Skip to main content

Immunotherapy in Melanoma

  • Chapter
  • First Online:
Genetics of Melanoma

Part of the book series: Cancer Genetics ((CANGENETICS))

  • 925 Accesses

Abstract

Clinical and laboratory observations suggest that host immunity may influence the course of melanoma progression, rationalizing the investigation of immunotherapeutic approaches in this disease. Areas of active investigation have included the use of recombinant cytokines, either alone or in combination with other biologic response modifiers, cancer vaccines, gene therapy, adoptive immunotherapy, or monoclonal antibodies. Although cytokine therapies of interferon alpha (IFN) and interleukin-2 (IL-2) are effective in only a small percentage of patients, the results can be quite dramatic and durable.

Resistance to immunotherapy has been documented to result from a number of immunoevasive maneuvers used by cancer cells. The most effective defense mounted by cancer cells is accomplished through hijacking the host’s complex check and balance system governing peripheral tolerance—the mechanism operated by numerous immune checkpoint molecules to prevent autoimmune attacks on normal tissues. The strategy of using monoclonal antibodies to block the inhibitory immune checkpoint receptors of cytotoxic T-lymphocyte antigen-4 (CTLA-4), programmed cell death-1 (PD-1), and programmed cell death ligand-1 (PD-L1) has been shown to restore effective host immunity against melanoma.

This chapter will focus on the use of cytokines and immune checkpoint-targeted antibodies in the management of patients with advanced melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kalialis LV, Drzewiecki KT, Klyver H (2009) Spontaneous regression of metastases from melanoma: review of the literature. Melanoma Res 19:275–282

    Article  PubMed  Google Scholar 

  2. Kubica AW, Brewer JD (2012) Melanoma in immunosuppressed patients. Mayo Clin Proc 87:991–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Platanias LC (2005) Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat Rev Immunol 5:375–386

    Article  CAS  PubMed  Google Scholar 

  4. Jonasch E, Haluska FG (2001) Interferon in oncological practice: review of interferon biology, clinical applications, and toxicities. Oncologist 6:34–55

    Article  CAS  PubMed  Google Scholar 

  5. Balch CM, Soong SJ, Atkins MD et al (2004) An evidence-based staging system for cutaneous melanoma. CA Cancer J Clin 54:131–149

    Article  PubMed  Google Scholar 

  6. Kirkwood JM, Strawderman MH, Ernstoff MS et al (1996) Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous melanoma: the eastern cooperative oncology group trial EST 1684. J Clin Oncol 14:7–17

    CAS  PubMed  Google Scholar 

  7. Kirkwood JM, Ibrahim JG, Sondak VK et al (2000) High- and low-dose interferon alfa-2b in high-risk melanoma: first analysis of intergroup trial E1690/S9111/C9190. J Clin Oncol 18:2444–2458

    CAS  PubMed  Google Scholar 

  8. Kleeberg UR, Suciu S, Brocker EB et al (2004) Final results of the EORTC 18871/DKG 80-1 randomised phase III trial. rIFN-alpha2b versus rIFN-gamma versus ISCADOR M versus observation after surgery in melanoma patients with either high-risk primary (thickness >3 mm) or regional lymph node metastasis. Eur J Cancer 40:390–402

    Article  CAS  PubMed  Google Scholar 

  9. Eggermont AM, Suciu S, Mackie R et al (2005) Post-surgery adjuvant therapy with intermediate doses of interferon alfa 2b versus observation in patients with stage IIb/III melanoma (EORTC 18952): randomised controlled trial. Lancet 366:1189–1196

    Article  CAS  PubMed  Google Scholar 

  10. Hansson J, Aamdal S, Bastholt L et al (2011) Two different duration of adjuvant therapy with intermediate-dose interferon alfa-2b in patients with high-risk melanoma (Nordic IFN trial): a randomised phase III trial. Lancet Oncol 12:144–152

