMBO J 30:2751–2753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehses S, Raschke I, Mancuso G, Bernacchia A, Geimer S, Tondera D, Martinou J-C, Westermann B, Rugarli EI, Langer T (2009) Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J Cell Biol 187:1023–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epand RF, Martinou JC, Fornallaz-Mulhauser M, Hughes DW, Epand RM (2002) The apoptotic protein tBid promotes leakage by altering membrane curvature. J Biol Chem 277:32632–32639

    Article  CAS  PubMed  Google Scholar 

  • Estaquier J, Arnoult D (2007) Inhibiting Drp1-mediated mitochondrial fission selectively prevents the release of cytochrome c during apoptosis. Cell Death Differ 14:1086–1094

    Article  CAS  PubMed  Google Scholar 

  • Frank S, Gaume B, Bergmann-Leitner ES, Leitner WW, Robert EG, Catez F, Smith CL, Youle RJ (2001) The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1:515–525

    Article  CAS  PubMed  Google Scholar 

  • Frezza C, Cipolat S, Martins de Brito O et al (2006) Opa1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126:177–189

    Article  CAS  PubMed  Google Scholar 

  • Friedman JR, Lackner LL, West M, Dibenedetto JR, Nunnari J, Voeltz GK (2011) ER tubules mark sites of mitochondrial division. Science 334:358–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganesan V, Perera MN, Colombini D, Datskovskiy D, Chadha K, Colombini M (2010) Ceramide and activated Bax act synergistically to permeabilize the mitochondrial outer membrane. Apoptosis 15:553–562

    Article  CAS  PubMed  Google Scholar 

  • Gao W, Pu Y, Luo KQ, Chang DC (2001) Temporal relationship between cytochrome c release and mitochondrial swelling during UV-induced apoptosis in living HeLa cells. J Cell Sci 114:2855–2862

    CAS  PubMed  Google Scholar 

  • Germain M, Mathai JP, McBride HM, Shore GC (2005) Endoplasmic reticulum BIK initiates DRP1-regulated remodeling of mitochondrial cristae during apoptosis. EMBO J 24:1546–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalvez F, Pariselli F, Dupaigne P, Budihardjo I, Lutter M, Antonsson B, Diolez P, Manon S, Martinou JC, Goubern M, Wang X, Bernard S, Petit PX (2005) tBid interaction with cardiolipin primarily orchestrates mitochondrial dysfunctions and subsequently activates Bax and Bak. Cell Death Differ 12:614–626

    Article  CAS  PubMed  Google Scholar 

  • Gonzalvez F, Schug ZT, Houtkooper RH, MacKenzie ED, Brooks DG, Wanders RJ, Petit PX, Vaz FM, Gottlieb E (2008) Cardiolipin provides an essential activating platform for caspase-8 on mitochondria. J Cell Biol 183:681–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gottlieb E, Armour SM, Harris MH, Thompson CB (2003) Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell Death Differ 10:709–717

    Article  CAS  PubMed  Google Scholar 

  • Goyal G, Fell B, Sarin A, Youle RJ, Sriram V (2007) Role of mitochondrial remodeling in programmed cell death in Drosophila melanogaster. Dev Cell 12:807–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griparic L, van der Wel NN, Orozco IJ, Peters PJ, van der Bliek AM (2004) Loss of the intermembrane space protein Mgm1/Opa1 induces swelling and localized constrictions along the lengths of mitochondria. J Biol Chem 279:18792–18798

    Article  CAS  PubMed  Google Scholar 

  • Griparic L, Kanazawa T, Van Der Bliek AM (2007) Regulation of the mitochondrial dynamin-like protein Opa1 by proteolytic cleavage. J Cell Biol 178:757–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Head B, Griparic L, Amiri M, Gandre-Babbe S, Van Der Bliek AM (2009) Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells. J Cell Biol 187:959–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helle SCJ, Kanfer G, Kolar K, Lang A, Agnès H, Kornmann MB (2013) Organization and function of membrane contact sites. Biochim Biophys Acta 1833:2526–2541

