Skip to main content

Plasma Sources in Planetary Magnetospheres: Mercury

  • Chapter
  • First Online:
Plasma Sources of Solar System Magnetospheres

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • I.I. Alexeev, E.S. Belenkaya, J.A. Slavin, H. Korth, B.J. Anderson, D.N. Baker, S.A. Boardsen, C.L. Johnson, M.E. Purucker, M. Sarantos, S.C. Solomon, Mercury’s magnetospheric magnetic field after the first two MESSENGER flybys. Icarus 209, 23–39 (2010)

    Article  ADS  Google Scholar 

  • B.J. Anderson, M.H. Acuna, D.A. Lohr, J. Scheifele, A. Raval, H. Korth, J.A. Slavin, The magnetometer instrument on MESSENGER. Space Sci. Rev. 131, 417–450 (2007)

    Article  ADS  Google Scholar 

  • B.J. Anderson et al., The global magnetic field of Mercury from MESSENGER orbital observations. Science 333, 1859–1862 (2011). doi:10.1126/science.1211001

    Article  ADS  Google Scholar 

  • B.J. Anderson, C.L. Johnson, H. Korth, R.M. Winslow, J.E. Borovsky, M.E. Purucker, J.A. Slavin, S.C. Solomon, M.T. Zuber, R.L. McNutt Jr., Low-degree structure in Mercury’s planetary magnetic field. J. Geophys. Res. 117, E00L12 (2012). doi:10.1029/2012JE004159

    Google Scholar 

  • B.J. Anderson, C.L. Johnson, H. Korth, J.A. Slavin, R.M. Winslow, R.J. Phillips, R.L. McNutt Jr., S.C. Solomon, Steady-state field-aligned currents at Mercury. Geophys. Res. Lett. 41, 7444–7452 (2014). doi:10.1002/2014GL061677

    Article  ADS  Google Scholar 

  • G.B. Andrews et al., The energetic particle and plasma spectrometer instrument on the MESSENGER spacecraft. Space Sci. Rev. 131, 523–556 (2007). doi:10.1007/s11214-007-9272-5

    Article  ADS  Google Scholar 

  • V. Angelopoulos, C.F. Kennel, F.V. Coroniti, R. Pellat, M.G. Kivelson, R.J. Walker, C.T. Russell, W. Baumjohann, W.C. Feldman, J.T. Gosling, Statistical characteristics of bursty bulk flow events. J. Geophys. Res. 99, 21257–21280 (1994)

    Article  ADS  Google Scholar 

  • T.P. Armstrong, S.M. Krimigis, L.J. Lanzerotti, A reinterpretation of the reported energetic particle fluxes in the vicinity of Mercury. J. Geophys. Res. 80, 4015–4017 (1975). doi:10.1029/JA080i028p04015

    Article  ADS  Google Scholar 

  • M. Ashour-Abdalla, L.M. Zelenyi, J.-M. Bosqued, V. Peroomian, Z. Whang, D. Schriver, R.L. Richard, The formation of the wall region: Consequences in the near-Earth magnetotail. Geophys. Res. Lett. 19, 1739 (1992)

    Article  ADS  Google Scholar 

  • M. Ashour-Abdalla, M. El-Alaoui, M.L. Goldstein, M. Zhou, D. Schriver, R. Richard, R. Walker, M.G. Kivelson, K.J. Hwang, Observations and simulations of non-local acceleration of electrons in magnetotail magnetic reconnection events. Nat. Phys. 7, 360–365 (2011)

    Article  Google Scholar 

  • D.N. Baker, J.A. Simpson, J.H. Eraker, A model of impulsive acceleration and transport of energetic particles in Mercury’s magnetosphere. J. Geophys. Res. 91, 8742–8748 (1986)

    Article  ADS  Google Scholar 

  • D.N. Baker, T.I. Pulkkinen, V. Angelopoulos, W. Baumjohann, R.L. McPherron, Neutral line model of substorms: Past results and present view. J. Geophys. Res. 101, 12975–13010 (1996)

    Article  ADS  Google Scholar 

  • D.N. Baker, G. Poh, D. Odstrcil, C.N. Arge, M. Benna, C.L. Johnson, H. Korth, D.J. Gershman, G.C. Ho, W.E. McClintock, T.A. Cassidy, A. Merkel, J.M. Raines, D. Schriver, J.A. Slavin, S.C. Solomon, Solar wind forcing at Mercury: WSA-ENLIL model results. J. Geophys. Res. Space Phys. 118, 45–57 (2013)

    Article  ADS  Google Scholar 

  • W. Baumjohann, G. Paschmann, Determination of the polytropic index in the plasma sheet. Geophys. Res. Lett. 16, 295–298 (1989)

    Article  ADS  Google Scholar 

  • R. Behrisch, W. Eckstein, Sputtering by Particle Bombardment: Experiments and Computer Calculations from Threshold to MeV Energies (Springer, Berlin, 2007), p. 110

    Google Scholar 

  • J. Benkhoff, J. van Casteren, H. Hayakawa, M. Fujimoto, H. Laakso, M. Novara, P. Ferri, H.R. Middleton, R. Ziethe, BepiColombo-comprehensive exploration of Mercury: Mission overview and science goals. Planet. Space Sci. 58, 2–20 (2010)

    Article  ADS  Google Scholar 

  • M. Benna et al., Modeling of the magnetosphere of Mercury at the time of the first MESSENGER flyby. Icarus 209, 3–10 (2010). doi:10.1016/j.icarus.2009.11.036

    Article  ADS  Google Scholar 

  • A. Benninghoven, Developments in secondary ion mass spectroscopy and applications to surface studies. Surf. Sci. 53, 596–625 (1975). doi:10.1016/0039-6028(75)90158-2

    Article  ADS  Google Scholar 

  • T.A. Bida, R.M. Killen, T.H. Morgan, Discovery of calcium in Mercury’s atmosphere. Nature 404, 159–161 (2000)

    Article  ADS  Google Scholar 

  • S.A. Boardsen, B.J. Anderson, M.H. Acuña, J.A. Slavin, H. Korth, S.C. Solomon, Narrow-band ultra-low-frequency wave observations by MESSENGER during its January 2008 flyby through Mercury’s magnetosphere. Geophys. Res. Lett. 36, L01104 (2009). doi:10.1029/2008GL036034

    ADS  Google Scholar 

  • S.A. Boardsen, T. Sundberg, J.A. Slavin, B.J. Anderson, H. Korth, S.C. Solomon, L.G. Blomberg, Observations of Kelvin-Helmholtz waves along the dusk-side boundary of Mercury’s magnetosphere during MESSENGER’s third flyby. Geophys. Res. Lett. 37, L12101 (2010). doi:10.1029/2010GL043606

    Article  ADS  Google Scholar 

  • S.A. Boardsen, J.A. Slavin, B.J. Anderson, H. Korth, D. Schriver, S.C. Solomon, Survey of coherent \(\sim1~\mbox{Hz}\) waves in Mercury’s inner magnetosphere from MESSENGER observations. J. Geophys. Res. 117, A00M05 (2012). doi:10.1029/2012JA017822

    ADS  Google Scholar 

  • P. Borin, M. Bruno, G. Cremonese, F. Marzari, Estimate of the neutral atoms’ contribution to the Mercury exosphere caused by a new flux of micrometeoroids. Astron. Astrophys. 517, A89 (2010)

    Article  ADS  Google Scholar 

  • A.L. Broadfoot, S. Kumar, M.J.S. Belton, Mercury’s atmosphere from Mariner 10: Preliminary results. Science 185, 166–169 (1974)

    Article  ADS  Google Scholar 

  • A.L. Broadfoot, D.E. Shemansky, S. Kumar, Mariner 10: Mercury atmosphere. Geophys. Res. Lett. 3, 577–580 (1976)

    Article  ADS  Google Scholar 

  • A.L. Broadfoot, S.S. Clapp, F.E. Stuart, Mariner 10 ultraviolet spectrometer: Airglow experiment. Space Sci. Instrum. 3, 199–208 (1977)

