Skip to main content

The Role of the Ionosphere in Providing Plasma to the Terrestrial Magnetosphere—An Historical Overview

  • Chapter
  • First Online:

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 52))

Abstract

Through the more than half century of space exploration, the perception and recognition of the fundamental role of the ionospheric plasma in populating the Earth’s magnetosphere has evolved dramatically. A brief history of this evolution in thinking is presented. Both theory and measurements have unveiled a surprising new understanding of this important ionosphere-magnetosphere mass coupling process. The highlights of the mystery surrounding the difficulty in measuring this largely invisible low energy plasma are also discussed. This mystery has been solved through the development of instrumentation capable of measuring these low energy positively-charged outflowing ions in the presence of positive spacecraft potentials. This has led to a significant new understanding of the ionospheric plasma as a significant driver of magnetospheric plasma content and dynamics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • T. Abe et al., EXOS D (Akebono) suprathermal mass spectrometer observations of the polar wind. J. Geophys. Res. 98, 11,191 (1993)

    Article  ADS  Google Scholar 

  • T. Abe et al., Observations of polar wind and thermal ion outflow by Akebono/SMS. J. Geomagn. Geoelectr. 48, 319 (1996)

    Article  Google Scholar 

  • M. Andre, C.M. Cully, Low-energy ions: A previously hidden solar system particle population. Geophys. Res. Lett. 39, L03101 (2012)

    Article  ADS  Google Scholar 

  • M. Andre, A.W. Yau, Theories and observations of ion energization and outflow in the high latitude magnetosphere. Space Sci. Rev. 80, 27 (1997)

    Article  ADS  Google Scholar 

  • I. Axford, The polar wind and terrestrial helium budget. J. Geophys. Res. 73(21), 6855 (1968)

    Article  ADS  Google Scholar 

  • P.M. Banks, T.E. Holzer, The polar wind. J. Geophys. Res. 73, 6846 (1968)

    Article  ADS  Google Scholar 

  • P.M. Banks, A.F. Nagy, W.I. Axford, Dynamical behavior of thermal protons in the mid-latitude ionosphere and magnetosphere. Planet. Space Sci. 19(9), 1053 (1971)

    Article  ADS  Google Scholar 

  • P.M. Banks, R.W. Schunk, W.J. Raitt, Temperature and density structure of thermal proton flows. J. Geophys. Res. 79(31), 4691 (1974a)

    Article  ADS  Google Scholar 

  • P.M. Banks, R.W. Schunk, W.J. Raitt, \(\mathrm{NO}^{+}\) and \(\mathrm{O}^{+}\) in the high latitude F-region. Geophys. Res. Lett. 1(6), 239 (1974b)

    Article  ADS  Google Scholar 

  • A.R. Barakat, R.W. Schunk, A three-dimensional model of the generalized polar wind. J. Geophys. Res. 111(A12), 1978 (2006)

    Google Scholar 

  • A.R. Barakat, I.A. Barghouthi, R.W. Schunk, Double-hump \(\mathrm{H}^{+}\) velocity distribution in the polar wind. Geophys. Res. Lett. 22, 1857 (1995)

    Article  ADS  Google Scholar 

  • J.E. Borovsky, M.H. Denton, A statistical look at plasmaspheric drainage plumes. J. Geophys. Res. 113, A09221 (2008)

    ADS  Google Scholar 

  • O.J. Brambles et al., Effects of causally driven cusp \(\mathrm{O}^{+}\) outflow on the storm time magnetosphere-ionosphere system using a multifluid global simulation. J. Geophys. Res. 115, A00J04 (2010)

    ADS  Google Scholar 

  • N.M. Brice, Bulk motion of the magnetosphere. J. Geophys. Res. 72, 5193 (1967)

    Article  ADS  Google Scholar 

  • H.C. Brinton et al., Altitude variations of ion composition in the midlatitude trough region: Evidence for upward plasma flow, NASA Preprint, X-621-70-311 (1970)

    Google Scholar 

  • J.L. Burch, Views of the Earth’s magnetosphere with the IMAGE satellite. Science 291, 619 (2001)

    Article  ADS  Google Scholar 

  • D.L. Carpenter, Whistler evidence of a “knee” in the magnetospheric ionization density profile. J. Geophys. Res. 68, 1675 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  • M.O. Chandler, T.E. Moore, J.H. Waite, Observations of polar ion outflows. J. Geophys. Res. 96, 1412 (1991)