    Article  CAS  PubMed  Google Scholar 

  • Herlan M, Vogel F, Bornhovd C, Neupert W, Reichert AS (2003) Processing of Mgm1 by the rhomboid-type protease Pcp1 is required for maintenance of mitochondrial morphology and of mitochondrial DNA. J Biol Chem 278:27781–27788

    Article  CAS  PubMed  Google Scholar 

  • Hockenbery D, Nuñez G, Milliman C, Schreiber RD, Korsmeyer SJ (1990) Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348:334–336

    Article  CAS  PubMed  Google Scholar 

  • Hoppins S, Nunnari J (2012) Mitochondrial dynamics and apoptosis--the ER connection. Science 337:1052–1054

    Article  CAS  PubMed  Google Scholar 

  • Ingerman E, Perkins EM, Marino M, Mears JA, McCaffery JM, Hinshaw JE, Nunnari J (2005) Dnm1 forms spirals that are structurally tailored to fit mitochondria. J Cell Biol 170:1021–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishihara N, Fujita Y, Oka T, Mihara K (2006) Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J 25:2966–2977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishihara N, Nomura M, Jofuku A et al (2009) Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat Cell Biol 11:958–966

    Article  CAS  PubMed  Google Scholar 

  • Iverson SL, Orrenius S (2004) The cardiolipin–cytochrome c interaction and the mitochondrial regulation of apoptosis. Arch Biochem Biophys 423:37–46

    Article  CAS  PubMed  Google Scholar 

  • Iwasawa R, Mahul-Mellier A-L, Datler C, Pazarentzos E, Grimm S (2011) Fis1 and Bap31 bridge the mitochondria–ER interface to establish a platform for apoptosis induction. EMBO J 30:556–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahani-Asl A, Cheung EC, Neuspiel M, Maclaurin JG, Fortin A, Park DS, Mcbride HM, Slack RS (2007) Mitofusin 2 protects cerebellar granule neurons against injury induced cell death. J Biol Chem 282:23788–23798

    Article  CAS  PubMed  Google Scholar 

  • Jakobs S, Wurm CA (2014) Super-resolution microscopy of mitochondria. Curr Opin Chem Biol 20C:9–15

    Article  CAS  Google Scholar 

  • James DI, Parone PA, Mattenberger Y, Martinou JC (2003) hFis1, a novel component of the mammalian mitochondrial fission machinery. J Biol Chem 278:36373–36379

    Article  CAS  PubMed  Google Scholar 

  • John GB, Shang Y, Li L, Renken C, Mannella CA, Selker JM, Rangell L, Bennett MJ, Zha J (2005) The mitochondrial inner membrane protein mitofilin controls cristae morphology. Mol Biol Cell 16:1543–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kagan VE, Tyurina YY, Bayir H, Chu CT, Kapralov AA, Vlasova II, Belikova NA, Tyurin VA, Amoscato A, Epperly M, Greenberger J, Dekosky S, Shvedova AA, Jiang J (2006) The “pro-apoptotic genies” get out of mitochondria: oxidative lipidomics and redox activity of cytochrome c/cardiolipin complexes. Chem Biol Interact 163:15–28

    Article  CAS  PubMed  Google Scholar 

  • Kanazawa T, Zappaterra MD, Hasegawa A, Wright AP, Newman-Smith ED, Buttle KF, McDonald K, Mannella CA, van der Bliek AM (2008) The C. elegans Opa1 homologue EAT-3 is essential for resistance to free radicals. PLoS Genet 4(2):e1000022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karbowski M, Lee YJ, Gaume B, Jeong SY, Frank S, Nechushtan A, Santel A, Fuller M, Smith CL, Youle RJ (2002) Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J Cell Biol 159:931–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karbowski M, Youle RJ (2003) Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death Differ 10:870–880

    Article  CAS  PubMed  Google Scholar 

  • Karbowski M, Norris KL, Cleland MM, Jeong SY, Youle RJ (2006) Role of Bax and Bak in mitochondrial morphogenesis. Nature 443:658–662

    Article  CAS  PubMed  Google Scholar 

  • Kasahara A, Scorrano L (2014) Mitochondria: from cell death executioners to regulators of cell differentiation. Trends Cell Biol 24:761–770