    ADS  Google Scholar 

  • M. Bruno, G. Cremonese, S. Marchi, Neutral sodium atoms release from the surfaces of the Moon and Mercury induced by meteoroid impacts. Planet. Space Sci. 55, 1494–1501 (2007)

    Article  ADS  Google Scholar 

  • J. Büchner, L.M. Zelenyi, Regular and chaotic charged particle motion in magnetotaillike field reversals: 1. Basic theory of trapped motion. J. Geophys. Res. 94, 11821–11842 (1989). doi:10.1029/JA094iA09p11821

    Article  ADS  Google Scholar 

  • M.H. Burger, R.M. Killen, R.J. Vervack, E.T. Bradley, W.E. McClintock, M. Sarantos, M. Benna, N. Mouawad, Monte Carlo modeling of sodium in Mercury’s exosphere during the first two MESSENGER flybys. Icarus 209, 63–74 (2010). doi:10.1016/j.icarus.2010.05.007

    Article  ADS  Google Scholar 

  • M.H. Burger, R.M. Killen, W.E. McClintock, R.J. Vervack Jr., A.W. Merkel, A.L. Sprague, M. Sarantos, Modeling MESSENGER observations of calcium in Mercury’s exosphere. J. Geophys. Res. 117, E00L11 (2012). doi:10.1029/2012JE004158

    ADS  Google Scholar 

  • M.H. Burger, R.M. Killen, W.E. McClintock, A.W. Merkel, R.J. Vervack Jr., T.A. Cassidy, M. Sarantos, Seasonal variations in Mercury’s dayside calcium exosphere. Icarus 238, 51–58 (2014)

    Article  ADS  Google Scholar 

  • L.F. Burlaga, Magnetic fields and plasmas in the inner heliosphere: Helios results. Planet. Space Sci. 49, 1619–1627 (2001)

    Article  ADS  Google Scholar 

  • M.N. Caan, R.L. Mcpherron, C.T. Russell, Solar wind and substorm-related changes in lobes of geomagnetic tail. J. Geophys. Res. 78, 8087–8096 (1973)

    Article  ADS  Google Scholar 

  • T.A. Cassidy, A.W. Merkel, M.H. Burger, M. Sarantos, R.M. Killen, W.E. McClintock, R.J. Vervack, Mercury’s seasonal sodium exosphere: MESSENGER orbital observations. Icarus 248, 547–559 (2015). doi:10.1016/j.icarus.2014.10.037

    Article  ADS  Google Scholar 

  • S.P. Christon, J. Feynman, J.A. Slavin, Dynamic substorm injections—Similar magnetospheric phenomena at Earth and Mercury, in Magnetotail Physics, ed. by A.T.Y. Lui (Johns Hopkins University Press, Baltimore, 1987), pp. 393–400

    Google Scholar 

  • M.J. Cintala, Impact induced thermal effects in the lunar and Mercurian regoliths. J. Geophys. Res. 97, 947–973 (1992)

    Article  ADS  Google Scholar 

  • J.B. Cladis, Parallel acceleration and transport of ions from polar ionosphere to plasma sheet. Geophys. Res. Lett. 13, 893 (1986)

    Article  ADS  Google Scholar 

  • J.B. Cladis, H.L. Collin, O.W. Lennartsson, T.E. Moore, W.K. Peterson, C.T. Russell, Observations of centrifugal acceleration during compression of magnetosphere. Geophys. Res. Lett. 27, 915 (2000)

    Article  ADS  Google Scholar 

  • S.W.H. Cowley, The causes of convection in the Earth’s magnetosphere: A review of developments during the IMS. J. Geophys. Res. 20, 531–565 (1982)

    Google Scholar 

  • S.W.H. Cowley, The distant geomagnetic tail in theory and observation, in AGU Monograph on “Magnetic Reconnection in Space and Laboratory Plasmas”, vol. 30 (1984), p. 228

    Chapter  Google Scholar 

  • G. Cremonese, M. Bruno, V. Mangano, S. Marchi, A. Milillo, Release of neutral sodium atoms from the surface of Mercury induced by meteoroid impacts. Icarus 177, 122–128 (2005)

    Article  ADS  Google Scholar 

  • D.C. Delcourt, Particle acceleration by inductive electric fields in the inner magnetosphere. J. Atmos. Sol.-Terr. Phys. 64, 551 (2002)

    Article  ADS  Google Scholar 

  • D.C. Delcourt, On the supply of heavy planetary material to the magnetotail of Mercury. Ann. Geophys. 31, 1673 (2013)

    Article  ADS  Google Scholar 

  • D.C. Delcourt, J.-A. Sauvaud, R.F. Martin Jr., T.E. Moore, On the nonadiabatic precipitation of ions from the near-Earth plasma sheet. J. Geophys. Res. 101, 17409 (1996)

    Article  ADS  Google Scholar 

  • D.C. Delcourt, T.E. Moore, S. Orsini, A. Millilo, J.-A. Sauvaud, Centrifugal acceleration of ions near Mercury. Geophys. Res. Lett. 29, 32 (2002). doi:10.1029/2001GL013829

    Article  ADS  Google Scholar 

  • D.C. Delcourt, S. Grimald, F. Leblanc, J.-J. Berthelier, A. Millilo, A. Mura, S. Orsini, T.E. Moore, A quantitative model of the planetary \(\mathrm{Na}^{+}\) contribution to Mercury’s magnetosphere. Ann. Geophys. 21, 1723–1736 (2003). doi:10.5194/angeo-21-1723-2003

    Article  ADS  Google Scholar 

  • D.C. Delcourt, T.E. Moore, M.-C. Fok, On the effect of IMF turning on ion dynamics at Mercury. Ann. Geophys. 29, 987 (2011)

    Article  ADS  Google Scholar 

  • D.C. Delcourt, K. Seki, N. Terada, T.E. Moore, Centrifugally stimulated exospheric ion escape at Mercury. Geophys. Res. Lett. 39, L22105 (2012). doi:10.1029/2012GL054085

    Article  ADS  Google Scholar 

  • G.A. DiBraccio, J.A. Slavin, S.A. Boardsen, B.J. Anderson, H. Korth, T.H. Zurbuchen, J.M. Raines, D.N. Baker, R.L. McNutt Jr., S.C. Solomon, MESSENGER observations of magnetopause structure and dynamics at Mercury. J. Geophys. Res. Space Phys. 118, 997–1008 (2013). doi:10.1002/jgra.50123

    Article  ADS  Google Scholar 

  • G.A. DiBraccio, J.A. Slavin, S.M. Imber, D.J. Gershman, J.M. Raines, C.M. Jackman, S.A. Boardsen, B.J. Anderson, H. Korth, T.H. Zurbuchen, R.L. McNutt Jr., S.C. Solomon, MESSENGER observations of flux ropes in Mercury’s magnetotail. Planet. Space Sci. 115, 77–89 (2015a). doi:10.1016/j.pss.2014.12.016

    Article  ADS  Google Scholar 

  • G.A. DiBraccio, J.A. Slavin, J.M. Raines, D.J. Gershman, P.J. Tracy, S.A. Boardsen, T.H. Zurbuchen, B.J. Anderson, H. Korth, R.L. McNutt Jr., S.C. Solomon, First observations of Mercury’s plasma mantle by MESSENGER. Geophys. Res. Lett. (2015b, accepted)

    Google Scholar 

  • D.L. Domingue, A.L. Sprague, D.M. Hunten, Dependence of Mercurian atmospheric column abundance estimations on surface-reflectance modeling. Icarus 128, 75–82 (1997)

    Article  ADS  Google Scholar 

  • D.L. Domingue, P.L. Koehn, R.M. Killen, A.L. Sprague, M. Sarantos, A.F. Cheng, E.T. Bradley, W.E. McClintock, Mercury’s atmosphere: A surface-bounded exosphere. Space Sci. Rev. 131, 161–186 (2007)

    Article  ADS  Google Scholar 

  • A. Doressoundiram, F. Leblanc, C. Foellmi, S. Erard, Metallic species in Mercury’s exosphere: EMMI/New technology telescope observations. Astron. J. 137, 3859–3863 (2009)

    Article  ADS  Google Scholar 

  • J.W. Dungey, Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6, 47–48 (1961). doi:10.1103/PhysRevLett.6.47