    Article  CAS  PubMed  Google Scholar 

  11. Pectasides D, Dafni U, Bafaloukos D et al (2009) Randomized phase III study of 1 month versus 1 year of adjuvant high-dose interferon alfa-2b in patients with resected high-risk melanoma. J Clin Oncol 27:939–944

    Article  CAS  PubMed  Google Scholar 

  12. Agarwala SS, Lee SJ, Flaherty LE et al (2011) Randomized phase III study of high-dose interferon alfa-2b (HDI) for 4 weeks induction only in patients with intermediate- and high-risk melanoma (intergroup trial E 1697). J Clin Oncol 29:Abstract 8505

    Google Scholar 

  13. Merck Sharp and Dohme Corp. (2012) SylatronTM US prescribing information. http://www.sylatron.com/peginterferon/sylatron/hcp/index.jsp. Accessed 28 Jun 2013

  14. Eggermont AM, Suciu S, Testori A et al (2012) Long-term results of the randomized phase III trial EORTC 18991 of adjuvant therapy with pegylated interferon alfa-2b versus observation in resected stage III melanoma. J Clin Oncol 30:3810–3818

    Article  CAS  PubMed  Google Scholar 

  15. Wheatley K, Ives N, Eggermont AMM et al (2007) Interferon-α as adjuvant therapy for melanoma: an individual patient meta-analysis of randomised trials. J Clin Oncol 25:Abstract 8526

    Google Scholar 

  16. Mocelin S, Pasquali S, Rossi CR et al (2010) Interferon alpha adjuvant therapy in patients with high-risk melanoma: a systematic review and meta-analysis. J Natl Cancer Inst 102:492–501

    Google Scholar 

  17. Gogas H, Ioannovich J, Dafni U et al (2006) Prognostic significance of autoimmunity during treatment of melanoma with interferon. N Engl J Med 354:709–718

    Article  CAS  PubMed  Google Scholar 

  18. Krauze MT, Tarhini A, Gogas H et al (2011) Prognostic significance of autoimmunity during treatment of melanoma with interferon. Semin Immunopathol 33:385–391

    Article  CAS  PubMed  Google Scholar 

  19. Eggermont AM, Suciu S, Testori A et al (2012) Ulceration and stage are predictive of interferon efficacy in melanoma: results of the phase III adjuvant trials EORTC 18952 and EORTC 18991. Eur J Cancer 48:218–225

    Article  CAS  PubMed  Google Scholar 

  20. Prometheus Laboratories Inc. (2012) Proleukin® US prescribing information. http://www.proleukin.com. Accessed 28 Jun 2013

  21. Atkins MB, Lotze MT, Dutcher JP et al (1999) High-dose recombinant interleukin-2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol 17:2105–2116

    CAS  PubMed  Google Scholar 

  22. Rudd CE, Taylor A, Schneider H (2009) CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol Rev 229:12–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Graziani G, Tentori L, Navarra P (2012) Ipilimumab: a novel immunostimulatory monoclonal antibody for the treatment of cancer. Pharmacol Res 65:9–22

    Article  CAS  PubMed  Google Scholar 

  25. Leach DR, Krummel MF, Allison JP (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science 271:1734–1736

    Article  CAS  PubMed  Google Scholar 

  26. Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Robert C, Thomas L, Bondarenko I et al (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364:2517–2526

    Article  CAS  PubMed  Google Scholar 

  28. Schadendorf D, Hodi FS, Robert C et al (2015) Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol 33(17):1889–1994

    Article  CAS  PubMed  Google Scholar 

  29. Callahan MK, Wolchok JD, Allison JP (2010) Anti-CTLA-4 antibody therapy: immune monitoring during clinical development of a novel immunotherapy. Semin Oncol 37:473–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ku GY, Yuan J, Page DB et al (2010) Single-institution experience with ipilimumab in advanced melanoma patients in the compassionate use setting: lymphocyte count after 2 doses correlates with survival. Cancer 116(7):1767–1775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yuan J, Adamow M, Ginsberg BA et al (2011) Integrated NY-ESO-1 antibody and CD8+ T-cell responses correlate with clinical benefit in advanced melanoma patients treated with ipilimumab. Proc Natl Acad Sci USA 108:16723–16728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hamid O, Schmidt H, Nissan A et al (2011) A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma. J Transl Med 9:204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bristol-Myers Squibb (2013) YervoyTM US prescribing information. http://packageinserts.bms.com/pi/pi_yervoy.pdf. Accessed 28 Jun 2013