    Article  CAS  PubMed  Google Scholar 

  • Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim TH, Zhao Y, Ding WX, Shin JN, He X, Seo YW, Chen J, Rabinowich H, Amoscato AA, Yin XM (2004) Bid-cardiolipin interaction at mitochondrial contact site contributes to mitochondrial cristae reorganization and cytochrome C release. Mol Biol Cell 15:3061–3072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinnally KW, Antonsson B (2007) A tale of two mitochondrial channels, MAC and PTP, in apoptosis. Apoptosis 12:857–868

    Article  CAS  PubMed  Google Scholar 

  • Knott AB, Bossy-Wetzel E (2008) Impairing the mitochondrial fission and fusion balance: a new mechanism of neurodegeneration. Ann N Y Acad Sci 1147:283–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knott AB, Perkins G, Schwarzenbacher R, Bossy-Wetzel E (2008) Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci 9:505–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kornmann B, Osman C, Walter P (2011) The conserved GTPase Gem1 regulates endoplasmic reticulum-mitochondria connections. Proc Natl Acad Sci 108:14151–14156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korobova F, Ramabhadran V, Higgs HN (2013) An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science 339:464–467

    Article  CAS  PubMed  Google Scholar 

  • Kujjo LL, Acton BM, Perkins GA, Ellisman MH, Giscard D’Estaing S, Casper RF, Jurisicova A, Perez GI (2013) Ceramide and its transport protein (CERT) contribute to deterioration of mitochondrial structure and function in aging oocytes. Mech Ageing Dev 134:43–52

    Article  CAS  PubMed  Google Scholar 

  • Kuwana T, Mackey MR, Perkins G, Ellisman MH, Latterich M, Schneiter R, Green DR, Newmeyer DD (2002) Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111:331–342

    Article  CAS  PubMed  Google Scholar 

  • Kuwana T, Bouchier-Hayes L, Chipuk JE, Bonzon C, Sullivan BA, Green DR, Newmeyer DD (2005) BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 17:525–535

    Article  CAS  PubMed  Google Scholar 

  • Landes T et al (2010a) OPA1 (dys)functions. Semin Cell Dev Biol 21:593–598

    Article  CAS  PubMed  Google Scholar 

  • Landes T, Emorine LJ, Courilleau D, Rojo M, Belenguer P, Arnaune-Pelloquin L (2010b) The BH3-only Bnip3 binds to the dynamin Opa1 to promote mitochondrial fragmentation and apoptosis by distinct mechanisms. EMBO Rep 11:459–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leboucher GP et al (2012) Stress-induced phosphorylation and proteasomal degradation of mitofusin 2 facilitates mitochondrial fragmentation and apoptosis. Mol Cell 47:547–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YJ, Jeong SY, Karbowski M, Smith CL, Youle RJ (2004) Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol Biol Cell 15:5001–5011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucken-Ardjomande S, Montessuit S, Martinou JC (2008) Bax activation and stress-induced apoptosis delayed by the accumulation of cholesterol in mitochondrial membranes. Cell Death Differ 15:484–493

    Article  CAS  PubMed  Google Scholar 

  • Lutter M, Fang M, Luo X, Nishijima M, Xie X, Wang X (2000) Cardiolipin provides specificity for targeting of tBid to mitochondria. Nat Cell Biol 2:754–761

    Article  CAS  PubMed  Google Scholar 

  • Lutter M, Perkins GA, Wang X (2001) The pro-apoptotic Bcl-2 family member tBid localizes to mitochondrial contact sites. BMC Cell Biol 2:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mannella CA (2006) The relevance of mitochondrial membrane topology to mitochondrial function. Biochim Biophys Acta 1762:140–147

    Article  CAS  PubMed  Google Scholar 

  • Mannella CA (2008) Structural diversity of mitochondria: functional implications. Ann N Y Acad Sci 1147:171–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinou JC, Youle RJ (2011) Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell 21:92–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merkwirth C, Langer T (2008) Prohibitin function within mitochondria: essential roles for cell proliferation and cristae morphogenesis. Biochim Biophys Acta 1793:27–32