    Article  ADS  Google Scholar 

  • R.C. Elphic, H.O. Funsten, B.L. Barraclough, D.J. McComas, M.T. Paffet, D.T. Vaniman, G. Heiken, Lunar surface composition and solar wind-induced secondary ion mass spectrometry. Geophys. Res. Lett. 18, 2165–2168 (1991). doi:10.1029/91GL02669

    Article  ADS  Google Scholar 

  • J.H. Eraker, J.A. Simpson, Acceleration of charged particles in Mercury’s magnetosphere. J. Geophys. Res. 91, 9973–9993 (1986). doi:10.1029/JA091iA09p09973

    Article  ADS  Google Scholar 

  • D.H. Fairfield, Average and unusual locations for the Earth’s magnetopause and bow shock. J. Geophys. Res. 76, 6700–6716 (1971). doi:10.1029/JA076i028p06700

    Article  ADS  Google Scholar 

  • W.M. Farrell, J.S. Halekas, R.M. Killen, G.T. Delory, N. Gross, L.V. Bleacher, D. Krauss-Varben, P. Travnicek, D. Hurley, T.J. Stubbs, M.I. Zimmerman, T.L. Jackson, Solar-Storm/Lunar Atmosphere Model (SSLAM): An overview of the effort and description of the driving storm environment. J. Geophys. Res. 117, E00K04 (2012). doi:10.1029/2012JE004070

    ADS  Google Scholar 

  • G. Fjelbo, A. Kliore, D. Sweetnam, P. Esposito, B. Seidel, T. Howard, The occultation of Mariner 10 by Mercury. Icarus 29, 407–415 (1976). doi:10.1016/0019-1035(76)90063-4

    Google Scholar 

  • D.J. Gershman, T.H. Zurbuchen, L.A. Fisk, J.A. Gilbert, J.M. Raines, B.J. Anderson, C.W. Smith, H. Korth, S.C. Solomon, Solar wind alpha particles and heavy ions in the inner heliosphere observed with MESSENGER. J. Geophys. Res. 117, A00M02 (2012). doi:10.1029/2012JA017829

    ADS  Google Scholar 

  • D.J. Gershman, J.A. Slavin, J.M. Raines, T.H. Zurbuchen, B.J. Anderson, H. Korth, D.N. Baker, S.C. Solomon, Magnetic flux pileup and plasma depletion in Mercury’s subsolar magnetosheath. J. Geophys. Res. 118, 7181–7199 (2013). doi:10.1002/2013JA019244

    Article  Google Scholar 

  • D.J. Gershman, J.A. Slavin, J.M. Raines, T.H. Zurbuchen, B.J. Anderson, H. Korth, D.N. Baker, S.C. Solomon, Ion kinetic properties in Mercury’s premidnight plasma sheet. Geophys. Res. Lett. 41, 5740–5747 (2014). doi:10.1002/2014GL060468

    Article  ADS  Google Scholar 

  • D.J. Gershman, J.M. Raines, J.A. Slavin, T.H. Zurbuchen, T. Sundberg, S.A. Boardsen, B.J. Anderson, H. Korth, S.C. Solomon, MESSENGER observations of multi-scale Kelvin-Helmholtz vortices at Mercury. J. Geophys. Res. Space Phys. (2015, in revision)

    Google Scholar 

  • K.-H. Glassmeier, J. Grosser, U. Auster, D. Constantinescu, Y. Narita, S. Stellmach, Electromagnetic induction effects and dynamo action in the Hermean system. Space Sci. Rev. 132, 511–527 (2007). doi:10.1007/s11214-007-9244-9

    Article  ADS  Google Scholar 

  • B. Hapke, Bidirectional reflectance spectroscopy: 1. Theory. J. Geophys. Res. 86, 3039–3054 (1981)

    Article  ADS  Google Scholar 

  • B. Hapke, Bidirectional reflectance spectroscopy: 3. Correction for macroscopic roughness. Icarus 59, 41–59 (1984)

    Article  ADS  Google Scholar 

  • B. Hapke, Bidirectional reflectance spectroscopy: 4. The extinction coefficient and the opposition effect. Icarus 67, 264–280 (1986)

    Article  ADS  Google Scholar 

  • M. Hesse, M.G. Kivelson, The formation and structure of flux ropes in the magnetotail, in New Perspectives on the Earth’s Magnetotail, ed. by A. Nishida, D.N. Baker, S.W.H. Cowley (American Geophysical Union, Washington, 1998). doi:10.1029/GM105p0139

    Google Scholar 

  • M.A. Hidalgo, C. Cid, A.F. Vinas, J. Sequeiros, A non-force-free approach to the topology of magnetic clouds in the solar wind. J. Geophys. Res. 107, 1002 (2002a). doi:10.1029/2001JA900100

    Article  Google Scholar 

  • M.A. Hidalgo, T. Nieves-Chinchilla, C. Cid, Elliptical cross-section model for the magnetic topology of magnetic clouds. Geophys. Res. Lett. 29, 1637 (2002b). doi:10.1029/2001GL013875

    Article  ADS  Google Scholar 

  • T.W. Hill, A.J. Dessler, R.A. Wolf, Mercury and Mars: The role of ionospheric conductivity in the acceleration of magnetospheric particles. Geophys. Res. Lett. 3, 429–432 (1976). doi:10.1029/GL003i008p00429

    Article  ADS  Google Scholar 

  • G.C. Ho, S.M. Krimigis, R.E. Gold, D.N. Baker, B.J. Anderson, H. Korth, J.A. Slavin, R.L. McNutt Jr., R.M. Winslow, S.C. Solomon, Spatial distribution and spectral characteristics of energetic electrons in Mercury’s magnetosphere. J. Geophys. Res. 117, A00M04 (2012). doi:10.1029/2012JA017983

    ADS  Google Scholar 

  • E.W. Hones, J. Birn, D.N. Baker, S.J. Bame, W.C. Feldman, D.J. Mccomas, R.D. Zwickl, J.A. Slavin, E.J. Smith, B.T. Tsurutani, Detailed examination of a plasmoid in the distant magnetotail with ISEE-3. Geophys. Res. Lett. 11, 1046–1049 (1984)

    Article  ADS  Google Scholar 

  • L.L. Hood, G. Schubert, Inhibition of solar wind impingement on Mercury by planetary induction currents. J. Geophys. Res. 84, 2641–2647 (1979)

    Article  ADS  Google Scholar 

  • J.L. Horwitz, Features of ion trajectories in the polar magnetosphere. Geophys. Res. Lett. 11, 1111 (1984)

    Article  ADS  Google Scholar 

  • C.-S. Huang, A.D. DeJong, X. Cai, Magnetic flux in the magnetotail and polar cap during sawteeth, isolated substorms, and steady magnetospheric convection events. J. Geophys. Res. 114, A07202 (2009). doi:10.1029/2009JA014232

    ADS  Google Scholar 

  • W.F. Huebner, J.J. Keady, S.P. Lyon, Solar photo rates for planetary atmospheres and atmospheric pollutants. Astrophys. Space Sci. 195, 1–289 (1992)

    Article  ADS  Google Scholar 

  • D.M. Hunten, T.H. Morgan, D.E. Shemansky, The Mercury atmosphere, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (University of Arizona Press, Tucson, 1988), pp. 562–612

    Google Scholar 

  • A. Ieda, S. Machida, T. Mukai, Y. Saito, T. Yamamoto, A. Nishida, T. Terasawa, S. Kokubun, Statistical analysis of the plasmoid evolution with Geotail observations. J. Geophys. Res. 103, 4453–4465 (1998)

    Article  ADS  Google Scholar 

  • S.M. Imber, J.A. Slavin, H.U. Auster, V. Angelopoulos, A THEMIS survey of flux ropes and traveling compression regions: Location of the near-Earth reconnection site during solar minimum. J. Geophys. Res. 116, A02201 (2011). doi:10.1029/2010JA016026

    ADS  Google Scholar 

  • S.M. Imber, J.A. Slavin, S.A. Boardsen, B.J. Anderson, H. Korth, R.L. McNutt Jr., S.C. Solomon, MESSENGER observations of large dayside flux transfer events: Do they drive Mercury’s substorm cycle? J. Geophys. Res. Space Phys. 119, 5613–5623 (2014). doi:10.1002/2014JA019884

