Skip to main content

Neural Coding of Signal Duration and Complex Acoustic Objects

  • Chapter
  • First Online:
Book cover Bat Bioacoustics

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 54))

Abstract

Neurons selective for signal duration have been reported from the auditory midbrain and cortex in a variety of echolocating bats. The first part of this chapter discusses the importance of signal duration to echolocation by bats. It examines the different types of auditory duration-tuned neurons that have been described, explores the neural mechanisms that create their temporally selective response properties in the auditory midbrain or inferior colliculus, and ends by speculating on the possible function(s) of duration tuning to hearing and echolocation by bats. The second part of this chapter describes the neural representation of echoes of complex objects and species-specific vocalizations in the auditory cortex of echolocating bats. It highlights recent findings on how the coding of complex spectrotemporal echo features is related to important tasks in object recognition such as the normalization of object size or the processing of time-variant echoes from complex moving targets. To close the loop between neural processing mechanisms and perception, electrophysiological findings are related to the behavioral performance of bats in psychophysical tasks. The chapter concludes with a section on neural processing of conspecific vocalizations in the auditory cortex and amygdala of echolocating bats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2-AFC:

Two-alternative forced choice

AC:

Auditory cortex

AIp:

Posterior primary auditory cortex

BD:

Best duration

BEF:

Best excitatory frequency

CF:

Constant frequency

CNS:

Central nervous system

dB:

Decibels

DSCF:

Doppler-shifted constant frequency

DTN:

Duration-tuned neuron

EPSP:

Excitatory post-synaptic potential

FI:

Fisher information

FM:

Frequency modulated

FSL:

First-spike latency

GABA:

γ-Aminobutyric acid

HRTF:

Head-related transfer function

IC:

Inferior colliculus

IPSP:

Inhibitory post-synaptic potential

IR:

Impulse response

LFP:

Local field potential

OFFE :

Offset-evoked excitation

ONE :

Onset-evoked excitation

PSTH:

Peristimulus time histogram

q-CF:

Quasi-constant frequency

ROC:

Receiver operating characteristic

SAM:

Sinusoidal amplitude modulation

SPL:

Sound pressure level

SSI:

Stimulus specific information

References

  • Aubie, B., Becker, S., & Faure, P. A. (2009). Computational models of millisecond level duration tuning in neural circuits. The Journal of Neuroscience, 29, 9255–9270.

    Article  CAS  PubMed  Google Scholar 

  • Aubie, B., Sayegh, R., & Faure, P. A. (2012). Duration tuning across vertebrates. The Journal of Neuroscience, 32, 6373–6390.

    Article  CAS  PubMed  Google Scholar 

  • Aubie, B., Sayegh, R., Fremouw, T., Covey, E., & Faure, P. A. (2014). Decoding stimulus duration from neural responses in the auditory midbrain. Journal of Neurophysiology, 112, 2432–2445.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brand, A., Urban, A., & Grothe, B. (2000). Duration tuning in the mouse auditory midbrain. Journal of Neurophysiology, 84, 1790–1799.

    CAS  PubMed  Google Scholar 

  • Cardinal, R. N., Parkinson, J. A., Hall, J., & Everitt, B. J. (2002). Emotion and motivation: The role of the amygdala, ventral striatum, and prefrontal cortex. Neuroscience and Biobehavioral Reviews, 26, 321–352.

    Google Scholar 

  • Casseday, J. H., & Covey, E. (1995). Mechanisms for analysis of auditory temporal patterns in the brainstem of echolocating bats. In E. Covey, H. L. Hawkins, & R. F. Port (Eds.), Neural representations of temporal patterns (pp. 25–51). New York: Plenum Press.

    Chapter  Google Scholar 

  • Casseday, J. H., Ehrlich, D., & Covey, E. (1994). Neural tuning for sound duration: Role of inhibitory mechanisms in the inferior colliculus. Science, 264, 847–850.

    Google Scholar 

  • Casseday, J. H., Ehrlich, D., & Covey, E. (2000). Neural measurement of sound duration: Control by excitatory-inhibitory interactions in the inferior colliculus. Journal of Neurophysiology, 84, 1475–1487.

    CAS  PubMed  Google Scholar 

  • Casseday, J. H., Fremouw, T., & Covey, E. (2002). The inferior colliculus: A hub for the central auditory system. In D. Oertel, R. R. Fay, & A. N. Popper (Eds.), Integrative functions in the mammalian auditory pathway (pp. 238–318). New York: Springer-Verlag.

    Google Scholar 

  • Condon, C.J., White, K. R., & Feng, A. S. (1996). Neurons with different temporal firing patterns in the inferior colliculus of the little brown bat differentially process sinusoidal amplitude-modulated signals. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 178, 147–157.

    Article  CAS  Google Scholar 

  • Covey, E., & Faure, P. A. (2005). Neural mechanisms for analyzing temporal patterns in echolocating bats. In D. Pressnitzer, A. de Cheveigné, S. McAdams, & L. Collet (Eds.), Auditory signal processing: physiology, psychoacoustics, and models (pp. 251–257). New York: Springer-Verlag.

    Google Scholar 

  • Covey, E., Kauer, J. A., & Casseday, J. H. (1996). Whole-cell patch-clamp recording reveals subthreshold sound-evoked postsynaptic currents in the inferior colliculus of awake bats. The Journal of Neuroscience, 16, 3009–3018.

    CAS  PubMed  Google Scholar 

  • Crone, N. E., Boatman, D., Gordon, B., & Hao, L. (2001). Induced electrocorticographic gamma activity during auditory perception. Clinical Neurophysiology, 112, 565–582.

    Article  CAS  PubMed  Google Scholar 

  • Dear, S. P., & Suga, N. (1995). Delay-tuned neurons in the midbrain of the big brown bat. Journal of Neurophysiology, 73, 1084–1100.

    CAS  PubMed  Google Scholar 

  • Dear, S. P., Simmons, J. A., & Fritz, J. (1993). A possible neuronal basis for representation of acoustic scenes in the auditory cortex of the big brown bat. Nature, 364, 620–623.

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich, D., Casseday, J. H., & Covey, E. (1997). Neural tuning to sound duration in the inferior colliculus of the big brown bat, Eptesicus fuscus. Journal of Neurophysiology, 77, 2360–2372.

    CAS  PubMed  Google Scholar 

  • Elemans, C. P., Mead, A. F., Jakobsen, L., & Ratcliffe, J. M. (2011). Superfast muscles set maximum call rate in echolocating bats. Science, 333, 1885–1888.

    Article  CAS  PubMed  Google Scholar 

  • Esser, K. H., & Lud, B. (1997). Discrimination of sinusoidally frequency-modulated sound signals mimicking species-specific communication calls in the FM-bat Phyllostomus discolor. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 180, 513–522.

    Article  CAS  Google Scholar 

  • Esser, K. H., Condon, C. J., Suga, N., & Kanwal, J. S. (1997). Syntax processing by auditory cortical neurons in the FM-FM area of the mustached bat Pteronotus parnellii. Proceedings of the National Academy of Sciences of the USA, 94, 14019–14024.

    Google Scholar 

  • Faure, P. A., & Barclay, R. M. R. (1994). Substrate-gleaning versus aerial-hawking: plasticity in the foraging and echolocation behaviour of the long-eared bat, Myotis evotis. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 174, 651–660.

    Google Scholar 

  • Faure, P. A., Fremouw, T., Casseday, J. H., & Covey, E. (2003). Temporal masking reveals properties of sound-evoked inhibition in duration-tuned neurons of the inferior colliculus. The Journal of Neuroscience, 23, 3052–3065.

    CAS  PubMed  Google Scholar 

  • Fenton, M. B., Faure, P. A., & Ratcliffe, J. M. (2012). Evolution of high duty cycle echolocation in bats. Journal of Experimental Biology, 215, 2935–2944.

    Article  PubMed  Google Scholar 

  • Firzlaff, U., & Schuller, G. (2003). Spectral directionality of the external ear of the lesser spear-nosed bat, Phyllostomus discolor. Hearing Research, 185, 110–122.

    Article  PubMed  Google Scholar 

  • Firzlaff, U., & Schuller, G. (2007). Cortical responses to object size-dependent spectral interference patterns in echolocating bats. European Journal of Neuroscience, 26, 2747–2755.

    Article  PubMed  Google Scholar 

  • Firzlaff, U., Schornich, S., Hoffmann, S., Schuller, G., & Wiegrebe, L. (2006). A neural correlate of stochastic echo imaging. The Journal of Neuroscience, 26, 785–791.

    Article  CAS  PubMed  Google Scholar 

  • Firzlaff, U., Schuchmann, M., Grunwald, J. E., Schuller, G., & Wiegrebe, L. (2007). Object-oriented echo perception and cortical representation in echolocating bats. Public Library of Science Biology, 5(5), e100, doi: 10.1371/journal.pbio.0050100

    Google Scholar 

  • Fitch, W. T. (2000). The evolution of speech: A comparative review. Trends in Cognitive Sciences, 4, 258–267.

    Google Scholar 

  • Fremouw, T., Faure, P. A., Casseday, J. H., & Covey, E. (2005). Duration selectivity of neurons in the inferior colliculus of the big brown bat: tolerance to change in sound level. Journal of Neurophysiology, 94, 1869–1878.

    Google Scholar 

  • Fuzessery, Z. M., & Hall, J. C. (1999). Sound duration selectivity in the pallid bat inferior colliculus. Hearing Research, 137, 137–154.

    Article  CAS  PubMed  Google Scholar 

  • Fuzessery, Z. M., Buttenhoff, P., Andrews, B., & Kennedy, J. M. (1993). Passive sound localization of prey by the pallid bat (Antrozous p. pallidus). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 171, 767–777.

    Article  CAS  Google Scholar 

  • Gadziola, M. A., Grimsley, J. M. S., Shanbhag, S. J., & Wenstrup, J. J (2012). A novel coding mechanism for social vocalizations in the lateral amygdala. Journal of Neurophysiology, 107, 1047–1057.

    Article  PubMed  PubMed Central  Google Scholar 

  • Galazyuk, A. V., & Feng, A. S. (1997). Encoding of sound duration by neurons in the auditory cortex of the little brown bat, Myotis lucifugus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 180, 301–311.

    Article  CAS  Google Scholar 

  • Genzel, D., & Wiegrebe, L. (2008). Time-variant spectral peak and notch detection in echolocation-call sequences in bats. Journal of Experimental Biology, 211, 9–14.

    Article  PubMed  Google Scholar 

  • Goerlitz, H. R., Hübner, M, & Wiegrebe, L. (2008). Comparing passive and active hearing: Spectral analysis of transient sounds in bats. Journal of Experimental Biology, 211, 1850–1858.

    Google Scholar 

  • Grunwald, J.E., Schornich, S., & Wiegrebe, L. (2004). Classification of natural textures in echolocation. Proceedings of the National Academy of Sciences of the USA, 101, 5670–5674.

    Google Scholar 

  • Haplea, S., Covey, E., & Casseday, J. H. (1994). Frequency tuning and response latencies at three levels in the brainstem of the echolocating bat, Eptesicus fuscus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 174, 671–683.

    Article  CAS  Google Scholar 

  • Heinrich, M., Warmbold, A., Hoffmann, S., Firzlaff, U., & Wiegrebe, L. (2011). The sonar aperture and its neural representation in bats. The Journal of Neuroscience, 31, 15618–15627.

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann, S., Warmbold, A., Wiegrebe, L., & Firzlaff, U. (2013). Spatiotemporal contrast enhancement and feature extraction in the bat auditory midbrain and cortex. Journal of Neurophysiology, 110, 1257–1268.

    Article  PubMed  Google Scholar 

  • Hooper, S. L., Buchman, E., & Hobbs, K. H. (2002). A computational role for slow conductances: Single-neuron models that measure duration. Nature Neuroscience, 5, 552–556.

    Google Scholar 

  • Hou, T., Wu, M., & Jen, P. H.-S. (1992). Pulse repetition rate and duration affect the responses of bat auditory cortical neurons. Chinese Journal of Physiology, 35, 259–278.

    CAS  PubMed  Google Scholar 

  • Hübner, M., & Wiegrebe, L. (2003). The effect of temporal structure on rustling-sound detection in the gleaning bat, Megaderma lyra. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 189, 337–346.

    PubMed  Google Scholar 

  • Huffman, R. F., & Covey, E. (1995). Origin of the ascending projections to the nuclei of the lateral lemniscus in the big brown bat, Eptesicus fuscus. The Journal of Comparative Neurology, 357, 532–545.

    Article  CAS  PubMed  Google Scholar 

  • Jamison, H. L., Watkins, K. E., Bishop, D. V. M., & Matthews, P. M. (2006). Hemispheric specialization for processing auditory nonspeech stimuli. Cerebral Cortex, 16, 1266–1275.

    Article  PubMed  Google Scholar 

  • Jen, P. H.-S., & Schlegel, P. A. (1982). Auditory physiological properties of the neurons in the inferior colliculus of the big brown bat, Eptesicus fuscus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 147, 351–363.

    Article  Google Scholar 

  • Jen, P. H.-S., & Feng, R. B. (1999). Bicuculline application affects discharge pattern and pulse-duration tuning characteristics of bat inferior collicular neurons. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 184, 185–194.

    Article  CAS  Google Scholar 

  • Jen, P. H.-S., & Zhou, X. M. (1999). Temporally patterned pulse trains affect duration tuning characteristics of bat inferior collicular neurons. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 185, 471–478.

    Article  CAS  Google Scholar 

  • Jen, P. H.-S., & Wu, C. H. (2005). The role of GABAergic inhibition in shaping the response size and duration selectivity of bat inferior collicular neurons to sound pulses in rapid sequences. Hearing Research, 202, 222–234.

    Article  CAS  PubMed  Google Scholar 

  • Jen, P. H.-S., & Wu, C. H. (2006). Duration selectivity organization in the inferior colliculus of the big brown bat, Eptesicus fuscus. Brain Research, 1108, 76–87.

    Article  CAS  PubMed  Google Scholar 

  • Jen, P. H.-S., & Wu, C. H. (2008). Echo duration selectivity of the bat varies with pulse-echo amplitude difference. Neuroreport, 19, 373–377.

    Article  PubMed  Google Scholar 

  • Kaiser, J., & Lutzenberger, W. (2005). Human gamma-band activity: a window to cognitive processing. Neuroreport, 16, 207–211.

    Google Scholar 

  • Kalko, E. K. V., & Condon, M. A. (1998). Echolocation, olfaction and fruit display: how bats find fruit of flagellichorous cucurbits. Functional Ecology, 12, 364–372.

    Google Scholar 

  • Kanwal, J. S. (2012). Right-left asymmetry in the cortical processing of sounds for social communication vs. navigation in mustached bats. European Journal of Neuroscience, 35, 257–270.

    Google Scholar 

  • Kanwal, J. S., & Rauschecker, J. P. (2007). Auditory cortex of bats and primates: Managing species-specific calls for social communication. Frontiers in Bioscience, 12, 4621–4640.

    Google Scholar 

  • Kanwal, J. S., Matsumura, S., Ohlemiller, K., & Suga, N. (1994). Analysis of acoustic elements and syntax in communication sounds emitted by mustached bats. Journal of the Acoustical Society of America, 96, 1229–1254.

    Article  CAS  PubMed  Google Scholar 

  • Leary, C. J., Edwards, C. J., & Rose, G. J. (2008). Midbrain auditory neurons integrate excitation and inhibition to generate duration selectivity: an in vivo whole-cell patch study in anurans. The Journal of Neuroscience, 28, 5481–5493.

    Google Scholar 

  • Luo, F., Metzner, W., Wu, F. J., Zhang, S. Y., & Chen, Q. C. (2008). Duration-sensitive neurons in the inferior colliculus of horseshoe bats: Adaptations for using CF-FM echolocation pulses. Journal of Neurophysiology, 99, 284–296.

    Google Scholar 

  • Macías, S., Mora, E. C., Hechavarría, J. C., & Kössl, M. (2011). Duration tuning in the inferior colliculus of the mustached bat. Journal of Neurophysiology, 106, 3119–3128.

    Article  PubMed  Google Scholar 

  • Major, G., & Tank, D. (2004). Persistent neural activity: prevalence and mechanisms. Current Opinion in Neurobiology, 14, 675–684.

    Google Scholar 

  • Medvedev, A. V., & Kanwal, J. S. (2004). Local field potentials and spiking activity in the primary auditory cortex in response to social calls. Journal of Neurophysiology, 92, 52–65.

    Article  PubMed  Google Scholar 

  • Medvedev, A. V., & Kanwal, J. S. (2008). Communication call-evoked gamma-band activity in the auditory cortex of awake bats is modified by complex acoustic features. Brain Research, 1188, 76–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mora, E. C., & Kössl, M. (2004). Ambiguities in sound duration selectivity by neurons in the inferior colliculus of the bat Molossus molossus from Cuba. Journal of Neurophysiology, 91, 2215–2226.

    Article  PubMed  Google Scholar 

  • Morrison, J. A., Faranak, F., Fremouw, T., Sayegh, R., Covey, E., & Faure, P. A. (2014). Organization and trade-off of spectro-temporal tuning properties of duration-tuned neurons in the mammalian inferior colliculus. Journal of Neurophysiology, 111, 2047–2060.

    Article  PubMed  PubMed Central  Google Scholar 

  • Müller, R., & Kuc, R. (2000). Foliage echoes: A probe into the ecological acoustics of bat echolocation. Journal of the Acoustical Society of America, 108, 836–845.

    Google Scholar 

  • Narins, P. M., & Capranica, R. R. (1980). Neural adaptations for processing the two-note call of the Puerto Rican treefrog, Eleutherodactylus coqui. Brain, Behavior and Evolution, 17, 48–66.

    Article  CAS  PubMed  Google Scholar 

  • Naumann, R. T., & Kanwal, J. S. (2011). Basolateral amygdala responds robustly to social calls: Spiking characteristics of single unit activity. Journal of Neurophysiology, 105, 2389–2404.

    Google Scholar 

  • O’Neill, W. E. (1995). The bat auditory cortex. In A. N. Popper & R. R. Fay (Eds.), Hearing by bats (pp. 416–480). New York: Springer.

    Chapter  Google Scholar 

  • Ohlemiller, K. K., Kanwal, J. S., & Suga, N. (1996). Facilitative responses to species-specific calls in cortical FM-FM neurons of the mustached bat. Neuroreport, 7, 1749–1755.

    Article  CAS  PubMed  Google Scholar 

  • Pelletier, J. G., Likhtik, E., Filali, M., & Pare, D. (2005). Lasting increases in basolateral amygdala activity after emotional arousal: Implications for facilitated consolidation of emotional memories. Learning and Memory, 12, 96–102.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peterson, D. C., & Wenstrup, J. J. (2012). Selectivity and persistent firing responses to social vocalizations in the basolateral amygdala. Neuroscience, 217, 154–171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinheiro, A. D., Wu, M., & Jen, P. H.-S. (1991). Encoding repetition rate and duration in the inferior colliculus of the big brown bat, Eptesicus fuscus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 169, 69–85.

    Article  CAS  Google Scholar 

  • Potter, H. D. (1965). Patterns of acoustically evoked discharges of neurons in the mesencephalon of the bullfrog. Journal of Neurophysiology, 28, 1155–1184.

    CAS  PubMed  Google Scholar 

  • Ralston, J. V., & Herman, L. M. (1995). Perception and generalization of frequency contours by a bottle-nosed dolphin (Tursiops truncatus). Journal of Comparative Psychology, 109, 268–277.

    Article  Google Scholar 

  • Razak, K. A., & Fuzessery, Z. M. (2006). Neural mechanisms underlying selectivity for the rate and direction of frequency-modulated sweeps in the auditory cortex of the pallid bat. Journal of Neurophysiology, 96, 1303–1319.

    Article  PubMed  Google Scholar 

  • Razak, K. A., Fuzessery, Z. M., & Lohuis, T. D. (1999). Single cortical neurons serve both echolocation and passive sound localization. Journal of Neurophysiology, 81, 1438–1442.

    CAS  PubMed  Google Scholar 

  • Razak, K. A., Shen, W. M., Zumsteg, T., & Fuzessery, Z. M. (2007). Parallel thalamocortical pathways for echolocation and passive sound localization in a gleaning bat, Antrozous pallidus. The Journal of Comparative Neurology, 500, 322–338.

    Article  PubMed  Google Scholar 

  • Roy, S., & Wang, X. Q. (2012). Wireless multi-channel single unit recording in freely moving and vocalizing primates. Journal of Neuroscience Methods, 203, 28–40.

    Article  PubMed  Google Scholar 

  • Sanderson, M. I., & Simmons, J. A. (2000). Neural responses to overlapping FM sounds in the inferior colliculus of echolocating bats. Journal of Neurophysiology, 83, 1840–1855.

    CAS  PubMed  Google Scholar 

  • Sanderson, M. I., & Simmons, J. A. (2002). Selectivity for echo spectral interference and delay in the auditory cortex of the big brown bat Eptesicus fuscus. Journal of Neurophysiology, 87, 2823–2834.

    PubMed  Google Scholar 

  • Sayegh, R., Aubie, B., & Faure, P. A. (2011). Duration tuning in the auditory midbrain of echolocating and non-echolocating vertebrates. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 197, 571–583.

    Article  PubMed  Google Scholar 

  • Sayegh, R., Aubie, B., Fazel-Pour, S., & Faure, P. A. (2012). Recovery cycle times of inferior colliculus neurons in the awake bat measured with spikes counts and latencies. Frontiers in Neural Circuits, doi: 10.3389/fncir.2012.00056

    PubMed  PubMed Central  Google Scholar 

  • Sayegh, R., Casseday, J. H., Covey, E., & Faure, P. A. (2014). Monaural and binaural inhibition underlying duration-tuned neurons in the inferior colliculus. The Journal of Neuroscience, 34, 481–492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt, S. (1988). Evidence for a spectral basis of texture-perception in bat sonar. Nature, 331, 617–619.

    Article  CAS  PubMed  Google Scholar 

  • Schnitzler, H.-U., Moss, C. F., & Denzinger, A. (2003). From spatial orientation to food acquisition in echolocating bats. Trends in Ecology and Evolution, 18, 386–394.

    Article  Google Scholar 

  • Siemers, B. M., & Schnitzler, H.-U. (2004). Echolocation signals reflect niche differentiation in five species of sympatric congeneric bat species. Nature, 429, 657–661.

    Article  CAS  PubMed  Google Scholar 

  • Simmons, J. A. (1987). Acoustic images of target range in the sonar of bats. Naval Research Reviews, 39, 11–26.

    Google Scholar 

  • Simon, R., Holderied, M. W., Koch, C. U., & von Helversen, O. (2011). Floral acoustics: conspicuous echoes of a dish-shaped leaf attract bat pollinators. Science, 333, 631–633.

    Google Scholar 

  • Sinai, A., Bowers, C. W., Crainiceanu, C. M., Boatman, D., Gordon, B., Lesser, R. P., Lenz, F. A., & Crone, N. E. (2005). Electrocorticographic high gamma activity versus electrical cortical stimulation mapping of naming. Brain, 128, 1556–1570.

    Article  PubMed  Google Scholar 

  • Smith, D. R. R., Patterson, R. D., Turner, R., Kawahara, H., & Irino, T. (2005). The processing and perception of size information in speech sounds. Journal of the Acoustical Society of America, 117, 305–318.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stilz, W. P. (2004). Akustische Untersuchungen zur Echoortung bei Fledermäusen. PhD dissertation, University of Tuebingen, Tuebingen.

    Google Scholar 

  • Suta, D., Popelar, J., & Syka, J. (2008). Coding of communication calls in the subcortical and cortical structures of the auditory system. Physiological Research, 57, 149–159.

    Google Scholar 

  • Sutter, M. L. (2000). Shapes and level tolerances of frequency tuning curves in primary auditory cortex: quantitative measures and population codes. Journal of Neurophysiology, 84, 1012–1025.

    Google Scholar 

  • Ulanovsky, N., & Moss, C. F. (2008). What the bat's voice tells the bat's brain. Proceedings of the National Academy of Sciences of the USA, 105, 8491–8498.

    Google Scholar 

  • Veselka, N., McErlain, D. D., Holdsworth, D. W., Eger, J. L., Chem, R. K., Mason, M. J., Brain, K. L., Faure, P. A., & Fenton, M. B. (2010). A bony connection signals laryngeal echolocation in bats. Nature, 463, 939–942.

    Article  CAS  PubMed  Google Scholar 

  • von Helversen, D. (2004). Object classification by echolocation in nectar feeding bats: size-independent generalization of shape. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 190, 515–521.

    Google Scholar 

  • von Helversen, D., & von Helversen, O. (1999). Acoustic guide in bat-pollinated flower. Nature, 398, 759–760.

    Article  Google Scholar 

  • von Helversen, D., & von Helversen, O. (2003). Object recognition by echolocation: a nectar-feeding bat exploiting the flowers of a rain forest vine. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 189, 327–336.

    Google Scholar 

  • von Helversen, D., Holderied, M. W., & von Helversen, O. (2003). Echoes of bat-pollinated bell-shaped flowers: conspicuous for nectar-feeding bats? Journal of Experimental Biology, 206, 1025–1034.

    Google Scholar 

  • Wang, X. Q. (2000). On cortical coding of vocal communication sounds in primates. Proceedings of the National Academy of Sciences of the USA, 97, 11843–11849.

    Google Scholar 

  • Wang, X., Luo, F., Wu, F. J., Chen, Q.-C., & Jen, P. H.-S. (2008). The recovery cycle of bat duration-selective collicular neurons varies with hunting phase. Neuroreport, 19, 861–865.

    Article  PubMed  Google Scholar 

  • Wang, X., Luo, F., Jen, P. H.-S., & Chen, Q.-C. (2010). Recovery cycle of neurons in the inferior colliculus of the FM bat determined with varied pulse-echo duration and amplitude. Chinese Journal of Physiology, 53, 119–129.

    Article  PubMed  Google Scholar 

  • Washington, S. D., & Kanwal, J. S. (2008). DSCF neurons within the primary auditory cortex of the mustached bat process frequency modulations present within social calls. Journal of Neurophysiology, 100, 3285–3304.

    Article  PubMed  PubMed Central  Google Scholar 

  • Washington, S. D., & Kanwal, J. S. (2012). Sex-dependent hemispheric asymmetries for processing frequency-modulated sounds in the primary auditory cortex of the mustached bat. Journal of Neurophysiology, 108, 1548–1566.

    Article  PubMed  PubMed Central  Google Scholar 

  • Weissenbacher, P., & Wiegrebe, L. (2003). Classification of virtual objects in the echolocating bat, Megaderma lyra. Behavioural Neuroscience, 117, 833–839.

    Article  Google Scholar 

  • Wenstrup, J. J., & Portfors, C. V. (2011). Neural processing of target distance by echolocating bats: functional roles of the auditory midbrain. Neuroscience & Biobehavioral Reviews, 35, 2073–2083.

    Google Scholar 

  • Wright, G. S., Chiu, C., Xian, W., Wilkinson, G. S., & Moss, C. F. (2013). Social calls of flying big brown bats (Eptesicus fuscus). Frontiers in Physiology, doi: 10.3389/fphys.2013.00214

    Google Scholar 

  • Wu, C. H., & Jen, P. H.-S. (2008a). Echo frequency selectivity of duration-tuned inferior collicular neurons of the big brown bat, Eptesicus fuscus, determined with pulse-echo pairs. Neuroscience, 156, 1028–1038.

    Article  CAS  PubMed  Google Scholar 

  • Wu, C. H., & Jen, P. H.-S. (2008b). Bat inferior colliculus neurons have the greatest frequency selectivity when determined with best-duration pulses. Neuroscience Letters, 438, 362–367.

    Article  CAS  PubMed  Google Scholar 

  • Wu, C. H., & Jen, P. H.-S. (2010). A duration coding mechanism underlying bat echo recognition. Adaptive Medicine, 2, 71–77.

    Google Scholar 

  • Yin, S., Chen, Z., Yu, D., Feng, Y., & Wang, J. (2008). Local inhibition shapes duration tuning in the inferior colliculus of guinea pigs. Hearing Research, 237, 32–48.

    Article  PubMed  Google Scholar 

  • Young, E. D., Rice, J. J., & Tong, S. C. (1996). Effects of pinna position on head-related transfer functions in the cat. Journal of the Acoustical Society of America, 99, 3064–3076.

    Article  CAS  PubMed  Google Scholar 

  • Yovel, Y., Franz, M. O., Stilz, P., & Schnitzler, H.-U. (2011). Complex echo classification by echo-locating bats: a review. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 197, 475–490.

    Google Scholar 

  • Zhou, X., & Jen, P. H.-S. (2001). The effect of sound intensity on duration-tuning characteristics of bat inferior collicular neurons. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 187, 63–73.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank our undergraduate and graduate students, postdoctoral fellows, research collaborators, and colleagues for their assistance, support, and friendship. Research in the McMaster Bat Lab is supported by Discovery Grants from the Natural Sciences and Engineering Research Council (NSERC) of Canada, an Open Operating Grant from the Institute of Neurosciences, Mental Health and Addiction at the Canadian Institutes of Health Research (CIHR), and by infrastructure grants from the Canada Foundation for Innovation and the Ontario Innovation Trust. U. Firzlaff (Lehrstuhl für Zoologie, Technische Universität München) is supported is supported by grants from the Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Faure .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Faure, P.A., Firzlaff, U. (2016). Neural Coding of Signal Duration and Complex Acoustic Objects. In: Fenton, M., Grinnell, A., Popper, A., Fay, R. (eds) Bat Bioacoustics. Springer Handbook of Auditory Research, vol 54. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3527-7_7

Download citation

Publish with us

Policies and ethics