Skip to main content

A History of the Study of Echolocation

  • Chapter
  • First Online:
Bat Bioacoustics

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 54))

Abstract

The discovery of echolocation by Griffin and Galambos in 1938 was the first step in what has become arguably the greatest triumph of neuroethology. This chapter reviews early developments in the field through about 1980: Griffin’s discovery that bats not only use echoes to detect obstacles but also to track flying insects on the wing; research proving that bats use pulse-echo delay to determine target distance; a variety of ingenious early experiments used to measure the accuracy of bats’ echolocation skills; and the first electrophysiological forays into elucidating key neural adaptations that helped to account for these abilities. Furthermore, early observations showed that bats of different species use different types of signals and different principles of echo analysis to operate in different ecological niches. The field has grown exponentially since the 1980s, with bursts of productivity tied to technological advances and to new young investigators and new labs joining the search for answers to how bats (and now toothed whales) echolocate. The ensuing chapters in this volume bring the field up to date, but we realize that this is still only a middle stage in what seems to be an endlessly fascinating subject.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlén, L. (1981). Identification of Scandinavian bats by their sounds. Sveriges Lantbruksuniversitet, Institutionen för Viltekologi, 6, Uppsala.

    Google Scholar 

  • Baerwald, E. F., & Barclay, R. M. R. (2011). Patterns of activity and fatality of migratory bats at a wind energy facility in Alberta, Canada. Journal of Wildlife Management, doi:10.1002/jwmg.147

    Google Scholar 

  • Barbellion, W. N. P. (1920). Enjoying life and other literary remains of W. N. P. Barbellion. New York: George H Coran Co. [Barbellion was the nom-de-plume for Bruce Frederick Cummings]

    Google Scholar 

  • Barclay, R. M. R. (1999). Bats are not birds—a cautionary note on using echolocation calls to identify bats: A comment. Journal of Mammalogy, 80, 290–296.

    Article  Google Scholar 

  • Barclay, R. M. R. (2009). Causes of bat fatalities at wind turbines: Hypotheses and predictions. Journal of Mammalogy, 90, 1330–1340.

    Article  Google Scholar 

  • Bates, M. E., & Simmons, J. A. (2011). Perception of echo delay is disrupted by small temporal misalignment of echo harmonics in bat sonar. Journal of Experimental Biology, 214, 394–401.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brinkløv, S., Kalko, E. K. V., & Surlykke, A. (2009). Intense echolocation calls from two ‘whispering’ bats, Artibeus jamaicensis and Macrophyllum macrophyllum (Phyllostomidae). Journal of Experimental Biology, 212, 11–20.

    Google Scholar 

  • Brinkløv, S., Kalko, E. K. V., & Surlykke, A. (2010). Dynamic adjustment of biosonar intensity to habitat clutter in the bat Macrophyllum macrophyllum (Phyllostomidae). Behavioral Ecology and Sociobiology, 64, 1867–187.

    Article  Google Scholar 

  • Brinkløv, S., Jakobsen, L., Ratcliffe, J. M., Kalko, E. K. V., & Surlykke, A. (2011). Echolocation call intensity and directionality in flying short-tailed fruit bats, Carollia perspicillata (Phyllostomidae). The Journal of the Acoustical Society of America, 129, 427–435.

    Article  PubMed  Google Scholar 

  • Chiu, C., Reddy P. V., Xian, X., Krishnaprasad, P. S., & Moss, C.F. (2010). Effects of competitive prey capture on flight behavior and sonar beam pattern in paired big brown bats, Eptesicus fuscus. Journal of Experimental Biology, 213, 3348–3356.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dijkgraaf, S. (1943). Over een merkwaardige functie van den gehoorzin bij vleermuizen. Verslagen Nederlandsche Akademie van Wetenschappen. Afd. Naturkunde, 52, 622–7. (Cited in Griffin, 1958)

    Google Scholar 

  • Dzal, Y. L., McGuire, L. P., Veselka, N., & Fenton, M. B. (2011). Going, going, gone: The impact of white-nose syndrome on the summer activity of the little brown bat (Myotis lucifugus). Biology Letters, 7, 392–394.

    Article  PubMed  PubMed Central  Google Scholar 

  • Erickson, J. L., & West, S. D. (2002). Associations of bats with local structure and landscape features of forested stands in western Oregon and Washington. Biological Conservation, 109, 95–102.

    Article  Google Scholar 

  • Fenton, M. B. (1970). A technique for monitoring bat activity with results obtained from different environments in southern Ontario. Canadian Journal of Zoology, 48, 847–851.

    Article  Google Scholar 

  • Fenton, M. B. (1999). Describing the echolocation calls and behavior of bats. Acta Chiropterologica, 1, 127–136.

    Google Scholar 

  • Fenton, M. B., & Bell, G. P. (1981). Recognition of species of insectivorous bats by their echolocation calls. Journal of Mammalogy, 62, 233–243.

    Article  Google Scholar 

  • Fenton, M. B., Skowronski, M. D., McGuire, L. P., & Faure, P. A. (2011). Variation in the use of harmonics in the calls of laryngeally echolocating bats. Acta Chiropterologica, 13, 169–178.

    Article  Google Scholar 

  • Fenton, M. B., Faure, P. A., & Ratcliffe, J. R. (2012). Evolution of high duty cycle echolocation in bats. Journal of Experimental Biology, 215, 2935–2944.

    Article  PubMed  Google Scholar 

  • Galambos, R., & Griffin, D. R. (1942). Obstacle avoidance by flying bats: The cries of bats. Journal of Experimental Zoology, 89, 475–490.

    Article  Google Scholar 

  • Gillam, E. H., & McCracken, G. F. (2007). Variability in the echolocation of Tadarida brasiliensis: Effects of geography and local acoustic environment. Animal Behaviour, 74, 277–286.

    Article  Google Scholar 

  • Goertlitz, H. R., ter Hofstede, H. M., Zeale, M. R. K., Jones, G., & Holderied, M. W. (2010). An aerial hawking bat uses stealth echolocation to counter moth hearing. Current Biology, 20, 1568–1572.

    Article  Google Scholar 

  • Görner, P., Coombs, S., & Atema, J. (1996). Sven Dijkgraaf 1908–1995. Brain, Behavior and Evolution, 48, 350–358.

    Article  PubMed  Google Scholar 

  • Griffin, D. R. (1934). Marking bats. Journal of Mammalogy, 15, 202–207.

    Article  Google Scholar 

  • Griffin, D. R. (1953). Bat sounds under natural conditions, with evidence for echolocation of insect prey. Journal of Experimental Zoology, 123, 435–66.

    Article  Google Scholar 

  • Griffin D. R. (1958). Listening in the dark: The acoustic orientation of bats and men. New Haven, CT: Yale University Press.

    Google Scholar 

  • Griffin, D. R. (1983). Scientific recollections. In D. A. Dewsbury (Ed.), Autobiographies in animal behavior (pp. 120–142). Bucknell: Bucknell University Press (reprinted by U. Chicago Press, 1985, Studying animal behavior)

    Google Scholar 

  • Griffin D. R. (1998). Donald R. Griffin. In L.R. Squire (Ed.), Volume 2 of The history of neuroscience in autobiography (pp. 68–93). New York: Academic Press.

    Google Scholar 

  • Griffin, D. R., & Galambos, R. (1940). Obstacle avoidance by flying bats. Anatomical Record, 78, 95.

    Google Scholar 

  • Griffin, D. R., & Galambos, R. (1941). The sensory basis of obstacle avoidance by flying bats. Journal of Experimental Zoology, 86: 481–506.

    Article  Google Scholar 

  • Griffin, D. R., & Grinnell, A. D. (1958). Ability of bats to discriminate echoes from louder noise. Science, 128, 145–147.

    Article  CAS  PubMed  Google Scholar 

  • Griffin, D. R., McCue, J. J. G., & Grinnell, A. D. (1963). The resistance of bats to jamming. Journal of Experimental Zoology, 152, 229–250. (With added discussion published as Technical Report #285, MIT Lincoln Laboratory, October 1962)

    Google Scholar 

  • Griffin, D. R., Webster, F. A., & Michael, C. R. (1960). The echolocation of flying insects by bats. Animal Behaviour, 8, 141–154.

    Article  Google Scholar 

  • Grinnell, A. D. (1963). The neurophysiology of audition in bats. Journal of Physiology, 167, 38–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grinnell, A. D. (1966). Mechanisms of overcoming interference in echolocating animals. In R.- G. Busnel (Ed.), Animal sonar systems (pp. 451–481). Jouy-en-Josas, France: Imprimerie Louis Jean (Gap).

    Google Scholar 

  • Grinnell, A. D. (1970). Comparative auditory neurophysiology of neotrophical bats employing different echolocation signals. Zeitschrift fur Vergleithende Physiologie, 68, 117–153.

    Article  Google Scholar 

  • Grinnell, A. D., & Griffin, D. R. (1958). The sensitivity of echolocation in bats. Biological Bulletin, 114, 10–22.

    Article  Google Scholar 

  • Grinnell, A.D., & Grinnell, V.S. (1965). Neural correlates of vertical localization by echolocating bats. Journal of Physiology, London, 181: 830–851.

    Google Scholar 

  • Grinnell, A. D., & McCue, J. J. G. (1963). Neurophysiological investigations of the bat, Myotis lucifugus, stimulated by frequency modulated acoustical pulses. Nature, 198, 453–455.

    Article  Google Scholar 

  • Gross, C. G. (2005). Biographical memoirs, Volume 86 (pp. 188–207). Washington, DC: National Academies Press.

    Google Scholar 

  • Guillén-Servent, A., & Ibáñez, C. (2007). Unusual echolocation behaviour in a small molossid bat, Molossops temminckii, that forages near background clutter. Behavioral Ecology and Sociobiology, 61, 1599–1613.

    Article  Google Scholar 

  • Hartridge, H. (1920). The avoidance of objects by bats in their flight. Nature, 54, 54–57.

    CAS  Google Scholar 

  • Henson, O. W. (1965). Activity and function of middle-ear muscles in echolocating bats. Journal of Physiology, London, 180, 871–887.

    Article  Google Scholar 

  • Hiryu, S., Bates, M. E., Simmons, J. A., & Riquimaroux, H. (2010). FM broadcasting bats shift frequencies to avoid broadcast-echo ambiguity in clutter. Proceedings of the National Academy of Sciences of the USA, 107, 7048–7053.

    Google Scholar 

  • Ho, Y-Y., Fang, Y-P., Chou, C-H., Cheng, H-S., & Chang, H-W. (2013). High duty cycle to low duty cycle: Echolocation behaviour of the hipposiderid bat Coelops frithii. PLoS ONE, 8(5), e62938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holderied, M., Korin, C., & Moritz, T. (2011). Hemprich’s long-eared bat (Otonycteris hemprichii) as a predator of scorpions: Whispering echolocation, passive gleaning and prey selection. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 197, 425–433.

    Article  PubMed  Google Scholar 

  • Hooper, J. D. H. (1964). Bats and the amateur naturalist. Studies in Speleology, 1, 9–15.

    Google Scholar 

  • Jung, K., Kalko, E. K. V., & von Helversen, O. (2007). Echolocation calls in Central American emballonurid bats: Signal design and call frequency alternation. Journal of Zoology, 272, 125–137.

    Article  Google Scholar 

  • Kalko, E. K. V. (1995). Insect pursuit, prey capture and echolocation in Pipistrelle bats (Microchiroptera). Animal Behaviour, 50, 861–880.

    Article  Google Scholar 

  • Kick, S. A. (1982). Target-detection by the echolocating bat, Eptesicus fuscus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 145, 431–435.

    Article  Google Scholar 

  • Lacki, M. J., Cox, D. R., Dodd, L. E. & Dickinson, M. B. (2009). Response of northern long-eared bats (Myotis septentrionalis) to prescribed fires in eastern Kentucky forests. Journal of Mammalogy, 90, 1165–1175.

    Article  Google Scholar 

  • Lazure, L., & Fenton, M. B. (2011). High duty cycle echolocation and prey detection by bats. Journal of Experimental Biology, 214, 1131–1137.

    Google Scholar 

  • MacArthur, C. W. P. (2000). Louis Jurine’s papers on the hearing of bats and on their parasites: A retrospective with new information. Le Rhinolophe, 14, 1–35.

    Google Scholar 

  • Maxim, H. (1912). The sixth sense of the bat. Sir Hiram’s contention. The possible prevention of sea collisions. Scientific American, Suppl. Sept. 7, 148–150.

    Google Scholar 

  • Möhres, F. P. (1951). Uber eine neue Art von Ultraschall-Orientierung bein Fledermausen. Verhandlungen der deutschen zoologischen Gesselschaft in Wilhelmshaven (pp. 179–86). (cited in Griffin, 1958)

    Google Scholar 

  • Möhres, F. P. (1953). Über die Ultraschallorientierung der Hufeisennasen (Chiroptera-Rhinolophinae). Zeitschrift fur Vergleichende Physiologie, 34, 547–588.

    Article  Google Scholar 

  • Mora, E. C., & Macias, S. (2007). Echolocation calls of Poey’s flower bat (Phyllonycteris poeyi) unlike those of other phyllostomids. Naturwissenschaften, 94, 380–383.

    Article  CAS  PubMed  Google Scholar 

  • Mora, E. C., Ibanez, C., Macias, S., Juste, J., Lopez, I., & Torres, L. (2011). Plasticity in the echolocation inventory of Mormopterus minutus (Chiroptera, Molossidae). Acta Chiropterologica, 13, 179–187.

    Article  Google Scholar 

  • Moss, C.F., Bohn, K., Gilkenson, H., & Surlykke, A. (2006). Active listening for spatial orientation in a complex auditory scene. PLoS ONE, 4, 1–12.

    Google Scholar 

  • Moss, C. F., Chiu, C., & Surlykke, A. (2011). Adaptive vocal behavior drives perception by echolocation in bats. Current Opinion in Neurobiology, 21, 645–652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neuweiler, G. (1970). Neurophysiologische Untersuchungen zum Echo-ortungssystem der Grossen Hufeisennase Rhinoloophus ferrumequinum. Zeitschrift vergleichende Physiologie, 67, 273–306.

    Article  Google Scholar 

  • Neuweiler, G., Bruns, V., & Schuller, G. (1980). Ears adapted for the detection of motion, or how echolocating bats have exploited the capacities of the mammalian auditory system. The Journal of the Acoustical Society of America, 68, 741–753.

    Article  Google Scholar 

  • Neuweiler, G., Schuller, G., & Schnitzler, H.-U. (1971). On- and off- responses in the inferior colliculus of the greater horseshoe bats to pure tones. Zeitschrift Vergleichende Physiologie, 74, 57–63.

    Article  Google Scholar 

  • Novick, A. (1977). Acoustic orientation. In W.A. Wimsatt (Ed.), Biology of bats. Vol. 3 (pp. 73–287). New York: Academic Press.

    Google Scholar 

  • Novick, A. (1958a). Orientation in Paleotropical bats. II. Megachiroptera. Journal of Experimental Zoology, 137, 443–462.

    Google Scholar 

  • Novick, A. (1958b). Orientation in Paleotropical bats. I. Microchiroptera. Journal of Experimental Zoology, 138, 81–154.

    Google Scholar 

  • Novick, A. (1962). Orientation in Neotropical bats. I. Natalidae and Emballonuridae. Journal of Mammalogy, 43, 449–455.

    Google Scholar 

  • Novick, A., (1963). Orientation in Neotropical bats. II. Phyllostomatidae and Desmodontidae. Journal of Mammalogy, 44, 44–56.

    Google Scholar 

  • Patriquin, K. J., & Barclay, R. M. R. (2003). Foraging by bats in cleared, thinned and unharvested boreal forest. Journal of Applied Ecology, 40, 646–657.

    Article  Google Scholar 

  • Pierce, G. W., & Griffin, D. R. (1938). Experimental determination of supersonic notes emitted by bats. Journal of Mammalogy, 19, 454–455.

    Article  Google Scholar 

  • Pollak, G. D., Henson, O. W., Jr., & Novick, A. (1972). Cochlear microphonic audiograms in the ‘pure tone’ bat, Chilonycteris parnellii parnellii. Science, 176, 66–68.

    Article  CAS  PubMed  Google Scholar 

  • Popper, A. N., & Fay, R. R. (Eds). (1995). Hearing by bats. New York: Springer-Verlag.

    Google Scholar 

  • Pye, A. (1966a). The structure of the cochlea in Chiroptera. Microchiroptera. Journal of Morphology, 118, 495–510.

    Google Scholar 

  • Pye, A. (1966b) The Megachiroptera and Vespertilionidae of the Microchiroptera. Journal of Morphology, 119, 101–120.

    Google Scholar 

  • Pye, A. (1967). The structure of the cochlea in Chiroptera. Phyllostomatoidea. Journal of Morphology, 119, 241–254.

    Article  Google Scholar 

  • Pye, J. D. (1960). A theory of echolocation by bats. Journal of Laryngology and Otology, 74, 718–729.

    Article  CAS  PubMed  Google Scholar 

  • Pye, J. D., & Flinn, M. (1964). Equipment for detecting animal ultrasound. Ultrasonics, 2, 23–28.

    Article  Google Scholar 

  • Randall, L.A., Barclay, R. M. R., Reid, M. L. & Jung, T.S. (2011). Recent infestation of forest stands by spruce beetles does not predict habitat use by little brown bats (Myotis lucifugus) in southwestern Yukon, Canada. Forest Ecology and Management, 261, 1950–1956.

    Article  Google Scholar 

  • Schuller, G., & Pollak, G. (1979). Disproportionate frequency representation in the inferior colliculus of horseshoe bats: Evidence for an “acoustic fovea”. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 132, 47–54.

    Article  Google Scholar 

  • Schnitzler, H.-U. (1967). Discrimination of thin wires by flying horseshoe bats (Rhiolophidae). In R.-G. Busnel (Ed.), Animal sonar systems, Volume I (pp. 69–87). Juoy-en-Josas, France: Laboratoire de Physiologie Acoustique.

    Google Scholar 

  • Schnitzler, H.-U. (1968). Die Ultraschall-Ortungslaute der Hufeisen-Fledermause (Chiroptera-Rhinolophidae) und der Mehanismus der Bildhorens. Zeitschrift fur Vergleichende Physiologie, 57, 376–408.

    Article  Google Scholar 

  • Schnitzler, H.-U. (1973). Control of Doppler shift compensation in the greater horseshoe bat, Rhinolophus ferrumequinum. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 82, 79–92.

    Google Scholar 

  • Schnitzler, H.-U., & Kalko, E. K. V. (2001). Echolocation by insect-eating bats. BioScience, 51, 557–569.

    Article  Google Scholar 

  • Schnitzler, H.-U., & Denzinger, A. (2011). Auditory fovea and Doppler shift compensation: Adaptations for flutter detection in echolocating bats using CF-FM signals. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 197, 541–559.

    Article  PubMed  Google Scholar 

  • Schnitzler H-U., Suga, N., & Simmons, J. A. (1976). Peripheral auditory tuning for fine frequency analysis by the CF-FM bat, Rhinolophus ferrumequinum. Journal of Comparative Physiology, 106, 99–110.

    Article  Google Scholar 

  • Schuller, G., Beutner, K. & Schnitzler, H.-U. (1974). Response to frequency-shifted artificial echoes in the bat, Rhinlophus ferrumequinum. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 89, 275–286.

    Google Scholar 

  • Schuller, G., & Pollak, G.D. (1979). Disproportionate frequency representation in the inferior colliculus of horseshoe bats: Evidence for an “acoustic fovea”. Journal of Comparative Physiology, 132,121–128.

    Google Scholar 

  • Siemers, B. M., & Schnitzler, H.-U. (2000). Natterer's bat (Myotis nattereri Kuhl 1818) hawks for prey close to vegetation using echolocation signals of very broad bandwidth. Behavioral Ecology and Sociobiology, 47, 400–412.

    Article  Google Scholar 

  • Siemers, B. M., Kalko, E. K. V., & Schnitzler, H.-U. (2001). Echolocation behavior and signal plasticity in the Neotropical bat Myotis nigricans (Schinz, 1821) (Vespertilionidae): A convergent case with European species of Pipistrellus? Behavioral Ecology and Sociobiology, 50, 317–328.

    Article  Google Scholar 

  • Simmons, J.A. (1973). The resolution of target range by echolocating bats. Journal of the Acoustical Society of America, 54, 157–173.

    Article  CAS  PubMed  Google Scholar 

  • Simmons, J.A. (1979). Perception of echo phase in bat sonar. Science, 204, 1336–1338.

    Article  CAS  PubMed  Google Scholar 

  • Simmons, J. A., & Stein, R. A. (1980). Acoustic imaging in bat sonar: Echolocation signals and the evolution of echolocation. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 135, 61–84.

    Article  Google Scholar 

  • Suga, N. (1964). Recovery cycles and responses to frequency-modulated tone pulses in auditory neurons of echolocating bats. Journal of Physiology, London, 175, 50–80.

    Google Scholar 

  • Suga, N. (1984). The extent to which biosonar information is represented in the bat auditory cortex. In G. M. Edelman, W. E. Gall, & W. M. Cowan (Eds.), Dynamic aspects of neocortical function (pp. 315–373). New York: John Wiley & Sons, Inc.

    Google Scholar 

  • Suga, N., & Jen, PH- S. (1975). Peripheral control of acoustic-signals in auditory system of echolocating bats. Journal of Experimental Biology, 62, 277–311.

    Google Scholar 

  • Suga, N., & Jen, PH- S. (1977). Further studies on the peripheral auditory system of ‘CF-FM’ bats specialized for fine frequency analysis of Doppler-shifted echoes. Journal of Experimental Biology, 69, 207–232.

    Google Scholar 

  • Suga, N., & O’Neill, W. E. (1979). Neural axis representing target range in the auditory cortex of the mustached bat. Science, 177, 82–84.

    Article  Google Scholar 

  • Suga, N., & Schlegel, F. (1973). Coding and processing in the auditory systems of FM-signal producing bats. Journal of the Acoustical Society of America, 54, 174–190.

    Google Scholar 

  • Suga, N., Simmons, J. A. & Jen, P. H-S. (1975). Peripheral specialization for fine analysis of Doppler shifted echoes in the auditory system of the CF-FM bat Pteronotus parnellii. Journal of Experimental Biology, 63, 161–192.

    CAS  PubMed  Google Scholar 

  • Surlykke, A., & Kalko, E. K. V. (2008). Echolocating bats cry out loud to detect their prey. PLoS ONE, 3(4), e2036.

    Article  PubMed  PubMed Central  Google Scholar 

  • Webster, F. A. (1967). Performance of echolocating bats in the presence of interference. In R.-G. Busnel (Ed.) Animal sonar systems: Biology and bionics (pp. 673–713). Jouy-en-Josas-78, France: Laboratoire de Physiologie Acoustique.

    Google Scholar 

  • Webster, F. A., & Brazier, O. G. (1965). Experimental studies on echolocation mechanisms in bats. Aerospace Medical Research Laboratories, Wright-Patterson Air Force Base, Ohio, AD 673373.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan D. Grinnell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grinnell, A.D., Gould, E., Fenton, M.B. (2016). A History of the Study of Echolocation. In: Fenton, M., Grinnell, A., Popper, A., Fay, R. (eds) Bat Bioacoustics. Springer Handbook of Auditory Research, vol 54. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3527-7_1

Download citation

Publish with us

Policies and ethics