    Article  ADS  Google Scholar 

  • W.H. Ip, A. Kopp, MHD simulations of the solar wind interaction with Mercury. J. Geophys. Res. 107, 1348 (2002). doi:10.1029/2001JA009171

    Article  Google Scholar 

  • X. Jia, J.A. Slavin, T.I. Gombosi, L. Daldorff, G. Toth, B. van de Holst, Global MHD simulations of Mercury’s magnetosphere with coupled planetary interior: Induction effect of the planetary conducting core on the global interaction. J. Geophys. Res. Space Phys. (2015). doi:10.1002/2015JA021143

    Google Scholar 

  • R.E. Johnson, R. Baragiola, Lunar surface: Sputtering and secondary ion mass spectrometry. Geophys. Res. Lett. 18, 2169–2172 (1991)

    Article  ADS  Google Scholar 

  • K. Kabin, T.I. Gombosi, D.L. DeZeeuw, K.G. Powell, Interaction of Mercury with the solar wind. Icarus 143, 397–406 (2000)

    Article  ADS  Google Scholar 

  • E. Kallio, P. Janhunen, Modelling the solar wind interaction with Mercury by a quasi-neutral hybrid model. Ann. Geophys. 21, 2133 (2003)

    Article  ADS  Google Scholar 

  • S. Kameda, I. Yoshikawa, M. Kagitani, S. Okano, Interplanetary dust distribution and temporal variability of Mercury’s atmospheric Na. Geophys. Res. Lett. 36, L15201 (2009). doi:10.1029/2009GL039036

    Article  ADS  Google Scholar 

  • A. Kidder, R.M. Winglee, E.M. Harnett, Erosion of the dayside magnetosphere at Mercury in association with ion outflows and flux rope generation. J. Geophys. Res. 113, A09223 (2008). doi:10.1029/2008JA013038

    ADS  Google Scholar 

  • R.M. Killen, J.M. Hahn, Impact vaporization as a possible source of Mercury’s calcium exosphere. Icarus 250, 230–237 (2015). doi:10.1016/j.icarus.2014.11.035

    Article  ADS  Google Scholar 

  • R.M. Killen, W.H. Ip, The surface-bounded atmospheres of Mercury and the Moon. Rev. Geophys. 37, 361–406 (1999)

    Article  ADS  Google Scholar 

  • R.M. Killen, A.E. Potter, P. Reiff, M. Sarantos, B.V. Jackson, P. Hick, B. Giles, Evidence for space weather at Mercury. J. Geophys. Res. 106, 20509–20525 (2001)

    Article  ADS  Google Scholar 

  • R.M. Killen, M. Sarantos, A.E. Potter, P. Reiff, Source rates and ion recycling rates for Na and K in Mercury’s atmosphere. Icarus 171, 1–19 (2004)

    Article  ADS  Google Scholar 

  • R. Killen, G. Cremonese, H. Lammer, S. Orsini, A.E. Potter, A.L. Sprague, P. Wurz, M. Khodachenko, H.I.M. Lichtenegger, A. Milillo, A. Mura, Processes that promote and deplete the exosphere of Mercury. Space Sci. Rev. 132, 433–509 (2007)

    Article  ADS  Google Scholar 

  • R. Killen, D. Shemansky, N. Mouawad, Expected emission from Mercury’s exospheric species, and their ultraviolet-visible signatures. Astrophys. J. Suppl. Ser. 181, 351–359 (2009)

    Article  ADS  Google Scholar 

  • M.G. Kivelson, A.J. Ridley, Saturation of the polar cap potential: Inference from Alfvén wing arguments. J. Geophys. Res. 113, A05214 (2008). doi:10.1029/2007JA012302

    ADS  Google Scholar 

  • H. Korth, B.J. Anderson, J.M. Raines, J.A. Slavin, T.H. Zurbuchen, C.L. Johnson, M.E. Purucker, R.M. Winslow, S.C. Solomon, R.L. McNutt Jr., Plasma pressure in Mercury’s equatorial magnetosphere derived from MESSENGER magnetometer observations. Geophys. Res. Lett. 38, L22201 (2011). doi:10.1029/2011GL049451

    Article  ADS  Google Scholar 

  • H. Korth, B.J. Anderson, D.J. Gershman, J.M. Raines, J.A. Slavin, T.H. Zurbuchen, S.C. Solomon, R.L. McNutt Jr., Plasma distribution in Mercury’s magnetosphere derived from MESSENGER magnetometer and fast imaging plasma spectrometer observations. J. Geophys. Res. Space Phys. 119, 2917–2932 (2014). doi:10.1002/2013JA019567

    Article  ADS  Google Scholar 

  • M.M. Kuznetsova, M. Hesse, L. Rastätter, A. Taktakishvili, G. Toth, D.L. DeZeeuw, A. Ridley, T.I. Gombosi, Multiscale modeling of magnetospheric reconnection. J. Geophys. Res. 112, A10210 (2007). doi:10.1029/2007JA012316

    ADS  Google Scholar 

  • H. Lammer, P. Wurz, M.R. Patel, R.M. Killen, C. Kolb, S. Massetti, S. Orsini, A. Milillo, The variability of Mercury’s exosphere by particle and radiation induced surface release processes. Icarus 166, 238–247 (2003)

    Article  ADS  Google Scholar 

  • B. Lavraud, H. Rème, M.W. Dunlop, J.-M. Bosqued, I. Dandouras, J.-A. Sauvaud, A. Keiling, T.D. Phan, R. Lundin, P.J. Cargill, C.P. Escoubet, C.W. Carlson, J.P. MacFadden, G.K. Parks, E. Moebius, L.M. Kistler, E. Amata, M.-B. Bavassano-Cattaneo, A. Korth, B. Klecker, A. Balogh, Cluster observes the high-altitude cusp region. Surv. Geophys. 26, 135–175 (2005). doi:10.1007/s10712-005-1875-3

    Article  ADS  Google Scholar 

  • F. Leblanc, J.Y. Chaufray, Mercury and Moon He exospheres: Analysis and modeling. Icarus 216, 551–559 (2011)

    Article  ADS  Google Scholar 

  • F. Leblanc, R.E. Johnson, Mercury’s sodium exosphere. Icarus 164, 261–281 (2003). doi:10.1016/S0019-1035(03)00147-7

    Article  ADS  Google Scholar 

  • F. Leblanc, R.E. Johnson, Mercury exosphere I. Global circulation model of its sodium component. Icarus 209, 280–300 (2010)

    Article  ADS  Google Scholar 

  • F. Leblanc, E. Chassefiere, R.E. Johnson, D.M. Hunten, E. Kallio, D.C. Delcourt, R.M. Killen, J.G. Luhmann, A.E. Potter, A. Jambon, G. Crernonese, M. Mendillo, N. Yan, A.L. Sprague, Mercury’s exosphere origins and relations to its magnetosphere and surface. Planet. Space Sci. 55, 1069–1092 (2007)

    Article  ADS  Google Scholar 

  • F. Leblanc, A. Doressoundiram, N. Schneider, V. Mangano, A.L. Ariste, C. Lemen, B. Gelly, C. Barbieri, G. Cremonese, High latitude peaks in Mercury’s sodium exosphere: Spectral signature using THEMIS solar telescope. Geophys. Res. Lett. 35, L18204 (2008). doi:10.1029/2008GL035322

    Article  ADS  Google Scholar 

  • F. Leblanc, A. Doressoundiram, N. Schneider, S. Massetti, M. Wedlund, A. López Ariste, C. Barbieri, V. Mangano, G. Cremonese, Short-term variations of Mercury’s Na exosphere observed with very high spectral resolution. Geophys. Res. Lett. 36, L07201 (2009)

    Article  ADS  Google Scholar 

  • R.P. Lepping, J.A. Jones, L.F. Burlaga, Magnetic field structure of interplanetary magnetic clouds at 1 Au. J. Geophys. Res. 95, 11957–11965 (1990)