    Article  PubMed  CAS  Google Scholar 

  • Merkwirth C, Dargazanli S, Tatsuta T, Geimer S, Lower B, Wunderlich FT, von Kleist-Retzow JC, Waisman A, Westermann B, Langer T (2008) Prohibitins control cell proliferation and apoptosis by regulating OPA1-dependent cristae morphogenesis in mitochondria. Genes Dev 22:476–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merrill RA, Dagda RK, Dickey AS, Cribbs JT, Green SH, Usachev YM, Strack S (2011) Mechanism of neuroprotective mitochondrial remodeling by PKA/AKAP1. PLoS Biol 9:e1000612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metzstein MM, Stanfield GM, Horvitz HR (1998) Genetics of programmed cell death in C. elegans: past, present and future. Trends Genet 14:410–416

    Article  CAS  PubMed  Google Scholar 

  • Ming M et al (2012) Activation of Wnt/beta-catenin protein signaling induces mitochondria-mediated apoptosis in hematopoietic progenitor cells. J Biol Chem 287:22683–22690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirkin N, Jaconcic J, Stojanoff V, Moreno A (2008) High resolution X-ray crystallographic structure of bovine heart cytochrome c and its application to the design of an electron transfer biosensor. Proteins 70:83–92

    Article  CAS  PubMed  Google Scholar 

  • Montessuit S, Somasekharan SP, Terrones O, Lucken‐Ardjomande S, Herzig S, Schwarzenbacher R, Manstein DJ, Bossy‐Wetzel E, Basanez G, Meda P, Martinou JC (2010) Membrane remodeling induced by the dynamin‐related protein Drp1 stimulates Bax oligomerization. Cell 142:889–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller-Rischart AK et al (2013) The E3 ligase parkin maintains mitochondrial integrity by increasing linear ubiquitination of NEMO. Mol Cell 49:908–921

    Article  PubMed  CAS  Google Scholar 

  • Olichon A, Baricault L, Gas N et al (2003) Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem 278:7743–7746

    Article  CAS  PubMed  Google Scholar 

  • Olichon A, Landes T, Arnaune-Pelloquin L, Emorine LJ, Mils V, Guichet A, Delettre C, Hamel C, Amati-Bonneau P, Bonneau D, Reynier P, Lenaers G, Belenguer P (2007) Effects of OPA1 mutations on mitochondrial morphology and apoptosis: relevance to ADOA pathogenesis. J Cell Physiol 211:423–430

    Article  CAS  PubMed  Google Scholar 

  • Osman C, Merkwirth C, Langer T (2009) Prohibitins and the functional compartmentalization of mitochondrial membranes. J Cell Sci 122:3823–3830

    Article  CAS  PubMed  Google Scholar 

  • Otera H, Mihara K (2011) Discovery of the membrane receptor for mitochondrial fission GTPase Drp1. Small GTPases 2:167–172

    Article  PubMed  PubMed Central  Google Scholar 

  • Otera H, Wang C, Cleland MM, Setoguchi K, Yokota S, Youle RJ, Mihara K (2010) Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J Cell Biol 191:1141–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ott M, Robertson JD, Gogvadze V, Zhivotovsky B, Orrenius S (2002) Cytochrome c release from mitochondria proceeds by a two-step process. Proc Natl Acad Sci U S A 99:1259–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parone PA, James DI, Da Cruz S, Mattenberger Y, Donzé O, Barja F, Martinou JC (2006) Inhibiting the mitochondrial fission machinery does not prevent Bax/Bak-dependent apoptosis. Mol Cell Biol 26:7397–7408

    Google Scholar 

  • Perez GI, Acton BM, Jurisicova A, Perkins GA, White A, Brown J, Trbovich AM, Kim M-R, Fissore R, Xu J, Ahmady A, D'Estaing H, Kagawa W, Kurumizaka H, Yokoyama S, Okada Mak TW, Ellisman MH, Casper RF, Tilly JL (2007) Genetic variance modifies apoptosis susceptibility in mature oocytes via alterations in DNA repair capacity and mitochondrial ultrastructure. Cell Death Differ 14:524–533

    Google Scholar 

  • Perkins G, Bossy-Wetzel E, Ellisman MH (2009) New insights into mitochondrial structure during cell death. Exp Neurol 218:183–192

    Google Scholar 

  • Perkins G, Renken C, Martone M, Young S, Ellisman MH, Frey T (1997) Electron tomography of neuronal mitochondria: 3-D structure and organization of cristae and membrane contacts. J Struct Biol 119:260–272

    Google Scholar 

  • Perumalsamy LR et al (2010) Notch-activated signaling cascade interacts with mitochondrial remodeling proteins to regulate cell survival. Proc Natl Acad Sci U S A 107:6882–6887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren D, Tu HC, Kim H, Wang GX, Bean GR, Takeuchi O, Jeffers JR, Zambetti GP, Hsieh JJ, Cheng EH (2010) BID, BIM, and PUMA are essential for activation of the BAX- and BAK-dependent cell death program. Science 330:1390–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricci JE, Munoz-Pinedo C, Fitzgerald P, Bailly-Maitre B, Perkins GA, Yadava N, Scheffler IE, Ellisman MH, Green DR (2004) Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the p75 subunit of complex I of the electron transport chain. Cell 117:773–786

    Article  CAS  PubMed  Google Scholar 

  • Rytomaa M, Kinnunen PK (1995) Reversibility of the binding of cytochrome c to liposomes. Implications for lipid–protein interactions. J Biol Chem 270:3197–3202

    Article  CAS  PubMed  Google Scholar 

  • Rytomaa M, Mustonen P, Kinnunen PK (1992) Reversible, nonionic, and pH dependent association of cytochrome c with cardiolipin–phosphatidylcholine liposomes. J Biol Chem 267:22243–22248

    CAS  PubMed  Google Scholar 

  • Schug ZT, Gottlieb E (2009) Cardiolipin acts as a mitochondrial signalling platform to launch apoptosis. Biochim Biophys Acta 1788:2022–2031

    Article  CAS  PubMed  Google Scholar 

  • Scorrano L (2009) Opening the doors to cytochrome c: changes in mitochondrial shape and apoptosis. Int J Biochem Cell Biol 41:1875–1883

    Article  CAS  PubMed  Google Scholar 

  • Scorrano L (2013) Keeping mitochondria in shape: a matter of life and death. Eur J Clin Investig 43:886–893

    Article  CAS  Google Scholar 

  • Scorrano L, Ashiya M, Buttle K et al (2002) A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev Cell 2:55–67

    Article  CAS  PubMed  Google Scholar 

  • Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T, Korsmeyer SJ (2003) BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300:135–139

    Article  CAS  PubMed  Google Scholar 

  • Sheridan C, Martin SJ (2010) Mitochondrial fission/fusion dynamics and apoptosis. Mitochondrion 10:640–648

    Article  CAS  PubMed  Google Scholar 

  • Sheridan C, Delivani P, Cullen SP, Martin SJ (2008) Bax- or Bak-induced mitochondrial fission can be uncoupled from cytochrome C release. Mol Cell 31:570–585

    Article  CAS  PubMed  Google Scholar 

  • Simmen T et al (2005) PACS-2 controls endoplasmic reticulum-mitochondria communication and Bid-mediated apoptosis. EMBO J 24:717–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Z, Chen H, Fiket M, Alexander C, Chan DC (2007) OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J Cell Biol 178:749–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugioka R, Shimizu S, Tsujimoto Y (2004) Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis. J Biol Chem 279:52726–52734

    Article  CAS  PubMed  Google Scholar 

  • Sugiura A et al (2013) MITOL regulates endoplasmic reticulum-mitochondria contacts via Mitofusin2. Mol Cell 51:20–34

    Article  CAS  PubMed  Google Scholar 

  • Sulston JE, Brenner S (1974) The DNA of Caenorhabditis elegans. Genetics 77:95–104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun MG, Williams J, Munoz-Pinedo C, Perkins GA, Brown JM, Ellisman MH, Green DR, Frey TG (2007) Correlated three-dimensional light and electron microscopy reveals transformation of mitochondria during apoptosis. Nat Cell Biol 9:1057–1065

    Article  CAS  PubMed  Google Scholar 

  • Szabadkai G, Simoni AM, Chami M, Wieckowski MR, Youle RJ, Rizzuto R (2004) Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis. Mol Cell 16:59–68

    Article  CAS  PubMed  Google Scholar 

  • Terrones O, Antonsson B, Yamaguchi H, Wang HG, Liu Y, Lee RM, Herrmann A, Basanez G (2004) Lipidic pore formation by the concerted action of pro-apoptotic BAX and tBID. J Biol Chem 279:30081–30091

    Article  CAS  PubMed  Google Scholar 

  • Tuominen EK, Wallace CJ, Kinnunen PK (2002) Phospholipid–cytochrome c interaction: evidence for the extended lipid anchorage. J Biol Chem 277:8822–8826

    Article  CAS  PubMed  Google Scholar 

  • Tyurin VA, Tyurina YY, Feng W, Mnuskin A, Jiang J, Tang M, Zhang X, Zhao Q, Kochanek PM, Clark RS, Bayir H, Kagan VE (2008) Mass-spectrometric characterization of phospholipids and their primary peroxidation products in rat cortical neurons during staurosporine-induced apoptosis. J Neurochem 107:1614–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaux DL, Cory S, Adams JM (1988) Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335:440–442

    Article  CAS  PubMed  Google Scholar 

  • Vogel F, Bornhovd C, Neupert W, Reichert AS (2006) Dynamic subcompartmentalization of the mitochondrial inner membrane. J Cell Biol 175:237–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JX, Jiao JQ, Li Q, Long B, Wang K, Liu JP, Li YR, Li PF (2011) miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat Med 17:71–78

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Youle R (2009) The role of mitochondria in apoptosis. Annu Rev Genet 43:95–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasiak S, Zunino R, McBride HM (2007) Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. J Cell Biol 177:439–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei MC, ZongWX CEH, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB, Korsmeyer SJ (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292:727–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi R, Perkins G (2009) Dynamics of mitochondrial structure during apoptosis and the enigma of Opa1. Biochim Biophys Acta 1787:963–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi R, Perkins G (2012a) Challenges in targeting cancer metabolism for cancer therapy. EMBO Rep 13:1034–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi R, Perkins G (2012b) Finding a panacea among combination cancer therapies. Cancer Res 72:18–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi R, Lartigue L, Perkins G, Scott RT, Dixit A, Ellisman MH, Kuwana T, Newmeyer DD (2008) Opa1-mediated cristae opening Is Bax/Bak and BH3 dependent, required for apoptosis, and independent of Bak oligomerization. Mol Cell 31:557–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon Y, Krueger EW, Oswald BJ, McNiven MA (2003) The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin like protein DLP1. Mol Cell Biol 23:5409–5420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youle RJ, Karbowski M (2005) Mitochondrial fission in apoptosis. Nat Rev Mol Cell Biol 6:657–663

    Article  CAS  PubMed  Google Scholar 

  • Yuan H, Gerencser AA, Liot G, Lipton SA, Ellisman MH, Perkins G, Bossy-Wetzel E (2007) Mitochondrial fission is an upstream and required event for bax foci formation in response to nitric oxide in cortical neurons. Cell Death Differ 14:462–471

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Liu T, Jin S, Wang X, Qu M, Uhlén P, Tomilin N, Shupliakov O, Lendahl U, Nistér M (2011) Human MIEF1 recruits Drp1 to mitochondrial outer membranes and promotes mitochondrial fusion rather than fission. EMBO J 30:2762–2778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zinkel SS, Yin XM, Gross A (2013) Rejuvenating Bi(d)ology. Oncogene 32:3213–3219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy A. Perkins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Perkins, G.A., Ellisman, M.H. (2016). Remodeling of Mitochondria in Apoptosis. In: Hockenbery, D. (eds) Mitochondria and Cell Death. Cell Death in Biology and Diseases. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3612-0_5

Download citation

Publish with us

Policies and ethics