    ADS  Google Scholar 

  • C.R. Chappell, Recent satellite measurements of the morphology and dynamics of the plasmasphere. Rev. Geophys. Space Phys. 10(4), 951 (1972)

    Article  ADS  Google Scholar 

  • C.R. Chappell, K.K. Harris, G.W. Sharp, Ogo 5 measurements of the plasmasphere during observations of stable auroral red arcs. J. Geophys. Res. 76, 2357 (1971)

    Article  ADS  Google Scholar 

  • C.R. Chappell, T.E. Moore, J.H. Waite Jr., The ionosphere as a fully adequate source of plasma for the Earth’s magnetosphere. J. Geophys. Res. 92, 5896 (1987)

    Article  ADS  Google Scholar 

  • C.R. Chappell et al., The adequacy of the ionospheric source in supplying magnetospheric plasma. J. Atmos. Sol.-Terr. Phys. 62, 421 (2000)

    Article  ADS  Google Scholar 

  • C.R. Chappell et al., Observations of the warm plasma cloak and an explanation of its formation in the magnetosphere. J. Geophys. Res. 113, A09206 (2008)

    ADS  Google Scholar 

  • J.B. Cladis, Parallel acceleration and transport of ions from polar ionosphere to plasma sheet. Geophys. Res. Lett. 13, 893 (1986)

    Article  ADS  Google Scholar 

  • J.B. Cladis, Observations of centrifugal acceleration during compression of magnetosphere. Geophys. Res. Lett. 27, 915 (2000)

    Article  ADS  Google Scholar 

  • K.D. Cole, Stable auroral red arcs, sinks for energy of Dst main phase. J. Geophys. Res. 70(7), 1689 (1965)

    Article  ADS  Google Scholar 

  • J.M. Cornwall, F.V. Coroniti, R.M. Thorne, Unified theory of SAR arc formation at the plasmapause. J. Geophys. Res. 76(19), 4428 (1971)

    Article  ADS  Google Scholar 

  • C.M. Cully et al., Akebono/Suprathermal Mass Spectrometer observations of low-energy ion outflow: Dependence on magnetic activity and solar wind conditions. J. Geophys. Res. 108, 1093 (2003a)

    Article  Google Scholar 

  • C.M. Cully et al., Supply of thermal ionospheric ions to the central plasma sheet. J. Geophys. Res. 108, 1092 (2003b)

    Article  Google Scholar 

  • D.C. Delcourt, J.A. Sauvaud, T.E. Moore, Polar wind ion dynamics in the magnetotail. J. Geophys. Res. 98, 9155 (1993)

    Article  ADS  Google Scholar 

  • H.G. Demars, R.W. Schunk, A multi-ion generalized transport model of the polar wind. J. Geophys. Res. 99, 221 (1994)

    ADS  Google Scholar 

  • R.C. Elphic et al., The fate of the outer plasmasphere. Geophys. Res. Lett. 24, 365 (1997)

    Article  ADS  Google Scholar 

  • E. Engwall et al., Low-energy (order 10 eV) ion flow in the magnetotail lobes inferred from spacecraft wake observations. Geophys. Res. Lett. 33, 6110 (2006)

    Article  ADS  Google Scholar 

  • E. Engwall et al., Survey of cold ionospheric outflows I the magnetotail. Ann. Geophys. 27, 3185 (2009a)

    Article  ADS  Google Scholar 

  • E. Engwall et al., Earth’s ionospheric outflow dominated by hidden cold plasma. Nat. Geosci. 2, 24 (2009b)

    Article  ADS  Google Scholar 

  • M.-C. Fok, Storm time modeling of the inner plasma sheet/outer ring current. J. Geophys. Res. 104, 14557 (1999)

    Article  ADS  Google Scholar 

  • J.C. Foster et al., Storm time observations of plasmasphere erosion flux in the magnetosphere and ionosphere. Geophys. Res. Lett. 41, 762 (2014)

    Article  ADS  Google Scholar 

  • S.B. Ganguli, The polar wind. Rev. Geophys. 34, 311 (1996)

    Article  ADS  Google Scholar 

  • A. Glocer et al., Modeling ionospheric outflows and their impact on the magnetosphere: Initial results. J. Geophys. Res. 114, A05216 (2009)

    ADS  Google Scholar 

  • J. Goldstein, B.R. Sandel, The global pattern of evolution of plasmaspheric drainage plumes, in Inner Magnetosphere Interactions: New Perspectives from Imaging. AGU Geophysical Monograph Series, vol. 159 (2005)

    Google Scholar 

  • J. Goldstein et al., IMF-driven plasmasphere erosion of 10 July 2000. Geophys. Res. Lett. 30, 1146 (2003)

    Article  ADS  Google Scholar 

  • J.M. Grebowsky, Model study of plasmapause motion. J. Geophys. Res. 75, 4329 (1970)

    Article  ADS  Google Scholar 

  • K.I. Gringauz, The structure of the ionized gas envelope of Earth from direct measurements in the USSR of local charged particle concentrations. Planet. Space Sci. 11, 281 (1963)

    Article  ADS  Google Scholar 

  • C. Gurgiolo, J.L. Burch, DE-1 observations of the polar wind—A heated and an unheated component. Geophys. Res. Lett. 9, 945 (1982)

    Article  ADS  Google Scholar 

  • G. Gustafsson et al., The electric field and wave experiment for the cluster mission. Space Sci. Rev. 79, 137 (1997)

    Article  ADS  Google Scholar 

  • S. Haaland et al., Estimating the capture and loss of cold plasma from ionospheric outflow. J. Geophys. Res. 117, A07311 (2012)

    ADS  Google Scholar 

  • J.H. Hoffman et al., Studies of the composition of the ionosphere with a magnetic deflection mass spectrometer. Int. J. Mass Spectrom. Ion Phys. 4, 315 (1970)

    Article  ADS  Google Scholar 

  • M. Huddleston et al., An examination of the process and magnitude of ionospheric plasma supply to the magnetosphere. J. Geophys. Res. 110, 12,202 (2005)

    Article  Google Scholar 

  • L.M. Kistler et al., Cusp as a source for oxygen in the plasma sheet during geomagnetic storms. J. Geophys. Res. 115, A03209 (2010)

    ADS  Google Scholar 

  • W. Lennartsson et al., Some initial ISEE-1 results on the ring current composition and dynamics during the magnetic storm of December 11, 1977. Geophys. Res. Lett. 6, 483 (1979)

    Article  ADS  Google Scholar 

  • J. Liao et al., Statistical study of \(\mathrm{O}+\) transport from the cusp to the lobes with Cluster CODIF data. J. Geophys. Res. 115, A00J15 (2010)

    ADS  Google Scholar 

  • M.W. Liemohn et al., Occurrence statistics of cold, streaming ions in the near-earth magnetotail: Survey of Polar-TIDE observations. J. Geophys. Res. 110, A07211 (2005)

    ADS  Google Scholar 

  • M. Lockwood et al., A new source of suprathermal \(\mathrm{O}^{+}\) ions near the dayside polar cap boundary. J. Geophys. Res. 90, 4099 (1985)

    Article  ADS  Google Scholar 

  • D.J. McComas, F. Allegrini, F. Bagenal, Diverse plasma populations and structures in Jupiter’s magnetotail. Science 318, 5848, 217 (2007)

    Article  Google Scholar 

  • T.E. Moore et al., The thermal ion dynamics experiment and plasma source instrument. Space Sci. Rev. 71, 409 (1995)

    Article  ADS  Google Scholar 

  • T.E. Moore et al., High altitude observations of the polar wind. Science 277, 349 (1997)

    Article  ADS  Google Scholar 

  • T.E. Moore et al., Ionospheric mass ejection in response to a CME. Geophys. Res. Lett. 26, 2339 (1999)

    Article  ADS  Google Scholar 

  • T.E. Moore et al., Plasma sheet and (nonstorm) ring current formation from solar and polar wind sources. J. Geophys. Res. 110, A02210 (2005)

    ADS  Google Scholar 

  • C.G. Mouikis et al., \(\mathrm{H}+\) and \(\mathrm{O}+\) content of the plasma sheet at 15–19 Re as a function of geomagnetic and solar activity. J. Geophys. Res. 115, A00J16 (2010)

    ADS  Google Scholar 

  • T. Nagai et al., First measurements of supersonic polar wind in the polar magnetosphere. Geophys. Res. Lett. 11, 669 (1984)

    Article  ADS  Google Scholar 

  • A.F. Nagy, P.M. Banks, Photoelectron fluxes in the ionosphere. J. Geophys. Res. 75(31), 6260 (1970)

    Article  ADS  Google Scholar 

  • A.F. Nagy, A.R. Barakat, R.W. Schunk, Is Jupiter’s ionosphere a significant plasma source for its magnetosphere? J. Geophys. Res. 91, 351 (1986)