  34. Datapharm Communications Limited (2013) YERVOY™ (ipilimumab) summary of product characteristics. http://www.medicines.org.uk/emc/medicine/24779. Accessed 29 Jun 2013

  35. Robert C, Schadendorf D, Messina M et al (2013) Efficacy and safety of retreatment with ipilimumab in patients with pretreated advanced melanoma who progressed after initially achieving disease control. Clin Cancer Res 19:2232–2239

    Article  CAS  PubMed  Google Scholar 

  36. Bronstein Y, Ng CS, Hwu P et al (2011) Radiologic manifestations of immune-related adverse events in patients with metastatic melanoma undergoing anti-CTLA-4 antibody therapy. AJR Am J Roentgenol 197:W992–W1000

    Article  PubMed  Google Scholar 

  37. Wolchok JD, Hoos A, O’Day S et al (2009) Guidelines for the evaluation of immune therapy in solid tumors: immune-related response criteria. Clin Cancer Res 15:7412–7420

    Article  CAS  PubMed  Google Scholar 

  38. Ribas A, Chmielowski B, Glaspy JA (2009) Do we need a different set of response assessment criteria for tumor immunotherapy? Clin Cancer Res 15:7116–7118

    Article  CAS  PubMed  Google Scholar 

  39. Eggermont AM, Chiarion-Sileni V, Grob JJ et al (2015) Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. Lancet Oncol 16(5):522–530

    Article  CAS  PubMed  Google Scholar 

  40. Margolin K, Ernstoff MS, Hamid O et al (2012) Ipilimumab in patients with melanoma and brain metastases: an open-label, phase 2 trial. Lancet Oncol 13:459–465

    Article  CAS  PubMed  Google Scholar 

  41. Di Giacomo AM, Ascierto PA, Pilla L et al (2012) Ipilimumab and fotemustine in patients with advanced melanoma (NIBIT-M1): an open-label, single-arm phase 2 trial. Lancet Oncol 13:879–886

    Article  PubMed  Google Scholar 

  42. Kähler KC, Hauschild A (2011) Treatment and side effect management of CTLA-4 antibody therapy in metastatic melanoma. J Dtsch Dermatol Ges 9:277–286

    PubMed  Google Scholar 

  43. Bristol-Myers Squibb (2013) YervoyTM US prescribing information: risk evaluation and mitigation strategy. http://www.yervoy.com/hcp/rems.aspx. Accessed 29 Aug 2015

  44. Amin A, de Pril V, Hamid O et al (2009) Evaluation of the effect of systemic corticosteroids for the treatment of immune-related adverse events (irAEs) on the development or maintenance of ipilimumab clinical activity. J Clin Oncol 27:Abstract 9037

    Google Scholar 

  45. Horvat TZ, Adel NG, Dang TO et al (2015) Immune-related adverse events, need for systemic immunosuppression, and effects on survival and time to treatment failure in patients with melanoma treated with ipilimumab at memorial Sloan Kettering cancer center. J Clin Oncol 33:3193–3198

    Google Scholar 

  46. Bristol-Myers Squibb (2015) Opdivo® Prescribing information. http://packageinserts.bms.com/pi/pi_opdivo.pdf. Accessed 1 Sept 2015

  47. Camacho LH, Antonia S, Sosman J et al (2009) Phase I/II trial of tremelimumab in patients with metastatic melanoma. J Clin Oncol 27:1075–1081

    Article  CAS  PubMed  Google Scholar 

  48. Kirkwood JM, Lorigan P, Hersey P et al (2010) Phase II trial of tremelimumab (CP-675,206) in patients with advanced refractory or relapsed melanoma. Clin Cancer Res 16:1042–1048

    Article  CAS  PubMed  Google Scholar 

  49. Ribas A, Kefford R, Marshall MA et al (2013) Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma. J Clin Oncol 31:616–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Flies DB, Sandler BJ, Sznol M et al (2011) Blockade of the B7-H1/PD-1 pathway for cancer immunotherapy. Yale J Biol Med 84:409–421

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sznol M, Chen L (2013) Antagonist antibodies to PD-1 and B7-H1 (PD-L1) in the treatment of advanced human cancer. Clin Cancer Res 19:1021–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Okudaira K, Hokari R, Tsuzuki Y et al (2009) Blockade of B7-H1 or B7-DC induces an anti-tumor effect in a mouse pancreatic cancer model. Int J Oncol 35:741–749

    CAS  PubMed  Google Scholar 

  53. Zhou Q, Xiao H, Liu Y et al (2010) Blockade of programmed death-1 pathway rescues the effector function of tumor-infiltrating T cells and enhances the antitumor efficacy of lentivector immunization. J Immunol 185:5082–5092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Brahmer JR, Drake CG, Wollner I et al (2010) Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol 28:3167–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Topalian SL, Hodi FS, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Topalian SL, Sznol M, Mcdermott DF et al (2014) Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol 32(10):1020–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Weber JS, D’Angelo SP, Minor D et al (2015) Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol 16(4):375–384

    Article  CAS  PubMed  Google Scholar 

  58. Robert C, Long GV, Brady B et al (2015) Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372(4):320–330

    Article  CAS  PubMed  Google Scholar 

  59. Larkin J, Chiarion-Sileni V, Gonzalez R et al (2015) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373(1):23–34

    Article  PubMed  Google Scholar 

  60. Daud A, Ribas A, Robert C (2015) Long-term efficacy of pembrolizumab in a pooled analysis of 655 patients with advanced melanoma enrolled in KEYNOTE-001. J Clin Oncol 33:Abstract 9005

    Google Scholar 

  61. Hamid O, Robert C, Daud A et al (2013) Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med 369(2):134–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ribas A, Puzanov I, Dummer R et al (2015) Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol 16(8):908–918

    Article  CAS  PubMed  Google Scholar 

  63. Robert C, Schachter J, Long GV et al (2015) Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 372(26):2521–2532

    Article  CAS  PubMed  Google Scholar 

  64. Merck Sharp and Dohme (2014) Keytruda® prescribing information. http://www.merck.com/product/usa/pi_circulars/k/keytruda/keytruda_pi.pdf. Accessed 1 Sept 2015

  65. Berger R, Rotem-Yehudar R, Slama G et al (2008) Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin Cancer Res 14:3044–3051

    Article  CAS  PubMed  Google Scholar 

  66. Atkins MB, Kudchadkar RR, Sznol M et al (2014) Phase 2, multicenter, safety and efficacy study of pidilizumab in patients with metastatic melanoma. J Clin Oncol 32:Abstract 9001

    Google Scholar 

  67. Brahmer JR, Tykodi SS, Chow LQ et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Herbst RS, Gordon MS, Fine GD et al (2013) A study of MPDL3280A, an engineered PD-L1 antibody in patients with locally advanced or metastatic tumors. J Clin Oncol 31:Abstract 3000

    Google Scholar 

  69. Gilboa E (2004) The promise of cancer vaccines. Nat Rev Cancer 4:401–411

    Article  CAS  PubMed  Google Scholar 

  70. Melero I, Grimaldi AM, Perez-Gracia JL et al (2013) Clinical development of immunostimulatory monoclonal antibodies and opportunities for combination. Clin Cancer Res 19:997–1008

    Article  CAS  PubMed  Google Scholar 

  71. Fonsatti E, Maio M, Altomonte M et al (2010) Biology and clinical applications of CD40 in cancer treatment. Semin Oncol 37:517–523

    Article  CAS  PubMed  Google Scholar 

  72. Vonderheide RH, Glennie MJ (2013) Agonistic CD40 antibodies and cancer therapy. Clin Cancer Res 19:1035–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. von Leoprechting A, van der Bruggen P, Pahl HL et al (1999) Stimulation of CD40 on immunogenic human malignant melanomas augments their cytotoxic T lymphocyte-mediated lysis and induces apoptosis. Cancer Res 59:1287–1294

    Google Scholar 

  74. Ghamande S, Hylander BL, Oflazoglu E et al (2001) Recombinant CD40 ligand therapy has significant antitumor effects on CD40-positive ovarian tumor xenografts grown in SCID mice and demonstrates an augmented effect with cisplatin. Cancer Res 61:7556–7562

    CAS  PubMed  Google Scholar 

  75. Funakoshi S, Longo DL, Beckwith M et al (1994) Inhibition of human B-cell lymphoma growth by CD40 stimulation. Blood 83:2787–2794

    CAS  PubMed  Google Scholar 

  76. Schultze JL, Michalak S, Seamon MJ et al (1997) CD40-activated human B cells: an alternative source of highly efficient antigen presenting cells to generate autologous antigen-specific T cells for adoptive immunotherapy. J Clin Invest 100:2757–2765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Vonderheide RH, Flaherty KT, Khalil M et al (2007) Clinical activity and immune modulation in cancer patients treated with CP-870,893, a novel CD40 agonist monoclonal antibody. J Clin Oncol 25:876–883

    Article  CAS  PubMed  Google Scholar 

  78. Slupsky JR, Kalbas M, Willuweit A et al (1998) Activated platelets induce tissue factor expression on human umbilical vein endothelial cells by ligation of CD40. Thromb Haemost 80:1008–1014

    CAS  PubMed  Google Scholar 

  79. Rüter J, Antonia SJ, Burris HA et al (2010) Immune modulation with weekly dosing of an agonist CD40 antibody in a phase I study of patients with advanced solid tumors. Cancer Biol Ther 10:983–993

    Article  PubMed  PubMed Central  Google Scholar 

  80. Melero I, Hirschhorn-Cymerman D, Morales-Kastresana A et al (2013) Agonist antibodies to TNFR molecules that costimulate T and NK cells. Clin Cancer Res 19:1044–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sznol M, Hodi FS, Margolin K et al (2008) Phase I study of BMS-663513, a fully human anti-CD137 agonist monoclonal antibody, in patients with advanced cancer. J Clin Oncol 26:Abstract 3007

    Google Scholar 

  82. Hwu WJ (2010) Targeted therapies for melanoma: from bench to bedside. HemOnc Today (published online 25 Jun 2010). http://www.healio.com/hematology-oncology/melanoma-skin-cancer/news/print/hematology-oncology/%7B77E71A11-1FD1-4193-A2F7-7C50C6121C1F%7D/Targeted-therapy-for-metastatic-melanoma-From-bench-to-bedside. Accessed 29 Jun 2013

  83. Postow MA, Callahan MK, Barker CA et al (2012) Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med 366:925–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ribas A, Hodi FS, Callahan M et al (2013) Hepatotoxicity with combination of vemurafenib and ipilimumab. N Engl J Med 368:1365–1366

    Article  CAS  PubMed  Google Scholar 

  85. Puzanov I, Callahan MK, Linette GP et al (2014) Phase 1 study of the BRAF inhibitor dabrafenib with or wihout the MEK inhibitor trametinib in combination with ipilimumab for V600E/K mutation-positive unresectable or metastatic melanoma. J Clin Oncol 32:Abstract 2511

    Google Scholar 

  86. Prieto PA, Yang JC, Sherry RM et al (2012) CTLA-4 blockade with ipilimumab: long-term follow-up of 177 patients with metastatic melanoma. Clin Cancer Res 18:2039–2047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Jen Hwu MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Trinh, V.A., Ahn, Y., Hwu, WJ. (2016). Immunotherapy in Melanoma. In: Torres-Cabala, C., Curry, J. (eds) Genetics of Melanoma. Cancer Genetics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3554-3_10

Download citation

Publish with us

Policies and ethics