Skip to main content

The Impact of Genomics Technology on Adapting Plants to Climate Change

  • Chapter
  • First Online:

Abstract

The application of genomics for crop improvement is relatively new, evolving from more traditional breeding approaches which relied predominantly on phenotypic selection. Recently, advances in DNA sequencing technology and the establishment of next generation DNA sequencing (NGS) technologies have revolutionised genomics and offer the potential to rapidly accelerate the genomics based breeding of crops. One of the most remarkable aspects of NGS is the ever reducing cost, opening the door for applications in very large and complex genomes, such as wheat, as well as in orphan or minor crops, where a relatively small investment can lead to significant crop improvement. Genomics based crop improvement can be seen as an extension of genetics. The development of molecular genetic markers and their association with heritable agronomic traits, combined with the increasing numbers of reference genome sequences and a greater understanding of genomic diversity is helping to rapidly expand genomics based crop improvement. Recently, genomics based breeding methods, such as genomic selection, have offered further potential to accelerate crop improvement practices. As the cost of DNA sequencing continues to drop, there will be ever greater potential to expand genomics based breeding technology for the development of diverse climate resilient crops.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abberton M, Batley J, Bentley A, Bryant J, Cai H, Cockram J, Costa de Oliveira A, Cseke L, Dempewolf H, De Pace C, Edwards D, Gepts P, Greenland A, Hall A, Henry R, Hori K, Howe G, Hughes S, Humphreys M, Lightfoot D, Marshall A, Mayes S, Nguyen H, Ogbonnaya F, Ortiz R, Paterson A, Tuberosa R, Valliyodan B, Varshney R, Yano M (2015) Global agricultural intensification during climate change: a role for genomics. Plant Biotechnol J. doi:10.1111/pbi.12467. [Epub ahead of print]

    Google Scholar 

  • Duvick DN (2005) The contribution of breeding to yield advances in maize (Zea mays L.). Adv Agron 86:83–145

    Article  Google Scholar 

  • Edwards D, Forster JW, Chagné D, Batley J (2007a) What are SNPs? In: Oraguzie NC, Rikkerink EHA, Gardiner SE, De Silva HN (eds) Association mapping in plants. Springer, New York, NY, pp 41–52

    Chapter  Google Scholar 

  • Edwards D, Batley J, Cogan NOI, Forster JW, Chagné D (2007b) Single nucleotide polymorphism discovery. In: Oraguzie NC, Rikkerink EHA, Gardiner SE, De Silva HN (eds) Association mapping in plants. Springer, New York, NY, pp 53–76

    Chapter  Google Scholar 

  • Edwards D, Batley J, Snowdon R (2013) Accessing complex crop genomes with next-generation sequencing. Theor Appl Genet 126:1–11

    Article  CAS  PubMed  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6, e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamblin MT, Buckler ES, Jannick JL (2011) Population genetics of genomics-based crop improvement methods. Trends Genet 27:98–106

    Article  CAS  PubMed  Google Scholar 

  • Jain M, Misra G, Patel RK, Priya P, Jhanwar S, Khan AW, Shah N, Singh VK, Garg R, Jeena G, Yadav M, Kant C, Sharma P, Yadav G, Bhatia S, Tyagi AK, Chattopadhyay D (2013) A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant J 74:715–729

    Article  CAS  PubMed  Google Scholar 

  • McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C, Brown P, Browne C, Eller M, Guill K, Harjes C, Kroon D, Lepak N, Mitchell SE, Peterson B, Pressoir G, Romero S, Oropeza Rosas M, Salvo S, Yates H, Hanson M, Jones E, Smith S, Glaubitz JC, Goodman M, Ware D, Holland JB, Buckler ES (2009) Genetic properties of the maize nested association mapping population. Science 325:737–740

    Article  CAS  PubMed  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poland JA, Brown PJ, Sorrells ME, Jannick J-L (2012a) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One 7, e32253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poland JA, Endelman J, Dawson J, Rutkowski J, Wu S, Manes Y, Driesigacker S, Crossa J, Sanchez-Villeda H, Sorrells M, Jannick J-L (2012b) Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Gene 5:103–113

    Article  CAS  Google Scholar 

  • Rebetzke GJ, Verbyla AP, Verbyla KL, Morell MK, Cavanagh CR (2014) Use of a large multiparent wheat mapping population in genomic dissection of coleoptile and seedling growth. Plant Biotechnol J 12:219–230

    Article  CAS  PubMed  Google Scholar 

  • Resende MDV, Resende MF Jr, Sansaloni CP, Petroli CD, Missiaggia AA, Aguiar AM, Abad JM, Takahashi EK, Rosado AM, Faria DA, Pappas GJ Jr, Kilian A, Grattapaglia D (2012) Genomic selection for growth and wood quality in eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytol 194:116–128

    Article  PubMed  Google Scholar 

  • Ruperao P, Chan KCK, Azam S, Karafiátová M, Hayashi S, Čížková J, Saxena RK, Šimková H, Song C, Vrána J, Chitikineni A, Visendi P, Gaur PM, Millán T, Singh KB, Taran B, Wang J, Batley J, Doležel J, Varshney RK, Edwards D (2014) A chromosomal genomics approach to assess and validate the Desi and Kabuli draft chickpea genome assemblies. Plant Biotechnol J 12:778–786

    Article  CAS  PubMed  Google Scholar 

  • Shendure J, Aiden EL (2012) The expanding scope of DNA sequencing. Nat Biotechnol 30:1084–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varshney RK, Terauchi R, McCouch SR (2014) Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biol 12, e1001883

    Article  PubMed  PubMed Central  Google Scholar 

  • Visendi PJ, Batley J, Edwards D (2013) Next generation characterisation of cereal genomes for marker discovery. Biology 2:1357–1377

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–551

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Edwards Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Edwards, D. (2016). The Impact of Genomics Technology on Adapting Plants to Climate Change. In: Edwards, D., Batley, J. (eds) Plant Genomics and Climate Change. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3536-9_8

Download citation

Publish with us

Policies and ethics