    Article  ADS  Google Scholar 

  • H. Nilsson et al., Centrifugal acceleration in the magnetotail lobes. Ann. Geophys. 28, 569 (2010)

    Article  ADS  Google Scholar 

  • H. Nilsson et al., Hot and cold ion outflow: Observations and implications for numerical models. J. Geophys. Res. 118, 1 (2013)

    Article  Google Scholar 

  • A. Nishida, Formation of plasmapause, or magnetospheric plasma knee, by the combined action of magnetospheric convection and plasma escape from the tail. J. Geophys. Res. 71, 5669 (1966)

    Article  ADS  Google Scholar 

  • G. Paschmann et al., The electron drift instrument for Cluster. Space Sci. Rev. 79, 233 (1997)

    Article  ADS  Google Scholar 

  • C.J. Pollock et al., A survey of upwelling ion event characteristics. J. Geophys. Res. 95, 18,969 (1990)

    Article  ADS  Google Scholar 

  • H. Reme et al., First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical Cluster ion spectrometry (CIS) experiment. Ann. Geophys. 19, 1303 (2001)

    Article  ADS  Google Scholar 

  • R.W. Schunk, J.J. Sojka, Global ionosphere-polar wind system during changing magnetic activity. J. Geophys. Res. 11, 625 (1997)

    Google Scholar 

  • R.D. Sharp et al., Observation of an ionospheric acceleration mechanism producing energetic (keV) ions primarily normal to the geomagnetic field direction. J. Geophys. Res. 82, 3324 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  • E.G. Shelley, R.G. Johnson, R.D. Sharp, Satellite observations of energetic heavy ions during a geomagnetic storm. J. Geophys. Res. 77, 6104 (1972)

    Article  ADS  Google Scholar 

  • E.G. Shelley et al., Plasma composition experiment on ISEE-A. Trans. Geosci. Electron. 16, 266 (1978)

    Article  ADS  Google Scholar 

  • Y.J. Su et al., Polar wind survey with the thermal ion dynamics Experiment/Plasma source instrument suite aboard POLAR. J. Geophys. Res. 103(29), 305 (1998)

    Google Scholar 

  • Y.J. Su et al., Plasmaspheric material on high-latitude open field lines. J. Geophys. Res. 106, 6085 (2012)

    Article  ADS  Google Scholar 

  • H.A. Taylor et al., Positive ion composition in the magnetosphere obtained from the OGO-A satellite. J. Geophys. Res. 70, 5769 (1965)

    Article  ADS  Google Scholar 

  • K. Tokar et al., Active spacecraft potential control for Cluster-implementation and first results. Ann. Geophys. 19, 1289 (2001)

    Article  ADS  Google Scholar 

  • D.T. Welling, A.J. Ridley, Exploring sources of magnetospheric plasma using multispecies MHD. J. Geophys. Res. 115, A04201 (2010)

    ADS  Google Scholar 

  • D.T. Welling et al., The effects of dynamic ionospheric outflow on the ring current. J. Geophys. Res. 116, A00J19 (2011)

    ADS  Google Scholar 

  • R.M. Winglee, Mapping of ionospheric outflows into the magnetosphere for varying IMF conditions. J. Atmos. Terr. Phys. 62, 527 (2000)

    Article  ADS  Google Scholar 

  • A.W. Yau, M. Andre, Sources of ion outflow in the high latitude ionosphere. Space Sci. Rev. 80, 1 (1997)

    Article  ADS  Google Scholar 

  • A.W. Yau et al., Energetic auroral and polar ion outflow at DE 1 altitudes: Magnitude, composition, magnetic activity dependence, and long-term variations. J. Geophys. Res. 90, 8417 (1985)

    Article  ADS  Google Scholar 

  • D.T. Young, H. Balsiger, J. Geiss, Correlations of magnetospheric ion composition with geomagnetic and solar activity. J. Geophys. Res. 87(A11), 9077 (1982)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles R. Chappell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chappell, C.R. (2016). The Role of the Ionosphere in Providing Plasma to the Terrestrial Magnetosphere—An Historical Overview. In: Nagy, A., Blanc, M., Chappell, C., Krupp, N. (eds) Plasma Sources of Solar System Magnetospheres. Space Sciences Series of ISSI, vol 52. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3544-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3544-4_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3543-7

  • Online ISBN: 978-1-4939-3544-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics