Skip to main content

Genome Editing for Neuromuscular Diseases

  • Chapter
  • First Online:
Genome Editing

Abstract

Neuromuscular diseases are a diverse range of conditions that include myopathic and neuropathic disorders related to muscular dysfunction. Inherited neuromuscular diseases are the result of a broad spectrum of genetic mutations, including point mutations, insertions and deletions, chromosomal rearrangements, epigenetic aberrations, and repeat expansions or contractions. Targeted genome editing is a promising method to correct the inherited mutations underlying these disorders. Over the last decade there have been many significant advances in engineering targeted DNA-binding proteins to manipulate specific sequences of complex genomes. These genome editing tools are rapidly becoming viable therapeutics that will allow the targeted addition, exchange, or removal of almost any genetic sequence in the human genome. In this chapter, selected neuromuscular diseases representing inherited myopathies or neuropathies are discussed. The genome editing tools available to create targeted genetic modifications are reviewed. Promising cell- and gene-based therapies are introduced in the context of the treatment of neuromuscular disorders in combination with genome editing therapies. Finally, specific examples of how genome editing may be applied to correct the genetic basis of particular neuromuscular disorders are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAV:

Adeno-associated virus

BMD:

BECKER muscular dystrophy

CRISPR:

Clustered regularly interspaced short palindromic repeats

DM:

Myotonic dystrophy

DMD:

Duchenne muscular dystrophy

DSB:

Double-strand break

FSHD:

Fascioscapulohumeral dystrophy

gRNA:

Guide RNA

HDR:

Homology-directed repair

HT:

Huntington’s disease

iPSC:

Induced pluripotent stem cell

LGMD2B:

Limb-girdle muscular dystrophy type 2B

MGN:

Meganuclease

MM:

Miyoshi myopathy

NHEJ:

Non-homologous end joining

RVD:

Repeat variable diresidue

SMA:

Spinal muscular atrophy

ssODN:

Single-strand oligodeoxynucleotide

TALEN:

Transcription activator-like effector nuclease

ZFN:

Zinc finger nuclease

References

  1. Leung DG, Wagner KR. Therapeutic advances in muscular dystrophy. Ann Neurol. 2013;74(3):404–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Peeters K, Chamova T, Jordanova A. Clinical and genetic diversity of SMN1-negative proximal spinal muscular atrophies. Brain. 2014;137(Pt 11):2879–96.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Farrar MA, Kiernan MC. The genetics of spinal muscular atrophy: progress and challenges. Neurotherapeutics. 2015;12(2):290–302.

    Article  CAS  PubMed  Google Scholar 

  4. Konieczny P, Swiderski K, Chamberlain JS. Gene and cell-mediated therapies for muscular dystrophy. Muscle Nerve. 2013;47(5):649–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang B, Li J, Xiao X. Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. Proc Natl Acad Sci U S A. 2000;97(25):13714–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pichavant C, Aartsma-Rus A, Clemens PR, Davies KE, Dickson G, Takeda S, et al. Current status of pharmaceutical and genetic therapeutic approaches to treat DMD. Mol Ther. 2011;19(5):830–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Qiao C, Koo T, Li J, Xiao X, Dickson JG. Gene therapy in skeletal muscle mediated by adeno-associated virus vectors. Methods Mol Biol. 2011;807:119–40.

    Article  CAS  PubMed  Google Scholar 

  8. Harper SQ, Hauser MA, DelloRusso C, Duan D, Crawford RW, Phelps SF, et al. Modular flexibility of dystrophin: implications for gene therapy of Duchenne muscular dystrophy. Nat Med. 2002;8(3):253–61.

    Article  CAS  PubMed  Google Scholar 

  9. Ruszczak C, Mirza A, Menhart N. Differential stabilities of alternative exon-skipped rod motifs of dystrophin. Biochim Biophys Acta. 2009;1794(6):921–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lu QL, Yokota T, Takeda S, Garcia L, Muntoni F, Partridge T. The status of exon skipping as a therapeutic approach to Duchenne muscular dystrophy. Mol Ther. 2010;19(1):9–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Cirak S, Arechavala-Gomeza V, Guglieri M, Feng L, Torelli S, Anthony K, et al. Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet. 2011;378(9791):595–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Goemans NM, Tulinius M, van den Akker JT, Burm BE, Ekhart PF, Heuvelmans N, et al. Systemic administration of PRO051 in Duchenne’s muscular dystrophy. N Engl J Med. 2011;364(16):1513–22.

    Article  CAS  PubMed  Google Scholar 

  13. van Deutekom JC, Janson AA, Ginjaar IB, Frankhuizen WS, Aartsma-Rus A, Bremmer-Bout M, et al. Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med. 2007;357(26):2677–86.

    Article  PubMed  Google Scholar 

  14. Long C, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R, Olson EN. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science. 2014;345(6201):1184–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ousterout DG, Perez-Pinera P, Thakore PI, Kabadi AM, Brown MT, Qin X, et al. Reading frame correction by targeted genome editing restores dystrophin expression in cells from Duchenne muscular dystrophy patients. Mol Ther. 2013;21(9):1718–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ousterout DG, Kabadi AM, Thakore PI, Perez-Pinera P, Brown MT, Majoros WH, et al. Correction of dystrophin expression in cells from duchenne muscular dystrophy patients through genomic excision of exon 51 by zinc finger nucleases. Mol Ther. 2015;23(3):523–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ousterout DG, Kabadi AM, Thakore PI, Majoros WH, Reddy TE, Gersbach CA. Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat Commun. 2015;6:6244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li HL, Fujimoto N, Sasakawa N, Shirai S, Ohkame T, Sakuma T, et al. Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Reports. 2015;4(1):143–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Popplewell L, Koo T, Leclerc X, Duclert A, Mamchaoui K, Gouble A, et al. Gene correction of a duchenne muscular dystrophy mutation by meganuclease-enhanced exon knock-in. Hum Gene Ther. 2013;24(7):692–701.

    Article  CAS  PubMed  Google Scholar 

  20. Benabdallah BF, Duval A, Rousseau J, Chapdelaine P, Holmes MC, Haddad E, et al. Targeted gene addition of microdystrophin in mice skeletal muscle via human myoblast transplantation. Mol Ther Nucleic Acids. 2013;2, e68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Barthelemy F, Wein N, Krahn M, Levy N, Bartoli M. Translational research and therapeutic perspectives in dysferlinopathies. Mol Med. 2011;17(9-10):875–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bansal D, Miyake K, Vogel SS, Groh S, Chen CC, Williamson R, et al. Defective membrane repair in dysferlin-deficient muscular dystrophy. Nature. 2003;423(6936):168–72.

    Article  CAS  PubMed  Google Scholar 

  23. Rahimov F, Kunkel LM. The cell biology of disease: cellular and molecular mechanisms underlying muscular dystrophy. J Cell Biol. 2013;201(4):499–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Aartsma-Rus A, Singh KH, Fokkema IF, Ginjaar IB, van Ommen GJ, den Dunnen JT, et al. Therapeutic exon skipping for dysferlinopathies? Eur J Hum Genet. 2010;18(8):889–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nelson DL, Orr HT, Warren ST. The unstable repeats—three evolving faces of neurological disease. Neuron. 2013;77(5):825–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mahadevan M, Tsilfidis C, Sabourin L, Shutler G, Amemiya C, Jansen G, et al. Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene. Science. 1992;255(5049):1253–5.

    Article  CAS  PubMed  Google Scholar 

  27. Turner C, Hilton-Jones D. The myotonic dystrophies: diagnosis and management. J Neurol Neurosurg Psychiatry. 2010;81(4):358–67.

    Article  PubMed  Google Scholar 

  28. Kumar A, Agarwal S, Agarwal D, Phadke SR. Myotonic dystrophy type 1 (DM1): a triplet repeat expansion disorder. Gene. 2013;522(2):226–30.

    Article  CAS  PubMed  Google Scholar 

  29. Lemmers RJ, van der Vliet PJ, Klooster R, Sacconi S, Camano P, Dauwerse JG, et al. A unifying genetic model for facioscapulohumeral muscular dystrophy. Science. 2010;329(5999):1650–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Snider L, Geng LN, Lemmers RJ, Kyba M, Ware CB, Nelson AM, et al. Facioscapulohumeral dystrophy: incomplete suppression of a retrotransposed gene. PLoS Genet. 2010;6(10), e1001181.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Arnold WD, Burghes AH. Spinal muscular atrophy: development and implementation of potential treatments. Ann Neurol. 2013;74(3):348–62.

    Article  CAS  PubMed  Google Scholar 

  32. Seo J, Howell MD, Singh NN, Singh RN. Spinal muscular atrophy: an update on therapeutic progress. Biochim Biophys Acta. 2013;1832(12):2180–90.

    Article  CAS  PubMed  Google Scholar 

  33. Jonson I, Ougland R, Larsen E. DNA repair mechanisms in Huntington’s disease. Mol Neurobiol. 2013;47(3):1093–102.

    Article  CAS  PubMed  Google Scholar 

  34. Rubinsztein DC, Leggo J, Coles R, Almqvist E, Biancalana V, Cassiman JJ, et al. Phenotypic characterization of individuals with 30-40 CAG repeats in the Huntington disease (HD) gene reveals HD cases with 36 repeats and apparently normal elderly individuals with 36-39 repeats. Am J Hum Genet. 1996;59(1):16–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ross CA, Tabrizi SJ. Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 2011;10(1):83–98.

    Article  CAS  PubMed  Google Scholar 

  36. Mittelman D, Moye C, Morton J, Sykoudis K, Lin Y, Carroll D, et al. Zinc-finger directed double-strand breaks within CAG repeat tracts promote repeat instability in human cells. Proc Natl Acad Sci U S A. 2009;106(24):9607–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gaj T, Gersbach CA, Barbas 3rd CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31(7):397–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Perez-Pinera P, Ousterout DG, Gersbach CA. Advances in targeted genome editing. Curr Opin Chem Biol. 2012;16(3-4):268–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nat Rev Genet. 2010;11(9):636–46.

    Article  CAS  PubMed  Google Scholar 

  40. Joung JK, Sander JD. TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol. 2013;14(1):49–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mussolino C, Cathomen T. TALE nucleases: tailored genome engineering made easy. Curr Opin Biotechnol. 2012;23(5):644–50.

    Article  CAS  PubMed  Google Scholar 

  42. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339(6121):823–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. RNA-programmed genome editing in human cells. Elife. 2013;2, e00471.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213):1258096.

    Article  PubMed  CAS  Google Scholar 

  46. Cho SW, Kim S, Kim JM, Kim JS. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol. 2013;31(3):230–2.

    Article  CAS  PubMed  Google Scholar 

  47. Cox DB, Platt RJ, Zhang F. Therapeutic genome editing: prospects and challenges. Nat Med. 2015;21(2):121–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Redondo P, Prieto J, Munoz IG, Alibes A, Stricher F, Serrano L, et al. Molecular basis of xeroderma pigmentosum group C DNA recognition by engineered meganucleases. Nature. 2008;456(7218):107–11.

    Article  CAS  PubMed  Google Scholar 

  49. Bertoni C, Rando TA. Dystrophin gene repair in mdx muscle precursor cells in vitro and in vivo mediated by RNA-DNA chimeric oligonucleotides. Hum Gene Ther. 2002;13(6):707–18.

    Article  CAS  PubMed  Google Scholar 

  50. Kayali R, Bury F, Ballard M, Bertoni C. Site-directed gene repair of the dystrophin gene mediated by PNA-ssODNs. Hum Mol Genet. 2010;19(16):3266–81.

    Article  CAS  PubMed  Google Scholar 

  51. Quenneville SP, Chapdelaine P, Rousseau J, Beaulieu J, Caron NJ, Skuk D, et al. Nucleofection of muscle-derived stem cells and myoblasts with phiC31 integrase: stable expression of a full-length-dystrophin fusion gene by human myoblasts. Mol Ther. 2004;10(4):679–87.

    Article  CAS  PubMed  Google Scholar 

  52. Bertoni C, Jarrahian S, Wheeler TM, Li Y, Olivares EC, Calos MP, et al. Enhancement of plasmid-mediated gene therapy for muscular dystrophy by directed plasmid integration. Proc Natl Acad Sci U S A. 2006;103(2):419–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gaj T, Mercer AC, Gersbach CA, Gordley RM, Barbas 3rd CF. Structure-guided reprogramming of serine recombinase DNA sequence specificity. Proc Natl Acad Sci U S A. 2011;108(2):498–503.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Gersbach CA, Gaj T, Gordley RM, Barbas 3rd CF. Directed evolution of recombinase specificity by split gene reassembly. Nucleic Acids Res. 2010;38(12):4198–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gersbach CA, Gaj T, Gordley RM, Mercer AC, Barbas 3rd CF. Targeted plasmid integration into the human genome by an engineered zinc-finger recombinase. Nucleic Acids Res. 2011;39(17):7868–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mercer AC, Gaj T, Fuller RP, Barbas 3rd CF. Chimeric TALE, recombinases with programmable DNA sequence specificity. Nucleic Acids Res. 2012;40(21):11163–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA, Liu O, et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol. 2008;26(7):808–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sollu C, Pars K, Cornu TI, Thibodeau-Beganny S, Maeder ML, Joung JK, et al. Autonomous zinc-finger nuclease pairs for targeted chromosomal deletion. Nucleic Acids Res. 2010;38(22):8269–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Lee HJ, Kim E, Kim JS. Targeted chromosomal deletions in human cells using zinc finger nucleases. Genome Res. 2010;20(1):81–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Anguela XM, Sharma R, Doyon Y, Miller JC, Li H, Haurigot V, et al. Robust ZFN-mediated genome editing in adult hemophilic mice. Blood. 2013;122(19):3283–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Peault B, Rudnicki M, Torrente Y, Cossu G, Tremblay JP, Partridge T, et al. Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Mol Ther. 2007;15(5):867–77.

    Article  CAS  PubMed  Google Scholar 

  62. Chapdelaine P, Pichavant C, Rousseau J, Paques F, Tremblay JP. Meganucleases can restore the reading frame of a mutated dystrophin. Gene Ther. 2010;17(7):846–58.

    Article  CAS  PubMed  Google Scholar 

  63. Moehle EA, Rock JM, Lee Y-L, Jouvenot Y, DeKelver RC, Gregory PD, et al. Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc Natl Acad Sci U S A. 2007;104(9):3055–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sebastiano V, Maeder ML, Angstman JF, Haddad B, Khayter C, Yeo DT, et al. In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases. Stem Cells. 2011;29(11):1717–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zou J, Mali P, Huang X, Dowey SN, Cheng L. Site-specific gene correction of a point mutation in human iPS cells derived from an adult patient with sickle cell disease. Blood. 2011;118(17):4599–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yusa K, Rashid ST, Strick-Marchand H, Varela I, Liu PQ, Paschon DE, et al. Targeted gene correction of alpha1-antitrypsin deficiency in induced pluripotent stem cells. Nature. 2011;478(7369):391–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Arnould S, Delenda C, Grizot S, Desseaux C, Paques F, Silva GH, et al. The I-CreI meganuclease and its engineered derivatives: applications from cell modification to gene therapy. Protein Eng Des Sel. 2011;24(1-2):27–31.

    Article  CAS  PubMed  Google Scholar 

  68. Silva G, Poirot L, Galetto R, Smith J, Montoya G, Duchateau P, et al. Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr Gene Ther. 2011;11(1):11–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Arnould S, Perez C, Cabaniols JP, Smith J, Gouble A, Grizot S, et al. Engineered I-CreI derivatives cleaving sequences from the human XPC gene can induce highly efficient gene correction in mammalian cells. J Mol Biol. 2007;371(1):49–65.

    Article  CAS  PubMed  Google Scholar 

  70. Smith J, Grizot S, Arnould S, Duclert A, Epinat JC, Chames P, et al. A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Res. 2006;34(22), e149.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, et al. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol. 2011;29(2):143–8.

    Article  CAS  PubMed  Google Scholar 

  72. Porteus MH, Baltimore D. Chimeric nucleases stimulate gene targeting in human cells. Science. 2003;300(5620):763.

    Article  PubMed  Google Scholar 

  73. Urnov F, Miller J, Lee Y, Beausejour C, Rock J, Augustus S, et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature. 2005;435:2.

    Article  CAS  Google Scholar 

  74. Alwin S, Gere MB, Guhl E, Effertz K, Barbas 3rd CF, Segal DJ, et al. Custom zinc-finger nucleases for use in human cells. Mol Ther. 2005;12(4):610–7.

    Article  CAS  PubMed  Google Scholar 

  75. Bibikova M, Beumer K, Trautman JK, Carroll D. Enhancing gene targeting with designed zinc finger nucleases. Science. 2003;300(5620):764.

    Article  CAS  PubMed  Google Scholar 

  76. Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM, Eichtinger M, et al. Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell. 2008;31(2):294–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Moscou MJ, Bogdanove AJ. A simple cipher governs DNA recognition by TAL effectors. Science. 2009;326(5959):1501.

    Article  CAS  PubMed  Google Scholar 

  78. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science. 2009;326(5959):1509–12.

    Article  CAS  PubMed  Google Scholar 

  79. Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP, et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol. 2011;29(8):731–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mussolino C, Morbitzer R, Lutge F, Dannemann N, Lahaye T, Cathomen T. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res. 2011;39(21):9283–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK. FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol. 2012;30(5):460–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 2011;39(12), e82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol. 2013;31(3):227–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cradick TJ, Fine EJ, Antico CJ, Bao G. CRISPR/Cas9 systems targeting beta-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res. 2013;41(20):9584–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol. 2013;31(9):822–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 2013;31(9):827–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol. 2013;31(9):833–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol. 2013;31(9):839–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013;154(6):1380–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015;520(7546):186–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK. CRISPR RNA-guided activation of endogenous human genes. Nat Methods. 2013;10(10):977–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR, et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods. 2013;10(10):973–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yang L, Guell M, Byrne S, Yang JL, De Los AA, Mali P, et al. Optimization of scarless human stem cell genome editing. Nucleic Acids Res. 2013;41(19):9049–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gordley RM, Gersbach CA, Barbas 3rd CF. Synthesis of programmable integrases. Proc Natl Acad Sci U S A. 2009;106(13):5053–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gaj T, Mercer AC, Sirk SJ, Smith HL, Barbas 3rd CF. A comprehensive approach to zinc-finger recombinase customization enables genomic targeting in human cells. Nucleic Acids Res. 2013;41(6):3937–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kettlun C, Galvan DL, George Jr AL, Kaja A, Wilson MH. Manipulating piggyBac transposon chromosomal integration site selection in human cells. Mol Ther. 2011;19(9):1636–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Owens JB, Mauro D, Stoytchev I, Bhakta MS, Kim MS, Segal DJ, et al. Transcription activator like effector (TALE)-directed piggyBac transposition in human cells. Nucleic Acids Res. 2013;41(19):9197–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tan W, Dong Z, Wilkinson TA, Barbas 3rd CF, Chow SA. Human immunodeficiency virus type 1 incorporated with fusion proteins consisting of integrase and the designed polydactyl zinc finger protein E2C can bias integration of viral DNA into a predetermined chromosomal region in human cells. J Virol. 2006;80(4):1939–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lim KI, Klimczak R, Yu JH, Schaffer DV. Specific insertions of zinc finger domains into Gag-Pol yield engineered retroviral vectors with selective integration properties. Proc Natl Acad Sci U S A. 2010;107(28):12475–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Deyle DR, Russell DW. Adeno-associated virus vector integration. Curr Opin Mol Ther. 2009;11(4):442–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Inoue N, Dong R, Hirata RK, Russell DW. Introduction of single base substitutions at homologous chromosomal sequences by adeno-associated virus vectors. Mol Ther. 2001;3(4):526–30.

    Article  CAS  PubMed  Google Scholar 

  102. Hirata R, Chamberlain J, Dong R, Russell DW. Targeted transgene insertion into human chromosomes by adeno-associated virus vectors. Nat Biotechnol. 2002;20(7):735–8.

    Article  CAS  PubMed  Google Scholar 

  103. Miller DG, Petek LM, Russell DW. Human gene targeting by adeno-associated virus vectors is enhanced by DNA double-strand breaks. Mol Cell Biol. 2003;23(10):3550–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Miller DG, Petek LM, Russell DW. Adeno-associated virus vectors integrate at chromosome breakage sites. Nat Genet. 2004;36(7):767–73.

    Article  CAS  PubMed  Google Scholar 

  105. Porteus MH, Cathomen T, Weitzman MD, Baltimore D. Efficient gene targeting mediated by adeno-associated virus and DNA double-strand breaks. Mol Cell Biol. 2003;23(10):3558–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hirsch ML, Green L, Porteus MH, Samulski RJ. Self-complementary AAV mediates gene targeting and enhances endonuclease delivery for double-strand break repair. Gene Ther. 2010;17(9):1175–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gellhaus K, Cornu TI, Heilbronn R, Cathomen T. Fate of recombinant adeno-associated viral vector genomes during DNA double-strand break-induced gene targeting in human cells. Hum Gene Ther. 2010;21(5):543–53.

    Article  CAS  PubMed  Google Scholar 

  108. Asuri P, Bartel MA, Vazin T, Jang JH, Wong TB, Schaffer DV. Directed evolution of adeno-associated virus for enhanced gene delivery and gene targeting in human pluripotent stem cells. Mol Ther. 2012;20(2):329–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Miller DG, Rutledge EA, Russell DW. Chromosomal effects of adeno-associated virus vector integration. Nat Genet. 2002;30(2):147–8.

    Article  CAS  PubMed  Google Scholar 

  110. Nakai H, Montini E, Fuess S, Storm TA, Grompe M, Kay MA. AAV serotype 2 vectors preferentially integrate into active genes in mice. Nat Genet. 2003;34(3):297–302.

    Article  CAS  PubMed  Google Scholar 

  111. Donsante A, Miller DG, Li Y, Vogler C, Brunt EM, Russell DW, et al. AAV vector integration sites in mouse hepatocellular carcinoma. Science. 2007;317(5837):477.

    Article  CAS  PubMed  Google Scholar 

  112. Bertoni C, Rustagi A, Rando TA. Enhanced gene repair mediated by methyl-CpG-modified single-stranded oligonucleotides. Nucleic Acids Res. 2009;37(22):7468–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. DiMatteo D, Callahan S, Kmiec EB. Genetic conversion of an SMN2 gene to SMN1: a novel approach to the treatment of spinal muscular atrophy. Exp Cell Res. 2008;314(4):878–86.

    Article  CAS  PubMed  Google Scholar 

  114. Maguire K, Suzuki T, DiMatteo D, Parekh-Olmedo H, Kmiec E. Genetic correction of splice site mutation in purified and enriched myoblasts isolated from mdx5cv mice. BMC Mol Biol. 2009;10:15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Douglas AG, Wood MJ. Splicing therapy for neuromuscular disease. Mol Cell Neurosci. 2013;56:169–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Passini MA, Bu J, Richards AM, Kinnecom C, Sardi SP, Stanek LM, et al. Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Sci Transl Med. 2011;3(72):72ra18.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Wein N, Avril A, Bartoli M, Beley C, Chaouch S, Laforet P, et al. Efficient bypass of mutations in dysferlin deficient patient cells by antisense-induced exon skipping. Hum Mutat. 2010;31(2):136–42.

    Article  CAS  PubMed  Google Scholar 

  118. Darabi R, Arpke RW, Irion S, Dimos JT, Grskovic M, Kyba M, et al. Human ES-and iPS-derived myogenic progenitors restore dystrophin and improve contractility upon transplantation in dystrophic mice. Cell Stem Cell. 2012;10(5):610–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Tedesco FS, Gerli MF, Perani L, Benedetti S, Ungaro F, Cassano M, et al. Transplantation of genetically corrected human iPSC-derived progenitors in mice with limb-girdle muscular dystrophy. Sci Transl Med. 2012;4(140):140ra89.

    Article  PubMed  CAS  Google Scholar 

  120. Dezawa M, Ishikawa H, Itokazu Y, Yoshihara T, Hoshino M, Takeda S, et al. Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science. 2005;309(5732):314–7.

    Article  CAS  PubMed  Google Scholar 

  121. Cerletti M, Jurga S, Witczak CA, Hirshman MF, Shadrach JL, Goodyear LJ, et al. Highly efficient, functional engraftment of skeletal muscle stem cells in dystrophic muscles. Cell. 2008;134(1):37–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Tedesco FS, Hoshiya H, D’Antona G, Gerli MF, Messina G, Antonini S, et al. Stem cell-mediated transfer of a human artificial chromosome ameliorates muscular dystrophy. Sci Transl Med. 2011;3(96):96ra78.

    Article  CAS  PubMed  Google Scholar 

  123. Negroni E, Riederer I, Chaouch S, Belicchi M, Razini P, Di Santo J, et al. In vivo myogenic potential of human CD133+ muscle-derived stem cells: a quantitative study. Mol Ther. 2009;17(10):1771–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kimura E, Han JJ, Li S, Fall B, Ra J, Haraguchi M, et al. Cell-lineage regulated myogenesis for dystrophin replacement: a novel therapeutic approach for treatment of muscular dystrophy. Hum Mol Genet. 2008;17(16):2507–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhu CH, Mouly V, Cooper RN, Mamchaoui K, Bigot A, Shay JW, et al. Cellular senescence in human myoblasts is overcome by human telomerase reverse transcriptase and cyclin‐dependent kinase 4: consequences in aging muscle and therapeutic strategies for muscular dystrophies. Aging Cell. 2007;6(4):515–23.

    Article  CAS  PubMed  Google Scholar 

  126. Berghella L, De Angelis L, Coletta M, Berarducci B, Sonnino C, Salvatori G, et al. Reversible immortalization of human myogenic cells by site-specific excision of a retrovirally transferred oncogene. Hum Gene Ther. 1999;10(10):1607–17.

    Article  CAS  PubMed  Google Scholar 

  127. Lombardo A, Genovese P, Beausejour CM, Colleoni S, Lee YL, Kim KA, et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol. 2007;25(11):1298–306.

    Article  CAS  PubMed  Google Scholar 

  128. Gaj T, Guo J, Kato Y, Sirk SJ, Barbas 3rd CF. Targeted gene knockout by direct delivery of zinc-finger nuclease proteins. Nat Methods. 2012;9(8):805–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Liu J, Gaj T, Patterson JT, Sirk SJ, Barbas Iii CF. Cell-penetrating peptide-mediated delivery of TALEN proteins via bioconjugation for genome engineering. PLoS One. 2014;9(1), e85755.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Palmieri B, Tremblay JP. Myoblast transplantation: a possible surgical treatment for a severe pediatric disease. Surg Today. 2010;40(10):902–8.

    Article  PubMed  Google Scholar 

  131. Filareto A, Parker S, Darabi R, Borges L, Iacovino M, Schaaf T, et al. An ex vivo gene therapy approach to treat muscular dystrophy using inducible pluripotent stem cells. Nat Commun. 2013;4:1549.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Pruett-Miller SM, Reading DW, Porter SN, Porteus MH. Attenuation of zinc finger nuclease toxicity by small-molecule regulation of protein levels. PLoS Genet. 2009;5(2), e1000376.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Seto JT, Ramos JN, Muir L, Chamberlain JS, Odom GL. Gene replacement therapies for duchenne muscular dystrophy using adeno-associated viral vectors. Curr Gene Ther. 2012;12(3):139–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ellis BL, Hirsch ML, Porter SN, Samulski RJ, Porteus MH. Zinc-finger nuclease-mediated gene correction using single AAV vector transduction and enhancement by Food and Drug Administration-approved drugs. Gene Ther. 2013;20(1):35–42.

    Article  CAS  PubMed  Google Scholar 

  135. Hirsch ML, Green L, Porteus MH, Samulski RJ. Self-complementary AAV mediates gene targeting and enhances endonuclease delivery for double-strand break repair. Gene Ther. 2010;17(9):1175–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Handel EM, Gellhaus K, Khan K, Bednarski C, Cornu TI, Muller-Lerch F, et al. Versatile and efficient genome editing in human cells by combining zinc-finger nucleases with adeno-associated viral vectors. Hum Gene Ther. 2012;23(3):321–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Rahman SH, Bobis-Wozowicz S, Chatterjee D, Gellhaus K, Pars K, Heilbronn R, et al. The nontoxic cell cycle modulator indirubin augments transduction of adeno-associated viral vectors and zinc-finger nuclease-mediated gene targeting. Hum Gene Ther. 2013;24(1):67–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Li H, Haurigot V, Doyon Y, Li T, Wong SY, Bhagwat AS, et al. In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature. 2011;475(7355):217–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Asokan A, Conway JC, Phillips JL, Li C, Hegge J, Sinnott R, et al. Reengineering a receptor footprint of adeno-associated virus enables selective and systemic gene transfer to muscle. Nat Biotechnol. 2010;28(1):79–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Messina E, Nienaber J, Daneshmand M, Villamizar N, Samulski RJ, Milano CA, et al. Adeno-associated viral vectors based on serotype 3b use components of the fibroblast growth factor receptor signaling complex for efficient transduction. Hum Gene Ther. 2012;23(10):1031–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Bowles DE, McPhee SWJ, Li C, Gray SJ, Samulski JJ, Camp AS, et al. Phase 1 gene therapy for duchenne muscular dystrophy using a translational optimized AAV vector. Mol Ther. 2012;20(2):443–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Qiao C, Li J, Zheng H, Bogan J, Li J, Yuan Z, et al. Hydrodynamic limb vein injection of adeno-associated virus serotype 8 vector carrying canine myostatin propeptide gene into normal dogs enhances muscle growth. Hum Gene Ther. 2009;20(1):1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wang Z, Zhu T, Qiao C, Zhou L, Wang B, Zhang J, et al. Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat Biotechnol. 2005;23(3):321–8.

    Article  CAS  PubMed  Google Scholar 

  144. Watchko J, O’Day T, Wang B, Zhou L, Tang Y, Li J, et al. Adeno-associated virus vector-mediated minidystrophin gene therapy improves dystrophic muscle contractile function in mdx mice. Hum Gene Ther. 2002;13(12):1451–60.

    Article  CAS  PubMed  Google Scholar 

  145. Yang L, Jiang J, Drouin LM, Agbandje-McKenna M, Chen C, Qiao C, et al. A myocardium tropic adeno-associated virus (AAV) evolved by DNA shuffling and in vivo selection. Proc Natl Acad Sci U S A. 2009;106(10):3946–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Liu M, Yue Y, Harper SQ, Grange RW, Chamberlain JS, Duan D. Adeno-associated virus-mediated microdystrophin expression protects young mdx muscle from contraction-induced injury. Mol Ther. 2005;11(2):245–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Odom GL, Gregorevic P, Allen JM, Finn E, Chamberlain JS. Microutrophin delivery through rAAV6 increases lifespan and improves muscle function in dystrophic dystrophin/utrophin-deficient mice. Mol Ther. 2008;16(9):1539–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wang Z, Kuhr CS, Allen JM, Blankinship M, Gregorevic P, Chamberlain JS, et al. Sustained AAV-mediated dystrophin expression in a canine model of Duchenne muscular dystrophy with a brief course of immunosuppression. Mol Ther. 2007;15(6):1160–6.

    CAS  PubMed  Google Scholar 

  149. Shen S, Horowitz ED, Troupes AN, Brown SM, Pulicherla N, Samulski RJ, et al. Engraftment of a galactose receptor footprint onto adeno-associated viral capsids improves transduction efficiency. J Biol Chem. 2013;288(40):28814–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Gray SJ. Gene therapy and neurodevelopmental disorders. Neuropharmacology. 2013;68:136–42.

    Article  CAS  PubMed  Google Scholar 

  151. Hester ME, Foust KD, Kaspar RW, Kaspar BK. AAV as a gene transfer vector for the treatment of neurological disorders: novel treatment thoughts for ALS. Curr Gene Ther. 2009;9(5):428–33.

    Article  CAS  PubMed  Google Scholar 

  152. Ojala DS, Amara DP, Schaffer DV. Adeno-associated virus vectors and neurological gene therapy. Neuroscientist. 2015;21(1):84–98.

    Article  PubMed  CAS  Google Scholar 

  153. Gruber K. Europe gives gene therapy the green light. Lancet. 2012;380(9855), e10.

    Article  PubMed  Google Scholar 

  154. Lorden ER, Levinson HM, Leong KW. Integration of drug, protein, and gene delivery systems with regenerative medicine. Drug Deliv Transl Res. 2015;5(2):168–86.

    Article  CAS  PubMed  Google Scholar 

  155. McNeer NA, Schleifman EB, Cuthbert A, Brehm M, Jackson A, Cheng C, et al. Systemic delivery of triplex-forming PNA and donor DNA by nanoparticles mediates site-specific genome editing of human hematopoietic cells in vivo. Gene Ther. 2013;20(6):658–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Porensky PN, Mitrpant C, McGovern VL, Bevan AK, Foust KD, Kaspar BK, et al. A single administration of morpholino antisense oligomer rescues spinal muscular atrophy in mouse. Hum Mol Genet. 2012;21(7):1625–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Lee HJ, Kweon J, Kim E, Kim S, Kim JS. Targeted chromosomal duplications and inversions in the human genome using zinc finger nucleases. Genome Res. 2012;22(3):539–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Xiao A, Wang Z, Hu Y, Wu Y, Luo Z, Yang Z, et al. Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res. 2013;41(14), e141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Miller DG, Wang PR, Petek LM, Hirata RK, Sands MS, Russell DW. Gene targeting in vivo by adeno-associated virus vectors. Nat Biotechnol. 2006;24(8):1022–6.

    Article  CAS  PubMed  Google Scholar 

  160. Paulk NK, Wursthorn K, Wang Z, Finegold MJ, Kay MA, Grompe M. Adeno-associated virus gene repair corrects a mouse model of hereditary tyrosinemia in vivo. Hepatology. 2010;51(4):1200–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Lombardo A, Cesana D, Genovese P, Di Stefano B, Provasi E, Colombo DF, et al. Site-specific integration and tailoring of cassette design for sustainable gene transfer. Nat Methods. 2011;8(10):861–9.

    Article  CAS  PubMed  Google Scholar 

  162. Brooks AR, Harkins RN, Wang P, Qian HS, Liu P, Rubanyi GM. Transcriptional silencing is associated with extensive methylation of the CMV promoter following adenoviral gene delivery to muscle. J Gene Med. 2004;6(4):395–404.

    Article  CAS  PubMed  Google Scholar 

  163. Huang C, Ramakrishnan R, Trkulja M, Ren X, Gabrilovich DI. Therapeutic effect of intratumoral administration of DCs with conditional expression of combination of different cytokines. Cancer Immunol Immunother. 2012;61(4):573–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Himeda CL, Tai PW, Hauschka SD. Analysis of muscle gene transcription in cultured skeletal muscle cells. Methods Mol Biol. 2012;798:425–43.

    Article  CAS  PubMed  Google Scholar 

  165. Salva MZ, Himeda CL, Tai PW, Nishiuchi E, Gregorevic P, Allen JM, et al. Design of tissue-specific regulatory cassettes for high-level rAAV-mediated expression in skeletal and cardiac muscle. Mol Ther. 2007;15(2):320–9.

    Article  CAS  PubMed  Google Scholar 

  166. Yaguchi M, Ohashi Y, Tsubota T, Sato A, Koyano KW, Wang N, et al. Characterization of the properties of seven promoters in the motor cortex of rats and monkeys after lentiviral vector-mediated gene transfer. Hum Gene Ther Methods. 2013;24(6):333–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Delzor A, Dufour N, Petit F, Guillermier M, Houitte D, Auregan G, et al. Restricted transgene expression in the brain with cell-type specific neuronal promoters. Hum Gene Ther Methods. 2012.

    Google Scholar 

  168. Papapetrou EP, Lee G, Malani N, Setty M, Riviere I, Tirunagari LM, et al. Genomic safe harbors permit high beta-globin transgene expression in thalassemia induced pluripotent stem cells. Nat Biotechnol. 2011;29(1):73–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver RC, et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol. 2009;27(9):851–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature. 1997;387(6628):83–90.

    Article  CAS  PubMed  Google Scholar 

  171. Xu L, Zhao P, Mariano A, Han R. Targeted myostatin gene editing in multiple mammalian species directed by a single pair of TALE nucleases. Mol Ther Nucleic acids. 2013;2, e112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Lee SJ, Reed LA, Davies MV, Girgenrath S, Goad ME, Tomkinson KN, et al. Regulation of muscle growth by multiple ligands signaling through activin type II receptors. Proc Natl Acad Sci U S A. 2005;102(50):18117–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Maeder ML, Angstman JF, Richardson ME, Linder SJ, Cascio VM, Tsai SQ, et al. Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nat Biotechnol. 2013;31(12):1137–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Konermann S, Brigham MD, Trevino AE, Hsu PD, Heidenreich M, Cong L, et al. Optical control of mammalian endogenous transcription and epigenetic states. Nature. 2013;500(7463):472–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Mendenhall EM, Williamson KE, Reyon D, Zou JY, Ram O, Joung JK, et al. Locus-specific editing of histone modifications at endogenous enhancers. Nat Biotechnol. 2013;31(12):1133–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Siddique AN, Nunna S, Rajavelu A, Zhang Y, Jurkowska RZ, Reinhardt R, et al. Targeted methylation and gene silencing of VEGF-A in human cells by using a designed Dnmt3a-Dnmt3L single-chain fusion protein with increased DNA methylation activity. J Mol Biol. 2013;425(3):479–91.

    Article  CAS  PubMed  Google Scholar 

  177. de Groote ML, Verschure PJ, Rots MG. Epigenetic Editing: targeted rewriting of epigenetic marks to modulate expression of selected target genes. Nucleic Acids Res. 2012;40(21):10596–613.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Kearns NA, Pham H, Tabak B, Genga RM, Silverstein NJ, Garber M, et al. Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat Methods. 2015;12(5):401–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Hilton IB, D’Ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE, et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol. 2015;33(5):510–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Polstein L, Perez-Pinera P, Kocak D, Vockley C, Bledsoe P, Song L, et al. Genome-wide specificity of DNA-binding, gene regulation, and chromatin remodeling by TALE- and CRISPR/Cas9-based transcriptional activators. Genome Res. 2015;25(8):1158–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles A. Gersbach Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 American Society of Gene and Cell Therapy

About this chapter

Cite this chapter

Ousterout, D.G., Gersbach, C.A. (2016). Genome Editing for Neuromuscular Diseases. In: Cathomen, T., Hirsch, M., Porteus, M. (eds) Genome Editing. Advances in Experimental Medicine and Biology(). Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3509-3_4

Download citation

Publish with us

Policies and ethics