Skip to main content

Genomics of Salinity

  • Chapter
  • First Online:
Plant Genomics and Climate Change
  • 974 Accesses

Abstract

Salinity stress is one of the most important abiotic stresses faced by farmers. Salinity stress is responsible for significant loss of yield, and increasing salinity leads to loss of productive arable land. Salinity stress is especially important in drier areas, where evaporation leads to elevated levels of salt. Global warming will lead to higher temperatures which may be accompanied by increases in soil salinity. The expanding human population means there is a need to grow more crops, on less arable land, and so breeding salt tolerant plants is required to increase productivity, particularly in marginal areas.

This chapter describes how crop species react to salinity stress and where known, the genes and gene networks involved in the response to salinity are presented. Response to salinity is not a simple trait. Different genes are involved in different crops, and different crops handle salinity stress using different methods. These methods can be grouped into three main mechanisms: osmotic tolerance, ion exclusion and ion tolerance. Recent advances in the transfer of known salinity tolerance related genes into crop species are also presented. In most crops, the introduction of these genes has led to varying degrees of increased salinity tolerance, with some counter-intuitive results. The implications of these studies, as well as some future paths to improve salinity tolerance in crops are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abogadallah GM, Nada RM, Malinowski R, Quick P (2011) Overexpression of HARDY, an AP2/ERF gene from Arabidopsis, improves drought and salt tolerance by reducing transpiration and sodium uptake in transgenic Trifolium alexandrinum L. Planta 233:1265–1276

    Google Scholar 

  • Andrews TJ, Abel K (1976) Photosynthetic carbon metabolism in seagrasses. Plant Physiol 650–6

    Google Scholar 

  • Anwar F, Bhanger MI (2002) Analytical characterization of Salicornia bigeloviiseed oil cultivated in Pakistan. J Agr Food Chem 50:4210–4214

    Google Scholar 

  • Ashraf M, Akram NA (2009) Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnol Adv 27:744–752

    Article  CAS  PubMed  Google Scholar 

  • Bennett TH, Flowers TJ, Bromham L (2013) Repeated evolution of salt-tolerance in grasses. Biol Lett 9:20130029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhandal IS, Mahlik CP (1988) Potassium estimation, uptake, and its role in the physiology and metabolism of flowering plants. Int Rev Cytol 110

    Google Scholar 

  • Bromham L, Bennett TH (2014) Salt tolerance evolves more frequently in C4 grass lineages. J Evol Biol 27(3):653–659

    Article  CAS  PubMed  Google Scholar 

  • Campos H, Cooper M, Habben JE, Edmeades GO, Schussler JR (2004) Improving drought tolerance in maize: a view from industry. Field Crop Res 90:19–34

    Article  Google Scholar 

  • DeRose-Wilson L, Gaut BS (2011) Mapping salinity tolerance during Arabidopsis thaliana germination and seedling growth. PLoS One 6, e22832

    Google Scholar 

  • Du J, Huang Y-P, Xi J, Cao M-J, Ni W-S, Chen X et al (2008) Functional gene-mining for salt-tolerance genes with the power of Arabidopsis. Plant J 56:653–664

    Google Scholar 

  • Dubcovsky J, María GS, Epstein E, Luo MC, Dvořák J (1996) Mapping of the K(+)/Na (+) discrimination locus Kna1 in wheat. Theor Appl Genet 92:448–454

    Google Scholar 

  • FAO (2005) Bio-physical, socio-economic and environmental impacts of salt-affected soils

    Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    Article  CAS  PubMed  Google Scholar 

  • Genc Y, McDonald GK, Tester M (2007) Reassessment of tissue Na(+) concentration as a criterion for salinity tolerance in bread wheat. Plant Cell Environ 30:1486–1498

    Article  CAS  PubMed  Google Scholar 

  • George R, McFarlane D, Nulsen B (2012) Salinity threatens the viability of agriculture and ecosystems in western Australia. Hydrogeol J 5:6–21

    Article  Google Scholar 

  • Giberti S, Funck D, Forlani G (2014) Δ(1)-pyrroline-5-carboxylate reductase from Arabidopsis thaliana: stimulation or inhibition by chloride ions and feedback regulation by proline depend on whether NADPH or NADH acts as co-substrate. New Pythol 202.3:911–919

    Google Scholar 

  • Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18:227–255

    Article  Google Scholar 

  • Gorham J, Hardy C, Wyn Jones RG, Joppa LR, Law CN (1987) Chromosomal location of a K/Na discrimination character in the D genome of wheat. Theor Appl Genet 74:584–588

    Article  CAS  PubMed  Google Scholar 

  • Grattan SR, Benes SE, Peters DW, Diaz F (2008) Feasibility of irrigating pickleweed (Salicornia bigelovii. Torr) with hyper-saline drainage water. J Environ Qual 37:S149–S156

    Google Scholar 

  • Halfter U, Ishitani M, Zhu JK (2000) The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc Natl Acad Sci U S A 97:3735–3740

    Google Scholar 

  • He T, Cramer GR (1992) Growth and mineral nutrition of six rapid-cycling Brassica species in response to seawater salinity. Plant and Soil 139:285–294

    Google Scholar 

  • Ilami G, Nespoulous C, Huet JC (1997) Characterization of BnD22, a drought-induced protein expressed in Brassica napus leaves. Phytochemistry 45:1–8

    Google Scholar 

  • Inan G, Zhang Q, Li P, Wang Z (2004) Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol 135:1718–1737

    Google Scholar 

  • Ishitani M, Liu J, Halfter U, Kim CS, Shi W, Zhu JK (2000) SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell 12:1667–1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaarsma R, de Vries RSM, de Boer AH (2013) Effect of salt stress on growth, Na + accumulation and proline metabolism in potato (Solanum tuberosum) cultivars. PLoS One 8, e60183

    Google Scholar 

  • James R, Davenport RJ, Munns R (2006) Physiological characterization of two genes for Na + exclusion in durum wheat, Nax1 and Nax2. Plant Physiol 142:1537–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karaba A, Dixit S, Greco R, Aharoni A, Trijatmiko KR, Marsch-Martinez N et al (2007) Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc Natl Acad Sci U S A 104:15270–15275

    Google Scholar 

  • Koch MS, Schopmeyer S, Kyhn-Hansen C, Madden CJ, Peters JS (2007) Tropical seagrass species tolerance to hypersalinity stress. Aquat Bot 86:14–24

    Article  CAS  Google Scholar 

  • Li B, Li N, Duan X, Wei A, Yang A, Zhang J (2010) Generation of marker-free transgenic maize with improved salt tolerance using the FLP/FRT recombination system. J Biotechnol 145:206–213

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Ishitani M, Halfter U, Kim CS, Zhu JK (2000) The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci U S A 97:3730–3734

    Google Scholar 

  • Ma H-S, Liang D, Shuai P, Xia X-L, Yin W-L (2010) The salt- and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana. J Exp Bot 61:4011–4019

    Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SC (2007). Global climate projections. Climate change. 2007;283

    Google Scholar 

  • Min H, Zheng J, Wang J (2014) Maize ZmRAV1 contributes to salt and osmotic stress tolerance in transgenic Arabidopsis. J Plant Biol 57:28–42

    Google Scholar 

  • Moons A, Prinsen E, Bauw G, Van Montagu M (1997) Antagonistic effects of abscisic acid and jasmonates on salt stress-inducible transcripts in rice roots. Plant Cell 9:2243–2259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Schachtman DP, Condon AG (1995) The significance of a two-phase growth response to salinity in wheat and barley. Aust J Plant Physiol 22(4):561–569

    Article  CAS  Google Scholar 

  • Munns R, Hare RA, James RA, Rebetzke GJ (1999) Genetic variation for improving the salt tolerance of durum wheat. Aust J Agr Res 51(1):69–74

    Article  Google Scholar 

  • Munns R, Rebetzke GJ, Husain S (2003) Genetic control of sodium exclusion in durum wheat. Aust J Agr Res 54(7):627–635

    Article  CAS  Google Scholar 

  • Ohta M, Hayashi Y, Nakashima A (2002) Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett 532:2–5

    Google Scholar 

  • Oztur ZN, Talamé V, Deyholos M, Michalowski CB, Galbraith DW, Gozukirmizi N et al (2002) Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. Plant Mol Biol 48:551–573

    Article  PubMed  Google Scholar 

  • Pawlowicz R (2010) What every oceanographer needs to know about TEOS-10. TEOS-10 Primer 10:1–10

    Google Scholar 

  • Quesada V, Ponce MRM, Micol JJL (2000) Genetic analysis of Salt-tolerant mutants in Arabidopsis thaliana. Genetics 154:421–436

    Google Scholar 

  • Rabbani MA, Maruyama K, Abe H (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot. Plant Physiol 133:1755–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajagopal D, Agarwal P, Tyagi W, Singla-Pareek SL, Reddy MK, Sopory SK (2006) Pennisetum glaucum Na+/H+ antiporter confers high level of salinity tolerance in transgenic Brassica juncea. Mol Breed 19:137–151

    Google Scholar 

  • Ren Z-H, Gao J-P, Li L-G, Cai X-L, Huang W, Chao D-Y et al (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146

    Article  CAS  PubMed  Google Scholar 

  • Reviron MP, Vartanian N, Sallantin M (1992) Characterization of a novel protein induced by progressive or rapid drought and salinity in Brassica napus leaves. Plant Physiol 100:1486–1493

    Google Scholar 

  • Roy SJ, Tucker EJ, Tester M (2011) Genetic analysis of abiotic stress tolerance in crops. Curr Opin Plant Biol 14:232–239

    Article  CAS  PubMed  Google Scholar 

  • Ruiz JM, Blumwald E (2002) Salinity-induced glutathione synthesis in Brassica napus. Planta 214:965–969

    Google Scholar 

  • Sánchez-Lizaso JL, Romero J, Ruiz J (2008) Salinity tolerance of the Mediterranean seagrass Posidonia oceanica: recommendations to minimize the impact of brine discharges from desalination plants. Desalination 221:602–607

    Google Scholar 

  • Sandoval-Gil JM, Ruiz JM, Marín-Guirao L, Bernardeau-Esteller J, Sánchez-Lizaso JL (2014) Ecophysiological plasticity of shallow and deep populations of the Mediterranean seagrasses Posidonia oceanica and Cymodocea nodosa in response to hypersaline stress. Mar Environ Res 95:39–61

    Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y et al (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Google Scholar 

  • Shabala S (2013) Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann Bot 112:1209–1221

    Article  PubMed  PubMed Central  Google Scholar 

  • Shan L, Li C, Chen F, Zhao S, Xia G (2008) A Bowman-Birk type protease inhibitor is involved in the tolerance to salt stress in wheat. Plant Cell Environ 31:1128–1137

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci U S A 97:6896–6901

    Google Scholar 

  • Shi H, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na + transport in plants. Plant Cell 14:465–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slewinski TL, Anderson A, Zhang C, Turgeon R (2012) Scarecrow plays a role in establishing Kranz anatomy in maize leaves. Plant Cell Physiol 53:2030–2037

    Article  CAS  PubMed  Google Scholar 

  • Suiyun C, Guangmin X, Taiyong Q, Fengnin X, Yan J, Huimin C (2004) Introgression of salt-tolerance from somatic hybrids between common wheat and Thinopyrum ponticum. Plant Sci 167:773–779

    Google Scholar 

  • Sunarpi, Horie T, Motoda J, Kubo M, Yang H, Yoda K et al (2005) Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na unloading from xylem vessels to xylem parenchyma cells. Plant J 44:928–938

    Article  CAS  PubMed  Google Scholar 

  • Tambussi E, Bort J, Araus JL (2007) Water use efficiency in C 3 cereals under Mediterranean conditions: a review of physiological aspects. Ann Appl Biol 150:307–321

    Article  Google Scholar 

  • Thomson MJ, Ocampo M, Egdane J, Rahman MA, Sajise AG, Adorada DL et al (2010) Characterizing the saltol quantitative trait locus for salinity tolerance in rice. Rice 3:148–160

    Article  Google Scholar 

  • Tunçtürk M, Tunçtürk R, Yildirim B, Çiftçi V (2013) Effect of salinity stress on plant fresh weight and nutrient composition of some Canola (Brassica napus L.) cultivars. Afr J Biotechnol 10:1827–1832

    Google Scholar 

  • Ueda A, Shi W, Nakamura T, Takabe T (2002) Analysis of salt-inducible genes in barley roots by differential display. J Plant Res 115:119–130

    Article  CAS  PubMed  Google Scholar 

  • Utset A, Borroto M (2001) A modeling-GIS approach for assessing irrigation effects on soil salinisation under global warming conditions. Agr Water Manag 50:53–63

    Article  Google Scholar 

  • von Caemmerer S, Quick WP, Furbank RT (2012) The development of C4 rice: current progress and future challenges. Science (New York, NY) 336:1671–1672

    Article  Google Scholar 

  • Walia H, Wilson C, Wahid A, Condamine P, Cui X, Close TJ (2006) Expression analysis of barley (Hordeum vulgare L.) during salinity stress. Funct Integr Genomics 6:143–156

    Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang M-C, Peng Z-Y, Li C-L, Li F, Liu C, Xia G-M (2008) Proteomic analysis on a high salt tolerance introgression strain of Triticum aestivum/Thinopyrum ponticum. Proteomics 8:1470–1489

    Google Scholar 

  • Warrick M (2006) Impacts and costs of dryland salinity. Queensl Facts

    Google Scholar 

  • Wissler L, Codoñer FM, Gu J, Reusch TBH, Olsen JL, Procaccini G et al (2011) Back to the sea twice: identifying candidate plant genes for molecular evolution to marine life. BMC Evol Biol 11:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu H-J, Zhang Z, Wang J-Y, Oh D-H, Dassanayake M, Liu B et al (2012) Insights into salt tolerance from the genome of Thellungiella salsuginea. Proc Natl Acad Sci U S A 109:12219–12224

    Google Scholar 

  • Yang Q, Chen Z-Z, Zhou X-F, Yin H-B, Li X, Xin X-F et al (2009) Overexpression of SOS (salt overly sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol Plant 2:22–31

    Google Scholar 

  • Yin XY, Yang AF, Zhang KW, Zhang JR (2004) Production and analysis of transgenic maize with improved salt tolerance by the introduction of AtNHX1 gene. Acta Bot Sin 46:854–861

    Google Scholar 

  • Yokoi S, Quintero FJ, Cubero B, Ruiz MT, Bressan R, Hasegawa PM et al (2002) Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J 30:529–539

    Google Scholar 

  • Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768

    Article  CAS  PubMed  Google Scholar 

  • Zhang HX, Hodson JN, Williams JP, Blumwald E (2001) Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci U S A 98:12832–12836

    Google Scholar 

  • Zhu J-K (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK, Liu J, Xiong L (1998) Genetic analysis of salt tolerance in Arabidopsis. Evidence for a critical role of potassium nutrition. Plant Cell 10:1181–1191

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Emanuel Bayer B.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bayer, P.E. (2016). Genomics of Salinity. In: Edwards, D., Batley, J. (eds) Plant Genomics and Climate Change. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3536-9_9

Download citation

Publish with us

Policies and ethics