    Article  ADS  Google Scholar 

  • R.P. Lepping, D.H. Fairfield, J. Jones, L.A. Frank, W.R. Paterson, S. Kokubun, T. Yamamoto, Cross-tail magnetic flux ropes as observed by the Geotail spacecraft. Geophys. Res. Lett. 22(10), 1193–1196 (1995)

    Article  ADS  Google Scholar 

  • R.P. Lepping, J.A. Slavin, M. Hesse, J.A. Jones, A. Szabo, Analysis of magnetotail flux ropes with strong core fields: ISEE 3 observations. J. Geomagn. Geoelectr. 48, 589–601 (1996)

    Article  Google Scholar 

  • E. Liljeblad, T. Sundberg, T. Karlsson, A. Kullen, Statistical investigation of Kelvin-Helmholtz waves at the magnetopause of Mercury. J. Geophys. Res. Space Phys. 119, 9670–9683 (2014). doi:10.1002/2014JA020614

    Article  ADS  Google Scholar 

  • U. Mall, E. Kirsch, K. Cierpka, B. Wilken, A. Söding, F. Neubauer, G. Gloeckler, A. Galvin, Direct observation of lunar pick-up ions near the Moon. Geophys. Res. Lett. 25, 3799–3802 (1998). doi:10.1029/1998GL900003

    Article  ADS  Google Scholar 

  • V. Mangano, A. Milillo, A. Mura, S. Orsini, E. De Angelis, A.M. Di Lellis, P. Wurz, The contribution of impulsive meteoritic impact vapourization to the Hermean exosphere. Planet. Space Sci. 55, 1541–1556 (2007)

    Article  ADS  Google Scholar 

  • V. Mangano, S. Massetti, A. Milillo, A. Mura, S. Orsini, F. Leblanc, Dynamical evolution of sodium anisotropies in the exosphere of Mercury. Planet. Space Sci. 82–83, 1–10 (2013)

    Article  Google Scholar 

  • S. Massetti, S. Orsini, A. Milillo, A. Mura, E. De Angelis, H. Lammer, P. Wurz, Mapping of the cusp plasma precipitation on the surface of Mercury. Icarus 166, 229–237 (2003)

    Article  ADS  Google Scholar 

  • A. Masters, J.A. Slavin, G.A. DiBraccio, T. Sundberg, R.M. Winslow, C.L. Johnson, B.J. Anderson, H. Korth, A comparison of magnetic overshoots at the bow shocks of Mercury and Saturn. J. Geophys. Res. 118, 4381–4390 (2013). doi:10.1002/jgra.50428

    Article  Google Scholar 

  • W.E. McClintock, M.R. Lankton, The Mercury atmospheric and surface composition spectrometer for the MESSENGER mission. Space Sci. Rev. 131, 481–521 (2007). doi:10.1007/s11214-007-9264-5

    Article  ADS  Google Scholar 

  • W.E. McClintock, R.J. Vervack, E.T. Bradley, R.M. Killen, N. Mouawad, A.L. Sprague, M.H. Burger, S.C. Solomon, N.R. Izenberg, MESSENGER observations of Mercury’s exosphere: Detection of magnesium and distribution of constituents. Science 324, 610–613 (2009)

    ADS  Google Scholar 

  • M.A. McGrath, R.E. Johnson, L.J. Lanzerotti, Sputtering of sodium on the planet Mercury. Nature 323, 694–696 (1986)

    Article  ADS  Google Scholar 

  • J.L. McLain, A.L. Sprague, G.A. Grieves, D. Schriver, P. Travnicek, T.M. Orlando, Electron-stimulated desorption of silicates: A potential source for ions in Mercury’s space environment. J. Geophys. Res. 116, E03007 (2011). doi:10.1029/2010JE003714

    ADS  Google Scholar 

  • R.L. McPherron, C.T. Russell, M.P. Aubry, Satellite studies of magnetospheric substorms on August 15, 1968: 9. Phenomenological model for substorms. J. Geophys. Res. 78, 3131–3149 (1973). doi:10.1029/JA078i016p03131

    Article  ADS  Google Scholar 

  • S.E. Milan, S.W.H. Cowley, M. Lester, D.M. Wright, J.A. Slavin, M. Fillingim, C.W. Carlson, H.J. Singer, Response of the magnetotail to changes in the open flux content of the magnetosphere. J. Geophys. Res. 109, A04220 (2004). doi:10.1029/2003JA010350

    ADS  Google Scholar 

  • A. Milillo et al., The BepiColombo mission: An outstanding tool for investigating the Hermean environment. Planet. Space Sci. 58, 40–60 (2010)

    Article  ADS  Google Scholar 

  • D.G. Mitchell, D.J. Williams, C.Y. Huang, L.A. Frank, C.T. Russell, Current carriers in the near-Earth cross-tail current sheet during substorm growth phase. Geophys. Res. Lett. 17, 583 (1990)

    Article  ADS  Google Scholar 

  • M.B. Moldwin, W.J. Hughes, On the formation and evolution of plasmoids: A survey of isee-3 Geotail data. J. Geophys. Res. 97, 19259–19282 (1992)

    Article  ADS  Google Scholar 

  • N. Mouawad, M.H. Burger, R.M. Killen, A.E. Potter, W.E. McClintock, R.J. Vervack, E.T. Bradley, M. Benna, S. Naidu, Constraints on Mercury’s Na exosphere: Combined MESSENGER and ground-based data. Icarus 211, 21–36 (2011)

    Article  ADS  Google Scholar 

  • M. Müller, S.F. Green, N. McBride, D. Koschny, J.C. Zarnecki, M.S. Bentley, Estimation of the dust flux near Mercury. Planet. Space Sci. 50, 1101–1115 (2002)

    Article  ADS  Google Scholar 

  • J. Müller, S. Simon, Y.-C. Wang, U. Motschmann, D. Heyner, J. Schüle, W.-H. Ip, G. Kleindienst, G.J. Pringle, Origin of Mercury’s double magnetopause: 3D hybrid simulation study with A.I.K.E.F. Icarus 218, 666–687 (2012). doi:10.1016/j.icarus.2011.12.028

    Article  ADS  Google Scholar 

  • A. Mura, A. Milillo, S. Orsini, S. Massetti, Numerical and analytical model of Mercury’s exosphere: Dependence on surface and external conditions. Planet. Space Sci. 55, 1569–1583 (2007)

    Article  ADS  Google Scholar 

  • A. Mura, P. Wurz, H.I.M. Lichtenegger, H. Schleicher, H. Lammer, D. Delcourt, A. Milillo, S. Massetti, M.L. Khodachenko, S. Orsini, The sodium exosphere of Mercury: Comparison between observations during Mercury’s transit and model results. Icarus 200, 1–11 (2009)

    Article  ADS  Google Scholar 

  • N.F. Ness, K.W. Behannon, R.P. Lepping, Y.C. Whang, K.H. Schatten, Magnetic field observations near Mercury: Preliminary results from mariner 10. Science 185, 151–160 (1974)

    Article  ADS  Google Scholar 

  • K.W. Ogilvie, J.D. Scudder, R.E. Hartle, G.L. Siscoe, H.S. Bridge, A.J. Lazarus, J.R. Asbridge, S.J. Bame, C.M. Yeates, Observations at Mercury encounter by plasma science experiment on mariner 10. Science 185, 145–151 (1974)

    Article  ADS  Google Scholar 

  • K.W. Ogilvie, J.D. Scudder, V.M. Vasyliunas, R.E. Hartle, G.L. Siscoe, Observations at planet Mercury by plasma electron experiment: Mariner 10. J. Geophys. Res. 82, 1807–1824 (1977)

    Article  ADS  Google Scholar 

  • S. Orsini, S. Livi, K. Torkar, S. Barabash, A. Milillo, P. Wurz, A.M. Di Lellis, E. Kallio, the SERENA team, SERENA: A suite of four instruments (ELENA, STROFIO, PICAM and MIPA) on board BepiColombo-MPO for particle detection in the Hermean environment. Planet. Space Sci. 58, 166–181 (2010). doi:10.1016/j.pss.2008.09.012

    Article  ADS  Google Scholar 

  • S. Orsini, V. Mangano, A. Mura, D. Turrini, S. Massetti, A. Milillo, C. Plainaki, The influence of space environment on the evolution of Mercury. Icarus 239, 281–290 (2014)

    Article  ADS  Google Scholar 

  • J. Paral, R. Rankin, Dawn-dusk asymmetry in the Kelvin-Helmholtz instability at Mercury. Nat. Commun. 4, 1645 (2013). doi:10.1038/ncomms2676

    Article  ADS  Google Scholar 

  • J. Paral, P.M. Trávníček, K. Kabin, R. Rankin, T.H. Zurbuchen, Spatial distribution and energy spectrum of heavy ions in the Hermean magnetosphere with applications to MESSENGER flybys. Adv. Geosci. 15, 1–16 (2009)

    Google Scholar 

  • J. Paral, P.M. Trávníček, R. Rankin, D. Schriver, Sodium ion exosphere of Mercury during MESSENGER flybys. Geophys. Res. Lett. 37, L19102 (2010). doi:10.1029/2010GL044413

    Article  ADS  Google Scholar 

  • M. Pfleger, H.I.M. Lichtenegger, P. Wurz, H. Lammer, E. Kallio, M. Alho, A. Mura, J.A. Martín-Fernández, M.L. Khodachenko, S. McKenna-Lawlor, 3D-modeling of Mercury’s solar wind sputtered surface-exosphere environment. Planet. Space Sci. (2015). doi:10.1016/j.pss.2015.04.016

    Google Scholar 

  • A.R. Poppe, J.S. Halekas, M. Sarantos, G.T. Delory, The self-sputtered contribution to the lunar exosphere. J. Geophys. Res. 118, 1934–1944 (2013)

    Article  Google Scholar 

  • A. Potter, T.H. Morgan, Discovery of sodium in the atmosphere of Mercury. Science 229, 651–653 (1985)

    Article  ADS  Google Scholar 

  • A. Potter, T.H. Morgan, Potassium in the atmosphere of Mercury. Icarus 67, 336–340 (1986)

    Article  ADS  Google Scholar 

  • A. Potter, T.H. Morgan, Sodium and potassium atmospheres of Mercury. Planet. Space Sci. 45, 95–100 (1997)

    Article  ADS  Google Scholar 

  • A. Potter, R.M. Killen, T.H. Morgan, Rapid changes in the sodium exosphere of Mercury. Planet. Space Sci. 47, 1441–1448 (1999)

    Article  ADS  Google Scholar 

  • A. Potter, R.M. Killen, T.H. Morgan, The sodium tail of Mercury. Meteorit. Planet. Sci. 37, 1165–1172 (2002)

    Article  ADS  Google Scholar 

  • A.E. Potter, R.M. Killen, M. Sarantos, Spatial distribution of sodium on Mercury. Icarus 181, 1–12 (2006)

    Article  ADS  Google Scholar 

  • A.E. Potter, R.M. Killen, T.H. Morgan, Solar radiation acceleration effects on Mercury sodium emission. Icarus 186, 571–580 (2007)

    Article  ADS  Google Scholar 

  • J. Raeder, P. Zhu, Y. Ge, G. Siscoe, Open geospace general circulation model simulation of a substorm: Axial tail instability and ballooning mode preceding substorm onset. J. Geophys. Res. 115, A00I16 (2010). doi:10.1029/2010JA015876

    ADS  Google Scholar 

  • J.M. Raines, J.A. Slavin, T.H. Zurbuchen, G. Gloeckler, B.J. Anderson, D.N. Baker, H. Korth, S.M. Krimigis, R.L. McNutt Jr., MESSENGER observations of the plasma environment near Mercury. Planet. Space Sci. 59, 2004–2015 (2011). doi:10.1016/j.pss.2011.02.004

    Article  ADS  Google Scholar 

  • J.M. Raines, D.J. Gershman, T.H. Zurbuchen, M. Sarantos, J.A. Slavin, J.A. Gilbert, H. Korth, B.J. Anderson, G. Gloeckler, S.M. Krimigis, D.N. Baker, R.L. McNutt Jr., S.C. Solomon, Distribution and compositional variations of plasma ions in Mercury’s space environment: The first three Mercury years of MESSENGER observations. J. Geophys. Res. Space Phys. 118, 1604–1619 (2013). doi:10.1029/2012JA018073

    Article  ADS  Google Scholar 

  • J.M. Raines, D.J. Gershman, J.A. Slavin, T.H. Zurbuchen, H. Korth, B.J. Anderson, S.C. Solomon, Structure and dynamics of Mercury’s magnetospheric cusp: MESSENGER measurements of protons and planetary ions. J. Geophys. Res. Space Phys. 119, 6587–6602 (2014). doi:10.1002/2014JA020120

    Article  ADS  Google Scholar 

  • E. Richer, R. Modolo, C. Chanteur, S. Hess, F. Leblanc, A global hybrid model for Mercury’s interaction with the solar wind: Case study of the dipole representation. J. Geophys. Res. 117 (2012). doi:10.1029/2012JA017898

    Google Scholar 

  • A. Runov, V. Angelopoulos, X.-Z. Zhou, X.-J. Zhang, S. Li, F. Plaschke, J. Bonnell, A THEMIS multicase study of dipolarization fronts in the magnetotail plasma sheet. J. Geophys. Res. 116, A05216 (2011). doi:10.1029/2010JA016316

    ADS  Google Scholar 

  • C.T. Russell, ULF waves in the Mercury magnetosphere. Geophys. Res. Lett. 16, 1253–1256 (1989). doi:10.1029/GL016i011p01253

    Article  ADS  Google Scholar 

  • C.T. Russell, R.J. Walker, Flux transfer events at Mercury. J. Geophys. Res. 90, 11067 (1985)

    Article  ADS  Google Scholar 

  • C.T. Russell, D.N. Baker, J.A. Slavin, The magnetosphere of Mercury, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (University of Arizona Press, Tucson, 1988), pp. 514–561

    Google Scholar 

  • M. Sarantos, P.H. Reiff, T.W. Hill, R.M. Killen, A.L. Urquhart, A \(B_{X}\)-interconnected magnetosphere model for Mercury. Planet. Space Sci. 49, 1629–1635 (2001)

    Article  ADS  Google Scholar 

  • M. Sarantos, J.A. Slavin, M. Benna, S.A. Boardsen, R.M. Killen, D. Schriver, P. Trávníček, Sodium-ion pickup observed above the magnetopause during MESSENGER’s first Mercury flyby: Constraints on neutral exospheric models. Geophys. Res. Lett. 36, L04106 (2009). doi:10.1029/2008GL036207

    ADS  Google Scholar 

  • M. Sarantos, R.M. Killen, W.E. McClintock, E.T. Bradley, R.J. Vervack, M. Benna, J.A. Slavin, Limits to Mercury’s magnesium exosphere from MESSENGER second flyby observations. Planet. Space Sci. 59, 1992–2003 (2011)

    Article  ADS  Google Scholar 

  • M. Sarantos, R.E. Hartle, R.M. Killen, Y. Saito, J.A. Slavin, A. Glocer, Flux estimates of ions from the lunar exosphere. Geophys. Res. Lett. 39, L13101 (2012). doi:10.1029/2012GL052001

    Article  ADS  Google Scholar 

  • K. Schindler, A theory of the substorm mechanism. J. Geophys. Res. 79, 2803 (1974). doi:10.1029/JA079i019p02803

    Article  ADS  Google Scholar 

  • C.A. Schmidt, Monte Carlo modeling of north-south asymmetries in Mercury’s sodium exosphere. J. Geophys. Res. 118, 4564–4571 (2013). doi:10.1002/jgra.50396

    Article  Google Scholar 

  • C.A. Schmidt, J. Baumgardner, M. Mendillo, J.K. Wilson, Escape rates and variability constraints for high-energy sodium sources at Mercury. J. Geophys. Res. 117, A03301 (2012). doi:10.1029/2011JA017217

    ADS  Google Scholar 

  • K. Seki, N. Terada, M. Yagi, D.C. Delcourt, F. Leblanc, T. Ogino, Effects of the surface conductivity and IMF strength on the dynamics of planetary ions in Mercury’s magnetosphere. J. Geophys. Res. 118, 3233–3242 (2013). doi:10.1002/jgra.50181

    Article  Google Scholar 

  • K. Seki, et al., Space Sci. Rev. (2015, this issue). doi:10.1007/s11214-015-0170-y

    Google Scholar 

  • V.A. Sergeev, M. Malkov, K. Mursula, Testing the isotropic boundary algorithm to evaluate the magnetic field configuration of the tail. J. Geophys. Res. 98, 7609 (1993)

    Article  ADS  Google Scholar 

  • E.G. Shelley, R.G. Johnson, R.D. Sharp, Satellite observations of energetic heavy ions during a geomagnetic storm. J. Geophys. Res. 77, 6104 (1972)

    Article  ADS  Google Scholar 

  • D.E. Shemansky, A.L. Broadfoot, Interaction of the surfaces of the Moon and Mercury with their exospheric atmospheres. Rev. Geophys. 15, 491–499 (1977). doi:10.1029/RG015i004p00491

    Article  ADS  Google Scholar 

  • K. Shiokawa, K. Yumoto, Y. Tanaka, T. Oguti, Y. Kiyama, Low-latitude auroras observed at Moshiri and Rikubetsu (\(L=1.6\)) during magnetic storms on February 26, 27, 29, and May 10, 1992. J. Geomagn. Geoelectr. 46, 231–252 (1994)

    Article  Google Scholar 

  • J.A. Simpson, J.H. Eraker, J.E. Lamport, P.H. Walpole, Electrons and protons accelerated in Mercury’s magnetic field. Science 185, 160–166 (1974)

    Article  ADS  Google Scholar 

  • G.L. Siscoe, N.F. Ness, C.M. Yeates, Substorms on Mercury? J. Geophys. Res. 80, 4359–4363 (1975). doi:10.1029/JA080i031p04359

    Article  ADS  Google Scholar 

  • J.A. Slavin, R.E. Holzer, The effect of erosion on the solar wind stand-off distance at Mercury. J. Geophys. Res. 84, 2076–2082 (1979)

    Article  ADS  Google Scholar 

  • J.A. Slavin, M.F. Smith, E.L. Mazur, D.N. Baker, T. Iyemori, H.J. Singer, E.W. Greenstadt, ISEE-3 plasmoid and TCR observations during an extended interval of substorm activity. Geophys. Res. Lett. 19, 825–828 (1992)

    Article  ADS  Google Scholar 

  • J.A. Slavin, M.F. Smith, E.L. Mazur, D.N. Baker, E.W. Hones, T. Iyemori, E.W. Greenstadt, ISEE-3 observations of traveling compression regions in the Earth’s magnetotail. J. Geophys. Res. 98, 15425–15446 (1993)

    Article  ADS  Google Scholar 

  • J.A. Slavin, R.P. Lepping, J. Gjerloev, D.H. Fairfield, M. Hesse, C.J. Owen, M.B. Moldwin, T. Nagai, A. Ieda, T. Mukai, Geotail observations of magnetic flux ropes in the plasma sheet. J. Geophys. Res. 108, 1015 (2003). doi:10.1029/2002JA009557

    Article  Google Scholar 

  • J.A. Slavin, E.I. Tanskanen, M. Hesse, C.J. Owen, M.W. Dunlop, S. Imber, E.A. Lucek, A. Balogh, K.-H. Glassmeier, Cluster observations of traveling compression regions in the near-tail. J. Geophys. Res. 110, A06207 (2005). doi:10.1029/2004JA010878

    ADS  Google Scholar 

  • J.A. Slavin, R.P. Lepping, J. Gjerloev, D.H. Fairfield, M. Hesse, C.J. Owen, M.B. Moldwin, T. Nagai, A. Ieda, T. Mukai, MESSENGER: Exploring Mercury’s magnetosphere. Space Sci. Rev. 131, 133–160 (2007)

    Article  ADS  Google Scholar 

  • J.A. Slavin et al., Mercury’s magnetosphere after MESSENGER’s first flyby. Science 321, 85–89 (2008). doi:10.1126/science.1159040

    Article  ADS  Google Scholar 

  • J.A. Slavin et al., MESSENGER observations of magnetic reconnection in Mercury’s magnetosphere. Science 324, 606–610 (2009)

    Article  ADS  Google Scholar 

  • J.A. Slavin et al., MESSENGER observations of extreme loading and unloading of Mercury’s magnetic tail. Science 329, 665–668 (2010)

    Article  ADS  Google Scholar 

  • J.A. Slavin et al., MESSENGER and mariner 10 flyby observations of magnetotail structure and dynamics at Mercury. J. Geophys. Res. 117, A01215 (2012a). doi:10.1029/2011JA016900

    ADS  Google Scholar 

  • J.A. Slavin et al., MESSENGER observations of a flux-transfer-event shower at Mercury. J. Geophys. Res. 117, A00M06 (2012b). doi:10.1029/JA017926

    ADS  Google Scholar 

  • J.A. Slavin, G.A. DiBraccio, D.J. Gershman, S.M. Imber, G.K. Poh, T.H. Zurbuchen, X. Jia, D.N. Baker, S.A. Boardsen, M. Sarantos, T. Sundberg, A. Masters, C.L. Johnson, R.M. Winslow, B.J. Anderson, H. Korth, R.L. McNutt Jr., S.C. Solomon, MESSENGER observations of Mercury’s magnetosphere under extreme solar wind conditions. J. Geophys. Res. Space Phys. 119, 8087–8116 (2014). doi:10.1002/2014JA020319

    Article  ADS  Google Scholar 

  • M.F. Smith, M. Lockwood, Earth’s magnetospheric cusps. Rev. Geophys. 34, 233–260 (1996). doi:10.1029/96RG00893

    Article  ADS  Google Scholar 

  • D.E. Smith et al., Gravity field and internal structure of Mercury from MESSENGER. Science 336, 214–271 (2012). doi:10.1126/science.1218809

    Article  ADS  Google Scholar 

  • W.H. Smyth, M.L. Marconi, Theoretical overview and modeling of the sodium and potassium atmospheres of Mercury. Astrophys. J. 441, 839–864 (1995)

    Article  ADS  Google Scholar 

  • C.S. Solomon, R.L. McNutt, R.E. Gold, D.L. Domingue, MESSENGER: Mission overview. Space Sci. Rev. 131, 3–39 (2007)

    Article  ADS  Google Scholar 

  • T.W. Speiser, Particle trajectory in model current sheets: 1. Analytical solutions. J. Geophys. Res. 70, 4219 (1965)

    Article  ADS  Google Scholar 

  • A.L. Sprague, R.W.H. Kozlowski, D.M. Hunten, N.M. Schneider, D.L. Domingue, W.K. Wells, W. Schmitt, U. Fink, Distribution and abundance of sodium in Mercury’s atmosphere. Icarus 129, 506–527 (1997)

    Article  ADS  Google Scholar 

  • S.A. Stern, The lunar atmosphere: History, status, current problems, and context. Rev. Geophys. 37, 453–491 (1999)

    Article  ADS  Google Scholar 

  • R.J. Strangeway, C.T. Russell, J.G. Luhmann, T.E. Moore, J.C. Foster, S.V. Barabash, H. Nilsson, Does a planetary-scale magnetic field enhance or inhibit ionospheric plasma outflows? in AGU Fall Meeting Abstracts (2010), p. 1893

    Google Scholar 

  • S.T. Suess, B.E. Goldstein, Compression of the Hermean magnetosphere by the solar wind. J. Geophys. Res. 84, 3306–3312 (1979)

    Article  ADS  Google Scholar 

  • T. Sundberg, S.A. Boardsen, J.A. Slavin, L.G. Blomberg, H. Korth, The Kelvin-Helmholtz instability at Mercury: An assessment. Planet. Space Sci. 58, 1434–1441 (2010). doi:10.1016/j.pss.2010.06.008

    Article  ADS  Google Scholar 

  • T. Sundberg, S.A. Boardsen, J.A. Slavin, L.G. Blomberg, J.A. Cumnock, S.C. Solomon, B.J. Anderson, H. Korth, Reconstruction of propagating Kelvin-Helmholtz vortices at Mercury’s magnetopause. Planet. Space Sci. 59, 2051–2057 (2011)

    Article  ADS  Google Scholar 

  • T. Sundberg, S.A. Boardsen, J.A. Slavin, B.J. Anderson, H. Korth, T.H. Zurbuchen, J.M. Raines, S.C. Solomon, MESSENGER orbital observations of large-amplitude Kelvin-Helmholtz waves at Mercury’s magnetopause. J. Geophys. Res. 117, A04216 (2012). doi:10.1029/2011JA017268

    ADS  Google Scholar 

  • K.G. Tanaka, M. Fujimoto, I. Shinohara, On the peak level of tearing instability in an ion-scale current sheet: The effects of ion temperature anisotropy. Planet. Space Sci. 59, 510–516 (2011). doi:10.1016/j.pss.2010.04.014

    Article  ADS  Google Scholar 

  • P. Trávníček, P. Hellinger, D. Schriver, Structure of Mercury’s magnetosphere for different pressure of the solar wind: Three dimensional hybrid simulations. Geophys. Res. Lett. 34, 5104 (2007). doi:10.1029/2006GL028518

    ADS  Google Scholar 

  • P. Trávníček et al., Mercury’s magnetosphere-solar wind interaction for northward and southward interplanetary magnetic field: Hybrid simulation results. Icarus 209, 11–22 (2010). doi:10.1016/j.icarus.2010.01.008

    Article  ADS  Google Scholar 

  • R.J. Vervack, W.E. McClintock, R.M. Killen, A.L. Sprague, B.J. Anderson, M.H. Burger, E.T. Bradley, N. Mouawad, S.C. Solomon, N.R. Izenberg, Mercury’s complex exosphere: Results from MESSENGER’s third flyby. Science 329, 672–675 (2010). doi:10.1126/science.1188572

    Article  ADS  Google Scholar 

  • R.J. Vervack, W.E. McClintock, R.M. Killen, A.L. Sprague, M.H. Burger, A.W. Merkel, M. Sarantos, MESSENGER searches for less abundant or weakly emitting species in Mercury’s exosphere, in AGU Fall Meeting Abstracts A2 (2011)

    Google Scholar 

  • F. Vilas, C.R. Chapman, M.S. Mathews, Mercury (University of Arizona Press, Tucson, 1988)

    Google Scholar 

  • Y.-C. Wang, W.-H. Ip, Source dependency of exospheric sodium on Mercury. Icarus 216, 387–402 (2011). doi:10.1016/j.icarus.2011.09.023

    Article  ADS  Google Scholar 

  • Y.X. Wang, F. Ohuchi, P.H. Holloway, Mechanisms of electron stimulated desorption from soda-silica glass surfaces. J. Vac. Sci. Technol. A 2(2), 732–737 (1984). doi:10.1116/1.572560

    Article  ADS  Google Scholar 

  • Y.-C. Wang, J. Mueller, U. Motschmann, W.-H. Ip, A hybrid simulation of Mercury’s magnetosphere for the MESSENGER encounters in year 2008. Icarus 209(pp. 46–52), 2010.05.020 (2010). doi:10.1016/j.icarus

    Google Scholar 

  • R.M. Winglee, E. Harnett, A. Kidder, Relative timing of substorm processes as derived from multifluid/multiscale simulations: Internally driven substorms. J. Geophys. Res. 114, A09213 (2009). doi:10.1029/2008JA013750

    ADS  Google Scholar 

  • R.M. Winslow, C.L. Johnson, B.J. Anderson, H. Korth, J.A. Slavin, M.E. Purucker, S.C. Solomon, Observations of Mercury’s northern cusp region with MESSENGER’s magnetometer. Geophys. Res. Lett. 39, L08112 (2012). doi:10.1029/2012GL051472

    Article  ADS  Google Scholar 

  • R.M. Winslow, B.J. Anderson, C.L. Johnson, J.A. Slavin, H. Korth, M.E. Purucker, D.N. Baker, S.C. Solomon, Mercury’s magnetopause and bow shock from MESSENGER magnetometer observations. J. Geophys. Res. 118, 2213–2227 (2013). doi:10.1002/jgra.50237

    Article  Google Scholar 

  • R.M. Winslow et al., Mercury’s surface magnetic field determined from proton-reflection magnetometry. Geophys. Res. Lett. 41, 4463–4470 (2014). doi:10.1002/2014GL060258

    ADS  Google Scholar 

  • P. Wurz, L. Blomberg, Particle populations in Mercury’s magnetosphere. Planet. Space Sci. 49, 1643–1653 (2001)

    Article  ADS  Google Scholar 

  • P. Wurz, H. Lammer, Monte-Carlo simulation of Mercury’s exosphere. Icarus 164, 1–13 (2003)

    Article  ADS  Google Scholar 

  • P. Wurz, U. Rohner, J.A. Whitby, C. Kolb, H. Lammer, P. Dobnikar, J.A. Martín-Fernández, The lunar exosphere: The sputtering contribution. Icarus 191, 486–496 (2007). doi:10.1016/j.icarus.2007.04.034

    Article  ADS  Google Scholar 

  • P. Wurz, J.A. Whitby, U. Rohner, J.A. Martín-Fernández, H. Lammer, C. Kolb, Self-consistent modelling of Mercury’s exosphere by sputtering, micro-meteorite impact and photon-stimulated desorption. Planet. Space Sci. 58, 1599–1616 (2010)

    Article  ADS  Google Scholar 

  • M. Yagi, K. Seki, Y. Matsumoto, D.C. Delcourt, F. Leblanc, Formation of a sodium ring in Mercury’s magnetosphere. J. Geophys. Res. 115, A10 (2010). doi:10.1029/2009JA015226

    Google Scholar 

  • B.V. Yakshinksiy, T.E. Madey, Photon-stimulated desorption as a substantial source of sodium in the lunar atmosphere. Nature 400, 642 (1999)

    Article  ADS  Google Scholar 

  • B.V. Yakshinskiy, T.E. Madey, Photon-stimulated desorption of Na from a lunar sample: Temperature-dependent effects. Icarus 168, 53–59 (2004)

    Article  ADS  Google Scholar 

  • B.V. Yakshinskiy, T.E. Madey, Temperature-dependent DIET of alkalis from \(\mathrm{SiO}_{2}\) films: Comparison with a lunar sample. Surf. Sci. 593, 202–209 (2005)

    Article  ADS  Google Scholar 

  • B.V. Yakshinskiy, T.E. Madey, V.N. Ageev, Thermal desorption of sodium atoms from thin SiO2 films. Surf. Rev. Lett. 7, 75–87 (2000)

    Article  Google Scholar 

  • A.W. Yau, A. Howarth, W.K. Peterson, T. Abe, Transport of thermal-energy ionospheric oxygen (\(\mathrm{O}^{+}\)) ions between the ionosphere and the plasma sheet and ring current at quiet times preceding magnetic storms. J. Geophys. Res. 117 (2012). doi:10.1029/2012JA017803

    Google Scholar 

  • T.H. Zurbuchen, J.M. Raines, G. Gloeckler, S.M. Krimigis, J.A. Slavin, P.L. Koehn, R.M. Killen, A.L. Sprague, R.L. McNutt Jr., S.C. Solomon, MESSENGER observations of the composition of Mercury’s ionized exosphere and plasma environment. Science 321, 90–92 (2008). doi:10.1126/science.1159314

    Article  ADS  Google Scholar 

  • T.H. Zurbuchen et al., MESSENGER observations of the spatial distribution of planetary ions near Mercury. Science 333, 1862 (2011)

    Article  ADS  Google Scholar 

  • B.J. Zwan, R.A. Wolf, Depletion of solar wind plasma near a planetary boundary. J. Geophys. Res. 81, 1636–1648 (1976)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Raines .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Raines, J.M. et al. (2016). Plasma Sources in Planetary Magnetospheres: Mercury. In: Nagy, A., Blanc, M., Chappell, C., Krupp, N. (eds) Plasma Sources of Solar System Magnetospheres. Space Sciences Series of ISSI, vol 52. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3544-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3544-4_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3543-7

  • Online ISBN: 978-1-4939-3544-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics