Skip to main content
Book cover

Enrico Fermi pp 157–196Cite as

20th century physics: 1934–1954

  • Chapter
  • First Online:
  • 1407 Accesses

Part of the book series: Springer Biographies ((SPRINGERBIOGS))

Abstract

While scientific investigations proceed and human knowledge increases, the global maps become more complex. Then history can be told in different ways, as one can choose different paths to connect two nodes of a network.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    J. D. Cockcroft and E. T. S. Walton, Experiments with high velocity positive ions, Proceedings of the Royal Society 129 (1930), p. 477.

  2. 2.

    R. J. Van De Graaff, A 1,500,000 Volt electrostatic generator, Physical Review 38 (1931), p. 1919.

  3. 3.

    E. M. McMillan, Early history of particle accelerators, in Nuclear Physics in Retrospect, R. H. Stuewer ed., University of Minnesota Press, Minneapolis 1977, p. 126.

  4. 4.

    G. Ising, Prinzip einer Methode zur Herstellung von Kanalstrahlen hoher Voltzahl, Arkiv för Mathematik, Astronomi och Fysik 18 (1924), p. 1; R. Wideröe, Über ein neues Prinzip zur Herstellung hoher Spannungen, Archiv für Elektrotechnik 21 (1928), p. 387. For more details, see E. M. McMillan, op. cit.; P. Waloschek, Life and Work of Rolf Wideröe, Vieweg, Braunschweig-Wiesbaden 1994.

  5. 5.

    E. O. Lawrence and N. E. Edlefsen, On the production of high speed protons, Science 52 (1930), p. 376.

  6. 6.

    E. O. Lawrence and M. S. Livingston, The production of high speed light ions without the use of high voltages, Physical Review 40 (1932), p. 19.

  7. 7.

    M. S. Livingston, High-Energy Accelerators, Interscience Publishers, New York 1954, p. 151.

  8. 8.

    V. F. Hess, Penetrating radiation in seven free ballon flights, Physikalische Zeitschrift 13 (1912), p. 1084.

  9. 9.

    V. F. Hess, Über den Ursprung der durchdringenden Strahlung, Physikalische Zeitschrift 14 (1913), p. 610.

  10. 10.

    For a reconstruction of the history of cosmic ray physics see R. Millikan, Cosmic rays, Cambridge Univ. Press, Cambridge, UK 1939.

  11. 11.

    The radiation absorption curves express the strength of the radiation as a function of the thickness of the crossed absorbing material.

  12. 12.

    R. A. Millikan and G. H. Cameron, High altitude tests on the geographical, directional, and spectral distribution of cosmic rays, Physical Review 33 (1928), p. 163; New precision in cosmic ray measurements; yielding extension of spectrum and indications of bands, ibid. p. 921.

  13. 13.

    R. A. Millikan and G. H. Cameron, Evidence for the continuous creation of the common elements out of positive and negative electrons, Proceedings of the National Academy of Sciences 14 (1928), p. 445.

  14. 14.

    Ibid., p. 449. An ample discussion of these hypotheses was published by R. A. Millikan, Sur les rayons cosmiques, Annales de l’Institut Henri Poincaré 3 (1933), p. 447.

  15. 15.

    W. Bothe and W. Kolhörster, Das Weßen der Höhenstrahlung, Zeitschrift für Physik 61 (1929), p. 751.

  16. 16.

    The Geiger-Müller counter is basically a gas discharge tube. It is a metal tube, about one foot long and with a diameter of one or two inches (but the dimensions can vary), containing a conducting wire, disposed longitudinally. Tube and wire are kept at a high potential difference. If a charged particle crosses the tube, due to an ionization process, an electric discharge takes place, which signals the passage of the particle.

  17. 17.

    Discussion on ultra-penetrating rays, Proceedings of the Royal Society 132 (1931), p. 331.

  18. 18.

    Ibid., p. 337.

  19. 19.

    B. Rossi, Method of registering multiple simultaneous impulses of several Geiger’s counters, Nature 135 (1930), p. 636.

  20. 20.

    D. Skobeltzyn, Über eine neue Art sehr schneller β-Strahlen, Zeitschrift für Physik 54 (1929), p. 686. For a perspective on Skobeltzyn’s contribution to the problem of cosmic rays see D. Skobeltzyn, Early cosmic-ray particle research, in The Birth of Particle Physics, L. M. Brown and L. Hoddeson eds., Cambridge Univ. Press, Cambridge 1983.

  21. 21.

    B. Rossi, Cosmic rays, McGraw-Hill Book Company, New York 1964, pp. 48–49. The paper was rejected by Naturwissenschaften and was eventually published by Zeitschrift für Physik.

  22. 22.

    B. Rossi, Il problema della radiazione penetrante, in Convegno di Fisica Nucleare, Accademia d’Italia, Roma 1932, p. 51.

  23. 23.

    P. M. S. Blackett and G. P. S. Occhialini, Some photographs of the tracks of penetrating radiation, Proceedings of the Royal Society 139 (1933), p. 699.

  24. 24.

    I. Curie and F. Joliot, Électrons positifs de transmutations, Comptes Rendus de l’Académie des Sciences 196 (1933), p. 1885.

  25. 25.

    I. Curie and F. Joliot, Un nouveau type de radioactivité, Comptes Rendus de l’Académie des Sciences 198 (1934), p. 254

  26. 26.

    The papers reporting on the experiments summarized in the table are: J. D. Cockcroft, C. W. Gilbert and E. T. S. Walton, Production of induced radioactivity by protons, Nature 133 (1934), p. 328; H. R. Crane, Ch. C. Lauritsen and W. W. Harper, Artificial production of radioactive substances, Science 79 (1934), p. 234; M. C. Henderson, M. S. Livingston and E. O. Lawrence, Artificial radioactivity produced by deuton bombardment, Physical Review 45 (1934), p. 428; H. R. Crane and C. C. Lauritsen, Radioactivity from carbon and boron oxide bombarded with deuterons and the conversion of positrons into radiation, Physical Review 45 (1934), p. 430; Further experiments with artificially produced radioactive substances, ibid. p. 497; S. H. Neddermeyer and C. D. Anderson, Energy spectra of positrons ejected by artificially stimulated radioactive substances, ibid. p. 498.

  27. 27.

    Fermi [84a].

  28. 28.

    I. Noddack, Über das Element 93, Zeitschrift für Angewandte Chemie 47 (1934), p. 653. English translation in H. G. Graetzer and D. L. Anderson, The Discovery of Nuclear Fission, Van Nostrand-Reinhold, New York 1971. This book contains a detailed analysis of the discovery of nuclear fission, with original papers translated into English.

  29. 29.

    Fermi [86a].

  30. 30.

    Fermi [94], CPF I, p. 704.

  31. 31.

    A. von Grosse and M. Agruss, The chemistry of element 93 and Fermi’s discovery, Physical Review 46 (1934), p. 241.

  32. 32.

    E. Amaldi, From the discovery of the neutron to the discovery of nuclear fission, Physics Reports 11 (1984), p. 274.

  33. 33.

    E. B. Sparberg, A study of the discovery of fission, American Journal of Physics 32 (1964), p. 2.

  34. 34.

    L. Meitner, Vie giuste e sbagliate nel cammino verso la scoperta dell’energia nucleare [Right and wrong paths in the discovery of nuclear energy], in Enrico Fermi, significato di una scoperta [Enrico Fermi, the meaning of a discovery], AIN-ENEA, Roma 2001, p. 43.

  35. 35.

    O. Hahn, Vom Radiothor zur Uranspaltung, Vieweg, Braunschweig 1962.

  36. 36.

    Ibid., p. 117.

  37. 37.

