Skip to main content

Lethal and Nonlethal Functions of the Permeability Transition Pore

  • Chapter
  • First Online:
  • 1430 Accesses

Part of the book series: Cell Death in Biology and Diseases ((CELLDEATH))

Abstract

The mitochondrial permeability transition is an inner membrane permeability increase that can be traced to the opening of a specific but nonselective high-conductance inner membrane channel named the permeability transition pore (PTP). PTP can open either transiently or permanently. There is an abundant literature from different laboratories using cellular or animal models, showing that PTP inhibition prevents some types of cell death. Although permanent PTP opening allows the release of mitochondrial pro-apoptotic proteins, the mechanism for release remains debated. Contrary to permanent PTP opening, transient PTP opening does not induce cell death and may have physiological functions. The best-characterized nonlethal function of PTP may be participation in calcium homeostasis, which is supported by limited but convincing evidence. Transient PTP opening may also participate in the phenomenon named ROS-induced ROS release and also serve in the uptake-release of compounds that lack a specific transport system in the inner membrane and are present both in matrix and cytosol at similar concentrations. Finally, transient PTP opening might allow ATP production by succinate-CoA ligase inside mitochondria when excess NADH inhibits the TCA cycle.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akerman KE (1978) Charge transfer during valinomycin-induced Ca2+ uptake in rat liver mitochondria. FEBS Lett 93:293–296

    Article  CAS  PubMed  Google Scholar 

  • Alavian KN, Beutner G, Lazrove E, Sacchetti S, Park HA et al (2014) An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore. Proc Natl Acad Sci U S A 111:10580–10585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altschuld RA, Hohl CM, Castillo LC, Garleb AA, Starling RC et al (1992) Cyclosporin inhibits mitochondrial calcium efflux in isolated adult rat ventricular cardiomyocytes. Am J Physiol 262:H1699–H1704

    CAS  PubMed  Google Scholar 

  • Angelin A, Tiepolo T, Sabatelli P, Grumati P, Bergamin N et al (2007) Mitochondrial dysfunction in the pathogenesis of Ullrich congenital muscular dystrophy and prospective therapy with cyclosporins. Proc Natl Acad Sci U S A 104:991–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aprille JR (1988) Regulation of the mitochondrial adenine nucleotide pool size in liver: mechanism and metabolic role. FASEB J 2:2547–2556

    CAS  PubMed  Google Scholar 

  • Azzone GF, Azzi A (1965) Volume changes in liver mitochondria. Proc Natl Acad Sci U S A 53:1084–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azzone GF, Pozzan T, Massari S, Bragadin M, Dell’Antone P (1977) H+/site ratio and steady state distribution of divalent cations in mitochondria. FEBS Lett 78:21–24

    Article  CAS  PubMed  Google Scholar 

  • Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H et al (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658–662

    Article  CAS  PubMed  Google Scholar 

  • Barsukova A, Komarov A, Hajnoczky G, Bernardi P, Bourdette D et al (2011) Activation of the mitochondrial permeability transition pore modulates Ca2+ responses to physiological stimuli in adult neurons. Eur J Neurosci 33:831–842

    Article  PubMed  PubMed Central  Google Scholar 

  • Basso E, Fante L, Fowlkes J, Petronilli V, Forte MA et al (2005) Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D. J Biol Chem 280:18558–18561

    Article  CAS  PubMed  Google Scholar 

  • Batandier C, Leverve X, Fontaine E (2004) Opening of the mitochondrial permeability transition pore induces reactive oxygen species production at the level of the respiratory chain complex I. J Biol Chem 279:17197–17204

    Article  CAS  PubMed  Google Scholar 

  • Batandier C, Guigas B, Detaille D, El-Mir MY, Fontaine E et al (2006) The ROS production induced by a reverse-electron flux at respiratory-chain complex 1 is hampered by metformin. J Bioenerg Biomembr 38:33–42

    Article  CAS  PubMed  Google Scholar 

  • Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA et al (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476:341–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernardi P, Azzone GF (1981) Cytochrome c as an electron shuttle between the outer and inner mitochondrial membranes. J Biol Chem 256:7187–7192

    CAS  PubMed  Google Scholar 

  • Bernardi P, Azzone GF (1982) A membrane potential-modulated pathway for Ca2+ efflux in rat liver mitochondria. FEBS Lett 139:13–16

    Article  CAS  PubMed  Google Scholar 

  • Bernardi P, Azzone GF (1983) Regulation of Ca2+ efflux in rat liver mitochondria. Role of membrane potential. Eur J Biochem 134:377–383

    Article  CAS  PubMed  Google Scholar 

  • Bernardi P, Petronilli V (1996) The permeability transition pore as a mitochondrial calcium release channel: a critical appraisal. J Bioenerg Biomembr 28:131–138

    Article  CAS  PubMed  Google Scholar 

  • Bernardi P, von Stockum S (2012) The permeability transition pore as a Ca(2+) release channel: new answers to an old question. Cell Calcium 52:22–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernardi P, Petronilli V, Di Lisa F, Forte M (2001) A mitochondrial perspective on cell death. Trends Biochem Sci 26:112–117

    Article  CAS  PubMed  Google Scholar 

  • Boyer CS, Moore GA, Moldeus P (1993) Submitochondrial localization of the NAD+ glycohydrolase. Implications for the role of pyridine nucleotide hydrolysis in mitochondrial calcium fluxes. J Biol Chem 268:4016–4020

    CAS  PubMed  Google Scholar 

  • Bragadin M, Pozzan T, Azzone GF (1979) Kinetics of Ca2+ carrier in rat liver mitochondria. Biochemistry 18:5972–5978

    Article  CAS  PubMed  Google Scholar 

  • Carraro M, Giorgio V, Sileikyte J, Sartori G, Forte M et al (2014) Channel formation by yeast F-ATP synthase and the role of dimerization in the mitochondrial permeability transition. J Biol Chem 289:15980–15985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chauvin C, De Oliveira F, Ronot X, Mousseau M, Leverve X et al (2001) Rotenone inhibits the mitochondrial permeability transition-induced cell death in U937 and KB cells. J Biol Chem 276:41394–41398

    Article  CAS  PubMed  Google Scholar 

  • Chouchani ET, Pell VR, Gaude E, Aksentijević D, Sundier SY et al (2014) Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515(7527):431–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Giorgi F, Lartigue L, Bauer MK, Schubert A, Grimm S et al (2002) The permeability transition pore signals apoptosis by directing Bax translocation and multimerization. FASEB J 16:607–609

    PubMed  Google Scholar 

  • De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476:336–340

    Article  PubMed  PubMed Central  Google Scholar 

  • Detaille D, Guigas B, Chauvin C, Batandier C, Fontaine E et al (2005) Metformin prevents high-glucose-induced endothelial cell death through a mitochondrial permeability transition-dependent process. Diabetes 54:2179–2187

    Article  CAS  PubMed  Google Scholar 

  • Di Lisa F, Ziegler M (2001) Pathophysiological relevance of mitochondria in NAD(+) metabolism. FEBS Lett 492:4–8

    Article  PubMed  Google Scholar 

  • Di Lisa F, Menabo R, Canton M, Barile M, Bernardi P (2001) Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+ and is a causative event in the death of myocytes in postischemic reperfusion of the heart. J Biol Chem 276:2571–2575

    Article  PubMed  Google Scholar 

  • Dumas JF, Argaud L, Cottet-Rousselle C, Vial G, Gonzalez C et al (2009) Effect of transient and permanent permeability transition pore opening on NAD(P)H localization in intact cells. J Biol Chem 284:15117–15125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elrod JW, Wong R, Mishra S, Vagnozzi RJ, Sakthievel B et al (2010) Cyclophilin D controls mitochondrial pore-dependent Ca(2+) exchange, metabolic flexibility, and propensity for heart failure in mice. J Clin Invest 120:3680–3687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksson O, Pollesello P, Geimonen E (1999) Regulation of total mitochondrial Ca2+ in perfused liver is independent of the permeability transition pore. Am J Physiol 276:C1297–C1302

    CAS  PubMed  Google Scholar 

  • Fiermonte G, De Leonardis F, Todisco S, Palmieri L, Lasorsa FM et al (2004) Identification of the mitochondrial ATP-Mg/Pi transporter. Bacterial expression, reconstitution, functional characterization, and tissue distribution. J Biol Chem 279:30722–30730

    Article  CAS  PubMed  Google Scholar 

  • Fontaine E, Eriksson O, Ichas F, Bernardi P (1998) Regulation of the permeability transition pore in skeletal muscle mitochondria. Modulation by electron flow through the respiratory chain complex i. J Biol Chem 273:12662–12668

    Article  CAS  PubMed  Google Scholar 

  • Giorgio V, von Stockum S, Antoniel M, Fabbro A, Fogolari F et al (2013) Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci U S A 110:5887–5892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guigas B, Detaille D, Chauvin C, Batandier C, De Oliveira F et al (2004) Metformin inhibits mitochondrial permeability transition and cell death: a pharmacological in vitro study. Biochem J 382:877–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haworth RA, Hunter DR (1979) The Ca2+-induced membrane transition in mitochondria. II. Nature of the Ca2+ trigger site. Arch Biochem Biophys 195:460–467

    Article  CAS  PubMed  Google Scholar 

  • Haworth RA, Hunter DR (1980) Allosteric inhibition of the Ca2+-activated hydrophilic channel of the mitochondrial inner membrane by nucleotides. J Membr Biol 54:231–236

    Article  CAS  PubMed  Google Scholar 

  • Hunter DR, Haworth RA (1979a) The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms. Arch Biochem Biophys 195:453–459

    Article  CAS  PubMed  Google Scholar 

  • Hunter DR, Haworth RA (1979b) The Ca2+-induced membrane transition in mitochondria. III. Transitional Ca2+ release. Arch Biochem Biophys 195:468–477

    Article  CAS  PubMed  Google Scholar 

  • Hunter DR, Haworth RA, Southard JH (1976) Relationship between configuration, function, and permeability in calcium-treated mitochondria. J Biol Chem 251:5069–5077

    CAS  PubMed  Google Scholar 

  • Irwin WA, Bergamin N, Sabatelli P, Reggiani C, Megighian A et al (2003) Mitochondrial dysfunction and apoptosis in myopathic mice with collagen VI deficiency. Nat Genet 35:367–371

    Article  CAS  PubMed  Google Scholar 

  • Kantrow SP, Piantadosi CA (1997) Release of cytochrome c from liver mitochondria during permeability transition. Biochem Biophys Res Commun 232:669–671

    Article  CAS  PubMed  Google Scholar 

  • Kinnally KW, Campo ML, Tedeschi H (1989) Mitochondrial channel activity studied by patch-clamping mitoplasts. J Bioenerg Biomembr 21:497–506

    Article  CAS  PubMed  Google Scholar 

  • Kirichok Y, Krapivinsky G, Clapham DE (2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427:360–364

    Article  CAS  PubMed  Google Scholar 

  • Korshunov SS, Skulachev VP, Starkov AA (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416:15–18

    Article  CAS  PubMed  Google Scholar 

  • Kushnareva Y, Murphy AN, Andreyev A (2002) Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state. Biochem J 368:545–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwong LK, Sohal RS (1998) Substrate and site specificity of hydrogen peroxide generation in mouse mitochondria. Arch Biochem Biophys 350:118–126

    Article  CAS  PubMed  Google Scholar 

  • Lablanche S, Cottet-Rousselle C, Lamarche F, Benhamou PY, Halimi S et al (2011) Protection of pancreatic INS-1 beta-cells from glucose- and fructose-induced cell death by inhibiting mitochondrial permeability transition with cyclosporin A or metformin. Cell Death Dis 2:e134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamarche F, Carcenac C, Gonthier B, Cottet-Rousselle C, Chauvin C et al (2013) Mitochondrial permeability transition pore inhibitors prevent ethanol-induced neuronal death in mice. Chem Res Toxicol 26(1):78–88

    Article  CAS  PubMed  Google Scholar 

  • Li B, Chauvin C, De Paulis D, De Oliveira F, Gharib A et al (2012) Inhibition of complex I regulates the mitochondrial permeability transition through a phosphate-sensitive inhibitory site masked by cyclophilin D. Biochim Biophys Acta 1817:1628–1634

    Article  CAS  PubMed  Google Scholar 

  • Massari S, Azzone GF (1972) The equivalent pore radius of intact and damaged mitochondria and the mechanism of active shrinkage. Biochim Biophys Acta 283:23–29

    Article  CAS  PubMed  Google Scholar 

  • Merlini L, Angelin A, Tiepolo T, Braghetta P, Sabatelli P et al (2008) Cyclosporin A corrects mitochondrial dysfunction and muscle apoptosis in patients with collagen VI myopathies. Proc Natl Acad Sci U S A 105:5225–5229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K et al (2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434:652–658

    Article  CAS  PubMed  Google Scholar 

  • Palma E, Tiepolo T, Angelin A, Sabatelli P, Maraldi NM et al (2009) Genetic ablation of cyclophilin D rescues mitochondrial defects and prevents muscle apoptosis in collagen VI myopathic mice. Hum Mol Genet 18:2024–2031

    Article  CAS  PubMed  Google Scholar 

  • Palty R, Silverman WF, Hershfinkel M, Caporale T, Sensi SL et al (2010) NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc Natl Acad Sci U S A 107:436–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petronilli V, Szabo I, Zoratti M (1989) The inner mitochondrial membrane contains ion-conducting channels similar to those found in bacteria. FEBS Lett 259:137–143

    Article  CAS  PubMed  Google Scholar 

  • Petronilli V, Nicolli A, Costantini P, Colonna R, Bernardi P (1994) Regulation of the permeability transition pore, a voltage-dependent mitochondrial channel inhibited by cyclosporin A. Biochim Biophys Acta 1187:255–259

    Article  CAS  PubMed  Google Scholar 

  • Petronilli V, Miotto G, Canton M, Brini M, Colonna R et al (1999) Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence. Biophys J 76:725–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petronilli V, Penzo D, Scorrano L, Bernardi P, Di Lisa F (2001) The mitochondrial permeability transition, release of cytochrome c and cell death. Correlation with the duration of pore openings in situ. J Biol Chem 276:12030–12034

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer DR, Kuo TH, Tchen TT (1976) Some effects of Ca2+, Mg2+, and Mn2+ on the ultrastructure, light-scattering properties, and malic enzyme activity of adrenal cortex mitochondria. Arch Biochem Biophys 176:556–563

    Article  CAS  PubMed  Google Scholar 

  • Piot C, Croisille P, Staat P, Thibault H, Rioufol G et al (2008) Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med 359:473–481

    Article  CAS  PubMed  Google Scholar 

  • Raaflaub J (1953a) Mechanism of adenosinetriphosphate as cofactor of isolated mitochondria. Helv Physiol Pharmacol Acta 11:157–165

    CAS  PubMed  Google Scholar 

  • Raaflaub J (1953b) Swelling of isolated mitochondria of the liver and their susceptibility to physicochemical influences. Helv Physiol Pharmacol Acta 11:142–156

    CAS  PubMed  Google Scholar 

  • Scarpa A, Azzone GF (1970) The mechanism of ion translocation in mitochondria. 4. Coupling of K+ efflux with Ca2+ uptake. Eur J Biochem 12:328–335

    Article  CAS  PubMed  Google Scholar 

  • Schinzel AC, Takeuchi O, Huang Z, Fisher JK, Zhou Z et al (2005) Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc Natl Acad Sci U S A 102:12005–12010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scorrano L, Ashiya M, Buttle K, Weiler S, Oakes SA et al (2002) A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev Cell 2:55–67

    Article  CAS  PubMed  Google Scholar 

  • Szabo I, Zoratti M (1991) The giant channel of the inner mitochondrial membrane is inhibited by cyclosporin A. J Biol Chem 266:3376–3379

    CAS  PubMed  Google Scholar 

  • Tiepolo T, Angelin A, Palma E, Sabatelli P, Merlini L et al (2009) The cyclophilin inhibitor Debio 025 normalizes mitochondrial function, muscle apoptosis and ultrastructural defects in Col6a1-/- myopathic mice. Br J Pharmacol 157:1045–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Stockum S, Giorgio V, Trevisan E, Lippe G, Glick GD et al (2015) F-ATPase of Drosophila melanogaster forms 53-picosiemen (53-pS) channels responsible for mitochondrial Ca2+-induced Ca2+ release. J Biol Chem 290:4537–4544

    Article  Google Scholar 

  • Votyakova TV, Reynolds IJ (2001) DeltaPsi(m)-Dependent and -independent production of reactive oxygen species by rat brain mitochondria. J Neurochem 79:266–277

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Carlsson Y, Basso E, Zhu C, Rousset CI et al (2009) Developmental shift of cyclophilin D contribution to hypoxic-ischemic brain injury. J Neurosci 29:2588–2596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoratti M, Szabo I (1995) The mitochondrial permeability transition. Biochim Biophys Acta 1241:139–176

    Article  PubMed  Google Scholar 

  • Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ (2000) Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med 192:1001–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zorov DB, Juhaszova M, Sollott SJ (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94:909–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zulian A, Rizzo E, Schiavone M, Palma E, Tagliavini F et al (2014) NIM811, a cyclophilin inhibitor without immunosuppressive activity, is beneficial in collagen VI congenital muscular dystrophy models. Hum Mol Genet 23:5353–5363

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Fontaine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fontaine, E., Bernardi, P. (2016). Lethal and Nonlethal Functions of the Permeability Transition Pore. In: Hockenbery, D. (eds) Mitochondria and Cell Death. Cell Death in Biology and Diseases. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3612-0_1

Download citation

Publish with us

Policies and ethics