    I. Curie and P. Savitch, Sur le radioéléments formé dans l’uranium irradié par les neutrons, Journal de la Physique et le Radium 8 (1937), p. 385.

  38. 38.

    I. Curie and P. Savitch, Sur la nature du radioélément de période 3,5 heures formé dans l’uranium irradié par les neutrons, Comptes Rendus de l’Académie des Sciences 206 (1938), p. 1645. English translation Concerning the nature of the radioactive element with 3.5 hour half-life, formed from uranium irradiated by neutrons, in H. G. Graetzer and D. L. Anderson, The Discovery of Nuclear Fission, op. cit. p. 37.

  39. 39.

    O. Hahn and F. Strassmann, Über die Entstehung von Radiumisotopen aus Uran durch Bestrahlen mit schnellen und verlangsamten Neutronen, Naturwissenschaften 26 (1938), p. 755. English translation Concerning the creation in radium isotopes from uranium by irradiation with fast neutrons, in H. G. Graetzer and D. L. Anderson, The Discovery of Nuclear Fission, op. cit. p. 41.

  40. 40.

    Ibid., English translation p. 46.

  41. 41.

    Ibid., English translation p. 47.

  42. 42.

    U. Amaldi, La fisica dei nuclei dagli anni trenta ai giorni nostri, in Conoscere Fermi, C. Bernardini and L. Bonolis eds., Compositori, Bologna 2001, p. 152.

  43. 43.

    R. D. Evans, The Atomic Nucleus, McGraw-Hill, New York 1955, p. 357.

  44. 44.

    H. A. Bethe and R. F. Bacher, Nuclear physics, A. Stationary states of nuclei, Review of Modern Physics 8 (1936), p. 83; H. Bethe, Nuclear physics, B. Nuclear dynamics, theoretical, ibid., p. 71; M. Stanley Livingston and H. Bethe, Nuclear physics, C. Nuclear dynamics, experimental, ibid. p. 246.

  45. 45.

    N. Bohr, Neutron capture and nuclear constitution, Nature 137 (1935), p. 344.

  46. 46.

    H. Bethe, Nuclear physics, B. op. cit., p. 72.

  47. 47.

    N. Bohr, Neutron capture, op. cit., p. 348.

  48. 48.

    L. Meitner and O. R. Frisch, Disintegration of Uranium by neutrons: a new type of nuclear reaction, Nature 143 (1939), p. 239; O. R. Frisch, Physical evidence for the division of heavy nuclei under neutron bombardment, ibid., p. 276.

  49. 49.

    H. A. Bethe, The happy Thirties, in Nuclear Physics in Retrospect, R. H. Stuewer ed., op. cit.

  50. 50.

    M. Goeppert-Mayer, On closed shells in nuclei, Physical Review 54 (1948), p. 235; On closed shells in nuclei II, Physical Review 55 (1949), p. 1969.

  51. 51.

    M. Goeppert-Mayer, Nobel Lecture, 12 December 1963, http://nobelprize.org/nobel_prizes/physics/laureates/1963/mayer-lecture.pdf.

  52. 52.

    Ibid.

  53. 53.

    H. D. Jensen, Nobel Lecture, 12 December 1963, http://nobelprize.org/nobel_prizes/physics/laureates/1963/jensen-lecture.pdf.

  54. 54.

    H. A. Bethe and R. F. Bacher, Nuclear physics, Review of Modern Physics 8 (1936), p. 82.

  55. 55.

    M. A. Tuve, N. P. Heydenburg and L. R. Hafstad, The scattering of protons by protons, Physical Review 50 (1936), p. 806.

  56. 56.

    Ibid., pp. 824–825.

  57. 57.

    G. Breit, E. U. Condon and R. D. Present, Theory of scattering of protons by protons, Physical Review 50 (1936), p. 825.

  58. 58.

    Isotopic spin had been introduced in 1932 by W. Heisenberg, as we have discussed in section 2.8.7

  59. 59.

    S. Weinberg, The search for unity: notes for a history of quantum field theory, Dedalus 2 (1977), p. 17.

  60. 60.

    http://www.nobelprize.org/nobel_prizes/physics/laureates/1968/

  61. 61.

    Seth Neddermeyer was an experimental physicist, a former student of Oppenheimer’s at the California Institute of Technology, who worked at the National Bureau of Standard.

  62. 62.

    http://www.nobelprize.org/physics/laureates/1968/alvarez-lecture.pdf.

  63. 63.

    While Yukawa at first used the term “mesotron,” after Heisenberg’s suggestion that was changed to “meson.” The latter is the term that remained in use.

  64. 64.

    H. Yukawa, On the interaction of elementary particles, Proceedings of the Physical-Mathematical Society of Japan 17(1935), p. 48. A detailed analysis of the meson theory of nuclear forces can be found in V. Mukherji, History of meson theory of nuclear forces from 1935 to 1952, Archive for the History of Exact Sciences 13 (1974), p. 27.

  65. 65.

    The first step in Yukawa’s reasoning was the introduction, in analogy with the electromagnetic field, of an interaction field, which can be expressed in terms of a potential U. This decays with distance much faster than the electromagnetic potential; the latter goes like 1∕r, while the potential U has the form \(g^{2}e^{-\eta \,r}/r\), where g is a constant having the dimension of an electric charge, while η is the inverse of the action radius of the nuclear force. The values of g and η were chosen by Yukawa according to the experimental data.

  66. 66.

    The reasoning behind this estimate of the mass was briefly the following. For the electromagnetic field there is a relation among speed, frequency, and wavelength of the electromagnetic waves, namely, \(c =\nu \,\lambda\). One can therefore wonder what is its analogue for the Yukawa field. The wave equation for the potential U leads to the relation

    $$\displaystyle{\left ( \frac{\nu } {c}\right )^{2} = \left (\frac{1} {\lambda } \right )^{2} + \left (\frac{h\eta } {2\pi } \right )^{2}\qquad ({\ast})}$$

    (here η has the same meaning as in note 65). This is true at the classical level; in the quantum setting, one should take into account the relations E = hν and \(p = h/\lambda\), which yield the energy and the momentum of the quanta. Substituting these into the equation (*) one obtains \((E/c)^{2} = p^{2} + (h\eta /2\pi )^{2}\). This equation, by comparison with the relativistic relation \((E/c)^{2} = p^{2} + m_{0}c^{2}\), yields a relation between the mass of the quantum and the radius of action of the nuclear force, in the form \(m_{0} = h\eta /2\pi c\).

  67. 67.

    M. A. Tuve, N. P. Heydenburg and L. R. Hafstad, The scattering of protons by protons, op. cit.

  68. 68.

    N. Kemmer, The impact of Yukawa’s meson theory on workers in Europe — A reminiscence, Progress of Theoretical Physics. Supplement, Commemoration issue for the 30th anniversary of the meson theory by Dr. H. Yukawa, 1965, p. 602.

  69. 69.

    S. H. Neddermeyer and C. D. Anderson, Note on the nature of cosmic-ray particles, Physical Review 51 (1937), p. 884.

  70. 70.

    J. C. Street and E. C. Stevenson, New evidence for the existence of a particle of mass intermediate between the proton and electron, Physical Review 52 (1937), p. 1003.

  71. 71.

    F. Rasetti, Mean life of slow mesotrons, Physical Review 59 (1941), p. 613; Evidence for the radioactivity of slow mesotrons, ibid. p. 706; Disintegration of slow mesotrons, Physical Review 60 (1941), p. 198. An ample and well documented review of meson physics during those years can be found in some articles included in The Birth of Particle Physics, L. M. Brown and L. Hoddeson eds., op. cit., namely: B. Rossi, The decay of “mesotrons” (1939–1943): experimental particle physics in the age of innocence; G. Bernardini, The intriguing history of the μ meson; C. D. Anderson and H. L. Anderson, Unraveling the particle content of cosmic rays; O. Piccioni, The observation of the leptonic nature of the “mesotron” by Conversi, Pancini, and Piccioni.

  72. 72.

    M. Conversi, E. Pancini and O. Piccioni, On the disintegration of negative mesons, Physical Review 72 (1947), p. 209.

  73. 73.

    S. Tomonaga and G. Araki, Effect of the nuclear Coulomb field on the capture of slow mesons, Physical Review 58 (1940), p. 90.

  74. 74.

    M. Conversi, E. Pancini and O. Piccioni, op. cit., p. 209.

  75. 75.

    G. Salvini, La vita di Oreste Piccioni e la sua attività scientifica in Italia, Giornata Lincea in ricordo di Oreste Piccioni (Rome, 12 November 2003), Accademia Nazionale dei Lincei. Classe di scienze matematiche, fisiche e naturali 15 (2004), serie 9, p. 289.

  76. 76.

    O. Piccioni, The discovery of the leptonic property, in Present Trends, Concepts and Instruments of Particle Physics. Symposium in honour of Marcello Conversi’s 70th birthday, Rome, 3–4 November 1987, G. Baroni, L. Maiani and G. Salvini eds., Compositori, Bologna 1988, p. 171.

  77. 77.

    Interview with Dr. Richard Feynman by Charles Weiner, at Altadena, California, on 27 June 1966. Niels Bohr Library & Archives, American Institute of Physics, College Park, MD USA, http://www.aip.org/history/ohilist/5020_3.html.

  78. 78.

    Perspective participants included Hans Bethe, Felix Bloch, David Bohm, Gregory Breit, K. K. Darrow, Albert Einstein, Enrico Fermi, Herman Feshbach, Richard Feynman, H. A. Kramers, Willis Lamb, Duncan MacInnes, Robert Marshak, C. Møller, Arnold Nordsieck, John R. Oppenheimer, Abraham Pais, Linus Pauling, Bruno Rossi, Isidor Isaac Rabi, Julian Schwinger, Robert Serber, Edward Teller, George Uhlenbeck, H. Van Vleck, Victor Weisskopf, and John Wheeler. Three scientists could not attend, among them Fermi, who was prevented by an eye problem.

  79. 79.

    W. E. Lamb and R. C. Rutherford, Fine structure of the hydrogen atom by a microwave method, Physical Review 71 (1947), p. 241.

  80. 80.

    For the expert reader, the problem is about the n = 2 term of the hydrogen spectrum, which according to the theory, contains the terms 2S 1∕2, 2P 1∕2, and 2P 3∕2. A theoretical analysis predicts that the lines 2S 1∕2 and 2P 1∕2 coincide, while 2P 1∕2 and 2P 3∕2 have a separation of 0,365 cm−1. Lamb and Rutherford’s measurements find the expected value for the separation between 2P 1∕2 and 2P 3∕2, but show a 0,033 cm−1 displacement of 2S 1∕2 with respect to 2P 1∕2, almost 10% of the displacement between 2P 1∕2 and 2P 3∕2.

  81. 81.

    Fermi talked about the Lamb shift in the sixth of the nine lectures he gave in Italy in 1949 (Donegani Lectures). The lecture was devoted to the new developments of quantum electrodynamics (CPF II, p. 749).

  82. 82.

    H. A. Bethe, The electromagnetic shift of energy levels, Physical Review 72 (1947), p. 339.

  83. 83.

    S. Weinberg, The Quantum Theory of Fields, Cambridge University Press, Cambridge 1998, p. 38.

  84. 84.

    R. E. Marshak and H. A. Bethe, On the two-meson hypothesis, Physical Review 72 (1947), p. 506.

  85. 85.

    C. M. G. Lattes, H. Muirhead, G. B. S. Occhialini and C. F. Powell, Processes involving charged mesons, Nature 159 (1947), p. 694; C. M. G. Lattes, G. B. S. Occhialini and C. F. Powell, Observation on the tracks of slow mesons in photographic emulsions, Nature 160 (1947), p. 453. The first paper of the Bristol group was dated 24 May 1947, and therefore preceded Marshak’s hypothesis. However, Marshak was informed of the discovery only after the Shelter Island conference. As he wrote, referring to the journal issue with the announcement of the discovery in Bristol, “but it did not reach the United States until several weeks later, after the Shelter Island conference, because journals were not sent airmail.” (R. E. Marshak, Particle physics in rapid transition: 1947–1952, in The Birth of Particle Physics, L. M. Brown and L. Hoddeson eds., op. cit. p. 382.

  86. 86.

    G. Salvini, op. cit. p. 305.

  87. 87.

    O. Piccioni, op. cit.

  88. 88.

    A. Pais, Inward Bound, op. cit. p. 117.

  89. 89.

    B. Pontecorvo, Nuclear capture of mesons and the meson decay, Physical Review 72 (1947), p. 246.

  90. 90.

    B. Pontecorvo, Recollections on the establishment of the weak-interaction notion, in Pions to Quarks, L. M. Brown, M. Dresden and L. Hoddeson eds., Cambridge University Press, New York 1989, p. 369.

  91. 91.

    C. C. Butler and G. D. Rochester, Evidence for the existence of new unstable elementary particles, Nature 160(1947), p. 855; reprinted in The Experimental Foundations of Particle Physics, R. N. Cahn and G. Goldhaber eds., Cambridge University Press, Cambridge 1991, p. 69.

  92. 92.

    L. Leprince-Ringuet, Photographic evidence for the existence of a very heavy meson, Review of Modern Physics 21 (1949), p. 42.

  93. 93.

    A. Pais, Inward Bound, Oxford University Press, New York 1986, p. 514.

  94. 94.

    C. N. Yang and J. Tiomno, Reflection properties of spin 1/2 fields and a universal Fermi-type interaction, Physical Review 79 (1950), p. 497.

  95. 95.

    In the footnote 12 in that paper the authors wrote “This was pointed out by Professor E. Fermi in a seminar of about a year ago.” The baryon number is defined as B = 1 for baryons, \(B = -1\) for anti-baryons, and 0 for the other particles. The conservation of baryon number dictates that during any process the baryon number does not vary; actually, this simply means that a baryon cannot transform into a meson.

  96. 96.

    A. Pais, Some remarks on the V-particles, Physical Review 86 (1952), p. 663.

  97. 97.

    M. Gell-Mann, Isotopic spin and new unstable particles, Physical Review 92 (1953), p. 833.

  98. 98.

    G. Morpurgo, Introduzione alla fisica delle particelle, Zanichelli, Bologna 1987, p. 359.

  99. 99.

    G. F. Chew, M. Gell-Mann and A. H. Rosenfeld, Strongly interacting particles, Scientific American 210 No. 4, February 1964.

Papers

  1. I, «La Ricerca Scientifica» 5, (1934), pp. 283.

    Google Scholar 

  2. E. AMALDI, O. D’AGOSTINO, E. F., F. RASETTI, E. SEGRè, III, «La Ricerca Scientifica»5, (1934), pp. 452–53.

    Google Scholar 

  3. E. F., F. RASETTI, O. D’AGOSTINO Sulla possibilità di produrre elementi di numero atomico maggiore di 92. «La Ricerca Scientifica», 5, (1934), pp. 536–537.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Giulio Einaudi Editore S.p.A.

About this chapter

Cite this chapter

Bruzzaniti, G. (2016). 20th century physics: 1934–1954. In: Enrico Fermi. Springer Biographies. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3533-8_4

Download citation

Publish with us

Policies and ethics