Skip to main content

Cellular Engineering and Disease Modeling with Gene-Editing Nucleases

  • Chapter
  • First Online:
Genome Editing

Abstract

Two rapidly evolving technologies are set to intersect at the crossroads of the future of medicine: the knowledge of how to induce and maintain cellular pluripotency, and the ability to precisely manipulate the genome with engineered nucleases. Together, these two advances have significant potential in the development of the next generation of cell and gene therapies. This review will discuss human and animal models of stem cells and the application of engineered nucleases for precision gene targeting and control. For animal studies and models, nucleases have allowed for greater flexibility and expandability. Previously untargetable regions of the murine genome are now accessible via engineered nucleases. Prior to the availability of gene editing proteins, the entire rat genome was largely refractory to gene targeting and manipulation. The ability to engineer larger animals may reduce the transplant organ gap and increase the yields of food for an expanding population. Lastly, the ability to modify stem cells of hematopoietic, embryonic, or somatic origin will allow for more relevant disease modeling, and more targeted and effective therapies. Collectively, the efficiency of gene editing nucleases and the ability to apply them across cells of multiple species allows for new research opportunities, more flexibility, and greater accuracy in choosing the model best suited for genome manipulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomson JA, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

    Article  CAS  PubMed  Google Scholar 

  2. Puri MC, Nagy A. Concise review: embryonic stem cells versus induced pluripotent stem cells: the game is on. Stem Cells. 2012;30:10–4.

    Article  CAS  PubMed  Google Scholar 

  3. Weismann A, Poulton EB, Schönland S, Shipley AE. Essays upon heredity and kindred biological problems. Oxford: Clarendon; 1891.

    Google Scholar 

  4. Solana J. Closing the circle of germline and stem cells: the primordial stem cell hypothesis. Evodevo. 2013;4:2.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gurdon JB. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol. 1962;10:622–40.

    CAS  PubMed  Google Scholar 

  6. Briggs R, King TJ. Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proc Natl Acad Sci U S A. 1952;38:455–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH. Viable offspring derived from fetal and adult mammalian cells. Nature. 1997;385:810–3.

    Article  CAS  PubMed  Google Scholar 

  8. Takahashi K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    Article  CAS  PubMed  Google Scholar 

  9. Liang G, Zhang Y. Genetic and epigenetic variations in iPSCs: potential causes and implications for application. Cell Stem Cell. 2013;13:149–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Silva G, et al. Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr Gene Ther. 2011;11:11–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Popplewell L, et al. Gene correction of a duchenne muscular dystrophy mutation by meganuclease-enhanced exon knock-in. Hum Gene Ther. 2013;24:692–701.

    Article  CAS  PubMed  Google Scholar 

  12. Dupuy A, et al. Targeted gene therapy of xeroderma pigmentosum cells using meganuclease and TALEN. PLoS One. 2013;8, e78678.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Cohen-Tannoudji M, et al. I-SceI-induced gene replacement at a natural locus in embryonic stem cells. Mol Cell Biol. 1998;18:1444–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Menoret S, et al. Generation of Rag1-knockout immunodeficient rats and mice using engineered meganucleases. FASEB J. 2013;27:703–11.

    Article  CAS  PubMed  Google Scholar 

  15. Durai S, et al. Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res. 2005;33:5978–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Porteus MH, Carroll D. Gene targeting using zinc finger nucleases. Nat Biotechnol. 2005;23:967–73.

    Article  CAS  PubMed  Google Scholar 

  17. Capecchi MR. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat Rev Genet. 2005;6:507–12.

    Article  CAS  PubMed  Google Scholar 

  18. Geurts AM, et al. Knockout rats via embryo microinjection of zinc-finger nucleases. Science. 2009;325:433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mashimo T, et al. Generation of knockout rats with X-linked severe combined immunodeficiency (X-SCID) using zinc-finger nucleases. PLoS One. 2010;5, e8870.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Cui X, et al. Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol. 2011;29:64–7.

    Article  CAS  PubMed  Google Scholar 

  21. Ferguson C, McKay M, Harris RA, Homanics GE. Toll-like receptor 4 (Tlr4) knockout rats produced by transcriptional activator-like effector nuclease (TALEN)-mediated gene inactivation. Alcohol. 2013;47:595–9.

    Article  CAS  PubMed  Google Scholar 

  22. Carbery ID, et al. Targeted genome modification in mice using zinc-finger nucleases. Genetics. 2010;186:451–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Meyer M, de Angelis MH, Wurst W, Kuhn R. Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. Proc Natl Acad Sci U S A. 2010;107:15022–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brinster RL, et al. Targeted correction of a major histocompatibility class II E alpha gene by DNA microinjected into mouse eggs. Proc Natl Acad Sci U S A. 1989;86:7087–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen YG, et al. Gene Targeting in NOD mouse embryos using zinc-finger nucleases. Diabetes. 2014;63:68–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Meyer M, Ortiz O, Hrabe de Angelis M, Wurst W, Kuhn R. Modeling disease mutations by gene targeting in one-cell mouse embryos. Proc Natl Acad Sci U S A. 2012;109:9354–9.

    Google Scholar 

  27. Osiak A, et al. Selection-independent generation of gene knockout mouse embryonic stem cells using zinc-finger nucleases. PLoS One. 2011;6, e28911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Campbell KH, McWhir J, Ritchie WA, Wilmut I. Sheep cloned by nuclear transfer from a cultured cell line. Nature. 1996;380:64–6.

    Article  CAS  PubMed  Google Scholar 

  29. Ogura A, Inoue K, Wakayama T. Recent advancements in cloning by somatic cell nuclear transfer. Philos Trans R Soc Lond B Biol Sci. 2013;368:20110329.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Whyte JJ, et al. Gene targeting with zinc finger nucleases to produce cloned eGFP knockout pigs. Mol Reprod Dev. 2011;78:2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hauschild J, et al. Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc Natl Acad Sci U S A. 2011;108:12013–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Platt JL, Lin SS. The future promises of xenotransplantation. Ann N Y Acad Sci. 1998;862:5–18.

    Article  CAS  PubMed  Google Scholar 

  33. DuBose J, Salim A. Aggressive organ donor management protocol. J Intensive Care Med. 2008;23:367–75.

    Article  PubMed  Google Scholar 

  34. Salim A, et al. The effect of a protocol of aggressive donor management: implications for the national organ donor shortage. J Trauma. 2006;61:429–33; discussion 433-5.

    Article  PubMed  Google Scholar 

  35. Yu S, et al. Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle. Cell Res. 2011;21:1638–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu X, et al. Zinc-finger nickase-mediated insertion of the lysostaphin gene into the beta-casein locus in cloned cows. Nat Commun. 2013;4:2565.

    PubMed  PubMed Central  Google Scholar 

  37. Oliver SP, Murinda SE. Antimicrobial resistance of mastitis pathogens. Vet Clin North Am Food Anim Pract. 2012;28:165–85.

    Article  PubMed  Google Scholar 

  38. Schuhardt VT, Schindler CA. Lysostaphin therapy in mice infected with Staphylococcus aureus. J Bacteriol. 1964;88:815–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. van den Bogaard AE, Stobberingh EE. Epidemiology of resistance to antibiotics. Links between animals and humans. Int J Antimicrob Agents. 2000;14:327–35.

    Article  PubMed  Google Scholar 

  40. Hollis A, Ahmed Z. Preserving antibiotics, rationally. N Engl J Med. 2013;369:2474–6.

    Article  CAS  PubMed  Google Scholar 

  41. McDermott W, Rogers DE. Social ramifications of control of microbial disease. Johns Hopkins Med J. 1982;151:302–12.

    CAS  PubMed  Google Scholar 

  42. Lombardo A, et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol. 2007;25:1298–306.

    Article  CAS  PubMed  Google Scholar 

  43. Genovese P, et al. Targeted genome editing in human repopulating haematopoietic stem cells. Nature. 2014;510:235–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Watts KL, et al. CD34(+) expansion with Delta-1 and HOXB4 promotes rapid engraftment and transfusion independence in a Macaca nemestrina cord blood transplant model. Mol Ther. 2013;21:1270–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Boitano AE, et al. Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science. 2010;329:1345–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Delaney C, Varnum-Finney B, Aoyama K, Brashem-Stein C, Bernstein ID. Dose-dependent effects of the notch ligand Delta1 on ex vivo differentiation and in vivo marrow repopulating ability of cord blood cells. Blood. 2005;106:2693–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mohrin M, et al. Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell. 2010;7:174–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. North TE, et al. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature. 2007;447:1007–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Goessling W, et al. Prostaglandin E2 enhances human cord blood stem cell xenotransplants and shows long-term safety in preclinical nonhuman primate transplant models. Cell Stem Cell. 2011;8:445–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vargas Jr J, Gusella GL, Najfeld V, Klotman ME, Cara A. Novel integrase-defective lentiviral episomal vectors for gene transfer. Hum Gene Ther. 2004;15:361–72.

    Article  CAS  PubMed  Google Scholar 

  51. Nightingale SJ, et al. Transient gene expression by nonintegrating lentiviral vectors. Mol Ther. 2006;13:1121–32.

    Article  CAS  PubMed  Google Scholar 

  52. Yanez-Munoz RJ, et al. Effective gene therapy with nonintegrating lentiviral vectors. Nat Med. 2006;12:348–53.

    Article  CAS  PubMed  Google Scholar 

  53. Philippe S, et al. Lentiviral vectors with a defective integrase allow efficient and sustained transgene expression in vitro and in vivo. Proc Natl Acad Sci U S A. 2006;103:17684–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Leavitt AD, Robles G, Alesandro N, Varmus HE. Human immunodeficiency virus type 1 integrase mutants retain in vitro integrase activity yet fail to integrate viral DNA efficiently during infection. J Virol. 1996;70:721–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Gabriel R, et al. An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol. 2011;29:816–23.

    Article  CAS  PubMed  Google Scholar 

  56. Osborn MJ, et al. TALEN-based gene correction for epidermolysis bullosa. Mol Ther. 2013;21(6):1151–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li L, et al. Genomic editing of the HIV-1 coreceptor CCR5 in adult hematopoietic stem and progenitor cells using zinc finger nucleases. Mol Ther. 2013;21:1259–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rahman SH, et al. The nontoxic cell cycle modulator indirubin augments transduction of adeno-associated viral vectors and zinc-finger nuclease-mediated gene targeting. Hum Gene Ther. 2013;24:67–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Saydaminova K, et al. Efficient genome editing in hematopoietic stem cells with helper-dependent Ad5/35 vectors expressing site-specific endonucleases under microRNA regulation. Mol Ther Methods Clin Dev. 2015;1:14057.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Stephen SL, et al. Chromosomal integration of adenoviral vector DNA in vivo. J Virol. 2010;84:9987–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Harui A, Suzuki S, Kochanek S, Mitani K. Frequency and stability of chromosomal integration of adenovirus vectors. J Virol. 1999;73:6141–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Chen Z, et al. Receptor-mediated delivery of engineered nucleases for genome modification. Nucleic Acids Res. 2013;41, e182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Holt N, et al. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol. 2010;28:839–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hofer U, et al. Pre-clinical modeling of CCR5 knockout in human hematopoietic stem cells by zinc finger nucleases using humanized mice. J Infect Dis. 2013;208 Suppl 2:S160–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Allers K, et al. Evidence for the cure of HIV infection by CCR5Delta32/Delta32 stem cell transplantation. Blood. 2011;117:2791–9.

    Article  CAS  PubMed  Google Scholar 

  66. Hutter G, et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med. 2009;360:692–8.

    Article  PubMed  Google Scholar 

  67. de Mendoza C, et al. Prevalence of X4 tropic viruses in patients recently infected with HIV-1 and lack of association with transmission of drug resistance. J Antimicrob Chemother. 2007;59:698–704.

    Article  PubMed  CAS  Google Scholar 

  68. Didigu CA, et al. Simultaneous zinc-finger nuclease editing of the HIV coreceptors ccr5 and cxcr4 protects CD4+ T cells from HIV-1 infection. Blood. 2013.

    Google Scholar 

  69. Hockemeyer D, et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol. 2009;27:851–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. DeKelver RC, et al. Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome. Genome Res. 2010;20:1133–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lombardo A, et al. Site-specific integration and tailoring of cassette design for sustainable gene transfer. Nat Methods. 2011;8:861–9.

    Article  CAS  PubMed  Google Scholar 

  72. Wang Y, et al. Genome editing of human embryonic stem cells and induced pluripotent stem cells with zinc finger nucleases for cellular imaging. Circ Res. 2012;111:1494–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sadelain M, Papapetrou EP, Bushman FD. Safe harbours for the integration of new DNA in the human genome. Nat Rev Cancer. 2012;12:51–8.

    CAS  Google Scholar 

  74. Zou J, et al. Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell. 2009;5:97–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lengner CJ, et al. Derivation of pre-X inactivation human embryonic stem cells under physiological oxygen concentrations. Cell. 2010;141:872–83.

    Article  CAS  PubMed  Google Scholar 

  76. Narsinh KH, et al. Generation of adult human induced pluripotent stem cells using nonviral minicircle DNA vectors. Nat Protoc. 2011;6:78–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lin T, et al. A chemical platform for improved induction of human iPSCs. Nat Methods. 2009;6:805–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kim D, et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell. 2009;4:472–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Soldner F, et al. Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell. 2011;146:318–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hussein SM, et al. Copy number variation and selection during reprogramming to pluripotency. Nature. 2011;471:58–62.

    Article  CAS  PubMed  Google Scholar 

  81. Dreyer AK, Cathomen T. Zinc-finger nucleases-based genome engineering to generate isogenic human cell lines. Methods Mol Biol. 2012;813:145–56.

    Article  CAS  PubMed  Google Scholar 

  82. Sebastiano V, et al. In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases. Stem Cells. 2011;29:1717–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zou J, Mali P, Huang X, Dowey SN, Cheng L. Site-specific gene correction of a point mutation in human iPS cells derived from an adult patient with sickle cell disease. Blood. 2011;118:4599–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Voit RA, Hendel A, Pruett-Miller SM, Porteus MH. Nuclease-mediated gene editing by homologous recombination of the human globin locus. Nucleic Acids Res. 2013.

    Google Scholar 

  85. Yusa K, et al. Targeted gene correction of alpha1-antitrypsin deficiency in induced pluripotent stem cells. Nature. 2011;478:391–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rahman SH, et al. Rescue of DNA-PK signaling and T-cell differentiation by targeted genome editing in a prkdc deficient iPSC disease model. PLoS Genet. 2015;11, e1005239.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Jiang J, et al. Translating dosage compensation to trisomy 21. Nature. 2013;500:296–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Maeder ML, et al. Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell. 2008;31:294–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Maeder ML, Thibodeau-Beganny S, Sander JD, Voytas DF, Joung JK. Oligomerized pool engineering (OPEN): an ‘open-source’ protocol for making customized zinc-finger arrays. Nat Protoc. 2009;4:1471–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Christian ML, et al. Targeting G with TAL effectors: a comparison of activities of TALENs constructed with NN and NK repeat variable di-residues. PLoS One. 2012;7, e45383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cermak T, et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 2011;39, e82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Moscou MJ, Bogdanove AJ. A simple cipher governs DNA recognition by TAL effectors. Science. 2009;326:1501.

    Article  CAS  PubMed  Google Scholar 

  93. Tesson L, et al. Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol. 2011;29:695–6.

    Article  CAS  PubMed  Google Scholar 

  94. Mashimo T, et al. Efficient gene targeting by TAL effector nucleases coinjected with exonucleases in zygotes. Sci Rep. 2013;3:1253.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Certo MT, et al. Coupling endonucleases with DNA end-processing enzymes to drive gene disruption. Nat Methods. 2012;9:973–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sung YH, et al. Knockout mice created by TALEN-mediated gene targeting. Nat Biotechnol. 2013;31:23–4.

    Article  CAS  PubMed  Google Scholar 

  97. Davies B, et al. Site specific mutation of the Zic2 locus by microinjection of TALEN mRNA in mouse CD1, C3H and C57BL/6J oocytes. PLoS One. 2013;8, e60216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Brown SA, et al. Holoprosencephaly due to mutations in ZIC2, a homologue of Drosophila odd-paired. Nat Genet. 1998;20:180–3.

    Article  CAS  PubMed  Google Scholar 

  99. Qiu Z, et al. High-efficiency and heritable gene targeting in mouse by transcription activator-like effector nucleases. Nucleic Acids Res. 2013;41, e120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kahle M, et al. Phenotypic comparison of common mouse strains developing high-fat diet-induced hepatosteatosis. Mol Metab. 2013;2:435–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang H, et al. TALEN-mediated editing of the mouse Y chromosome. Nat Biotechnol. 2013;31:530–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Takada S, et al. Targeted gene deletion of miRNAs in mice by TALEN system. PLoS One. 2013;8, e76004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wefers B, et al. Direct production of mouse disease models by embryo microinjection of TALENs and oligodeoxynucleotides. Proc Natl Acad Sci U S A. 2013;110:3782–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Panda SK, et al. Highly efficient targeted mutagenesis in mice using TALENs. Genetics. 2013;195:703–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Low BE, et al. Correction of Crb1rd8 allele and retinal phenotype in C57BL/6N mice via TALEN-mediated homology-directed repair. Invest Ophthalmol Vis Sci. 2013.

    Google Scholar 

  106. Orlando SJ, et al. Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology. Nucleic Acids Res. 2010;38, e152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Carlson DF, et al. Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci U S A. 2012;109:17382–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hanna J, et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science. 2007;318:1920–3.

    Article  CAS  PubMed  Google Scholar 

  109. Tan W, et al. Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proc Natl Acad Sci U S A. 2013;110:16526–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Xin J, et al. Highly efficient generation of GGTA1 biallelic knockout inbred mini-pigs with TALENs. PLoS One. 2013;8, e84250.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Christian M, et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 2010;186:757–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Miller JC, et al. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol. 2011;29:143–8.

    Article  CAS  PubMed  Google Scholar 

  113. Mussolino C, et al. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res. 2011;39:9283–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Liu H, et al. TALEN-mediated gene mutagenesis in rhesus and cynomolgus monkeys. Cell Stem Cell. 2014;14:323–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hockemeyer D, et al. Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol. 2011;29:731–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ding Q, et al. A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell. 2013;12:238–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hussain K, et al. An activating mutation of AKT2 and human hypoglycemia. Science. 2011;334:474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Musunuru K, et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature. 2010;466:714–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhu F, et al. DICE, an efficient system for iterative genomic editing in human pluripotent stem cells. Nucleic Acids Res. 2013.

    Google Scholar 

  120. Zhu H, et al. Baculoviral transduction facilitates TALEN-mediated targeted transgene integration and Cre/LoxP cassette exchange in human-induced pluripotent stem cells. Nucleic Acids Res. 2013;41, e180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhang Z, et al. Dissecting the roles of miR-302/367 cluster in cellular reprogramming using TALE-based repressor and TALEN. Stem Cell Reports. 2013;1:218–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bultmann S, et al. Targeted transcriptional activation of silent oct4 pluripotency gene by combining designer TALEs and inhibition of epigenetic modifiers. Nucleic Acids Res. 2012;40:5368–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Maeder ML, et al. Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nat Biotechnol. 2013;31:1137–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Choi SM, et al. Efficient drug screening and gene correction for treating liver disease using patient-specific stem cells. Hepatology. 2013;57:2458–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sun N, Zhao H. Seamless correction of the sickle cell disease mutation of the HBB gene in human induced pluripotent stem cells using TALENs. Biotechnol Bioeng. 2013.

    Google Scholar 

  126. Cermak T, et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 2011;39(17):7879.

    Article  CAS  PubMed Central  Google Scholar 

  127. Holkers M, et al. Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Res. 2013;41, e63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Jinek M, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–21.

    Article  CAS  PubMed  Google Scholar 

  129. Mali P, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339(6121):823–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Cong L, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Mashiko D, et al. Generation of mutant mice by pronuclear injection of circular plasmid expressing Cas9 and single guided RNA. Sci Rep. 2013;3:3355.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Li D, et al. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat Biotechnol. 2013;31:681–3.

    Article  CAS  PubMed  Google Scholar 

  133. Fujii W, Kawasaki K, Sugiura K, Naito K. Efficient generation of large-scale genome-modified mice using gRNA and CAS9 endonuclease. Nucleic Acids Res. 2013;41, e187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhou J, et al. One-step generation of different immunodeficient mice with multiple gene modifications by CRISPR/Cas9 mediated genome engineering. Int J Biochem Cell Biol. 2014;46:49–55.

    Article  CAS  PubMed  Google Scholar 

  135. Wang H, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 2013;153:910–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Yang H, et al. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell. 2013;154:1370–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Koike-Yusa H, Li Y, Tan E-P, Velasco-Herrera MDC, Yusa K. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol. 2014;32(3):267–73.

    Article  CAS  PubMed  Google Scholar 

  138. Ma Y, et al. Generating rats with conditional alleles using CRISPR/Cas9. Cell Res. 2014;24:122–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Li W, et al. Genetic modification and screening in Rat using haploid embryonic stem cells. Cell Stem Cell. 2013.

    Google Scholar 

  140. Jacob HJ, Kwitek AE. Rat genetics: attaching physiology and pharmacology to the genome. Nat Rev Genet. 2002;3:33–42.

    Article  CAS  PubMed  Google Scholar 

  141. Wan H, et al. One-step generation of p53 gene biallelic mutant Cynomolgus monkey via the CRISPR/Cas system. Cell Res. 2015;25:258–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Shalem O, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014;343:84–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hou Z, et al. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci U S A. 2013;110:15644–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Esvelt KM, et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods. 2013;10:1116–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Chen G, et al. Chemically defined conditions for human iPSC derivation and culture. Nat Methods. 2011;8:424–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ran FA, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015;520:186–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kleinstiver BP, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. 2015.

    Google Scholar 

  148. Schwank G, et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell. 2013;13:653–8.

    Article  CAS  PubMed  Google Scholar 

  149. Wu Y, et al. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell. 2013;13:659–62.

    Article  CAS  PubMed  Google Scholar 

  150. Sim X, Cardenas-Diaz FL, French DL, Gadue P. A doxycycline-inducible system for genetic correction of iPSC disease models. Methods Mol Biol. 2016;1353:13–23.

    Article  PubMed  Google Scholar 

  151. Song B, et al. Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system. Stem Cells Dev. 2015;24:1053–65.

    Article  CAS  PubMed  Google Scholar 

  152. Li HL, et al. Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Reports. 2015;4:143–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Xie F, et al. Seamless gene correction of beta-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res. 2014;24:1526–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Flynn R, et al. CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPS cells. Exp Hematol. 2015;43(10):838–48.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Huang X, et al. Production of gene-corrected adult beta globin protein in human erythrocytes differentiated from patient iPSCs after genome editing of the sickle point mutation. Stem Cells. 2015;33:1470–9.

    Article  CAS  PubMed  Google Scholar 

  156. Grobarczyk B, Franco B, Hanon K, Malgrange B. Generation of isogenic human iPS cell line precisely corrected by genome editing using the CRISPR/Cas9 system. Stem Cell Rev. 2015;11(5):774–87.

    Article  CAS  PubMed  Google Scholar 

  157. Miyaoka Y, et al. Isolation of single-base genome-edited human iPS cells without antibiotic selection. Nat Methods. 2014;11:291–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A. 2012;109(39):E2579–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Davis L, Maizels N. Homology-directed repair of DNA nicks via pathways distinct from canonical double-strand break repair. Proc Natl Acad Sci U S A. 2014;111:E924–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Osborn M, Gabriel R, Webber BR, DeFeo AP, McElroy AN, Jarjour J, Starker CG, Wagner JE, Joung JK, Voytas DF, von Kalle C, Schmidt M, Blazar BR, Tolar J. Fanconi anemia gene editing by the CRISPR/Cas9 system. Hum Gene Ther. 2014;26(2):114–26.

    Article  PubMed Central  CAS  Google Scholar 

  161. Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol. 2014;32:577–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Wyvekens N, Topkar VV, Khayter C, Joung JK, Tsai SQ. Dimeric CRISPR RNA-guided FokI-dCas9 nucleases (RFNs) directed by truncated gRNAs for highly specific genome editing. Hum Gene Ther. 2015.

    Google Scholar 

  163. Tsai SQ, et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol. 2014;32:569–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Cheng AW, et al. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res. 2013;23:1163–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Kearns NA, et al. Cas9 effector-mediated regulation of transcription and differentiation in human pluripotent stem cells. Development. 2014;141:219–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Chavez A, et al. Highly efficient Cas9-mediated transcriptional programming. Nat Methods. 2015;12:326–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Konermann S, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature. 2015;517:583–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Hilton IB, et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol. 2015;33:510–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Amps K, et al. Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat Biotechnol. 2011;29:1132–44.

    Article  CAS  PubMed  Google Scholar 

  170. Ben-David U, Benvenisty N. High prevalence of evolutionarily conserved and species-specific genomic aberrations in mouse pluripotent stem cells. Stem Cells. 2012;30:612–22.

    Article  CAS  PubMed  Google Scholar 

  171. Mayshar Y, et al. Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell. 2010;7:521–31.

    Article  CAS  PubMed  Google Scholar 

  172. Mayshar Y, Yanuka O, Benvenisty N. Teratogen screening using transcriptome profiling of differentiating human embryonic stem cells. J Cell Mol Med. 2011;15:1393–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ruiz S, et al. Analysis of protein-coding mutations in hiPSCs and their possible role during somatic cell reprogramming. Nat Commun. 2013;4:1382.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Liang G, Zhang Y. Embryonic stem cell and induced pluripotent stem cell: an epigenetic perspective. Cell Res. 2013;23:49–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Tchieu J, et al. Female human iPSCs retain an inactive X chromosome. Cell Stem Cell. 2010;7:329–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Mekhoubad S, et al. Erosion of dosage compensation impacts human iPSC disease modeling. Cell Stem Cell. 2012;10:595–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Anguera MC, et al. Molecular signatures of human induced pluripotent stem cells highlight sex differences and cancer genes. Cell Stem Cell. 2012;11:75–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Lister R, et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature. 2011;471:68–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Ruiz S, et al. Identification of a specific reprogramming-associated epigenetic signature in human induced pluripotent stem cells. Proc Natl Acad Sci U S A. 2012;109:16196–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Lee MO, et al. Inhibition of pluripotent stem cell-derived teratoma formation by small molecules. Proc Natl Acad Sci U S A. 2013;110:E3281–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Tang C, et al. An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells. Nat Biotechnol. 2011;29:829–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Okita K, Nagata N, Yamanaka S. Immunogenicity of induced pluripotent stem cells. Circ Res. 2011;109:720–1.

    Article  CAS  PubMed  Google Scholar 

  183. Pattanayak V, Ramirez CL, Joung JK, Liu DR. Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods. 2011;8(9):765–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Cheng L, Blazar B, High K, Porteus M. Zinc fingers hit off target. Nat Med. 2011;17(10):1192–3.

    Article  CAS  PubMed  Google Scholar 

  185. Sander JD, et al. In silico abstraction of zinc finger nuclease cleavage profiles reveals an expanded landscape of off-target sites. Nucleic Acids Res. 2013;41, e181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Ran FA, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013;154:1380–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Ran FA, et al. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8:2281–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Paruzynski A, et al. Genome-wide high-throughput integrome analyses by nrLAM-PCR and next-generation sequencing. Nat Protoc. 2010;5(8):1379–95.

    Article  CAS  PubMed  Google Scholar 

  189. Tsai SQ, et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol. 2015;33:187–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Kim D, et al. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods. 2015;12:237–43, 1 p following 243.

    Article  CAS  PubMed  Google Scholar 

  191. Frock RL, et al. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat Biotechnol. 2015;33:179–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Crosetto N, et al. Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nat Methods. 2013;10:361–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Tebas P, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med. 2014;370:901–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Doyon Y, et al. Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat Methods. 2011;8(1):74–9.

    Article  CAS  PubMed  Google Scholar 

  195. Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol. 2014;32:279–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Nakano-Okuno M, Borah BR, Nakano I. Ethics of iPSC-based clinical research for age-related macular degeneration: patient-centered risk-benefit analysis. Stem Cell Rev. 2014;10:743–52.

    Article  PubMed  PubMed Central  Google Scholar 

  197. Mardis ER. The $1,000 genome, the $100,000 analysis? Genome Med. 2010;2:84.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Lanphier E, Urnov F, Haecker SE, Werner M, Smolenski J. Don’t edit the human germ line. Nature. 2015;519:410–1.

    Article  CAS  PubMed  Google Scholar 

  199. Liang P, et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell. 2015;6:363–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.J.O. is supported by funding from the Lindahl Family and the Corrigan Family. J.T. is supported by grants from the National Institutes of Health (R01 AR063070 and R01 AR059947), the Department of Defense (USAMRAA/DOD Dept of the Army W81XWH-12-1-0609 and USAMRAA/DOD W81XWH-10-1-0874), DebRA International, Sohana Research Fund, Richard M. Schulze Family Foundation, Jackson Gabriel Silver Fund, Epidermolysis Bullosa Medical Research Fund, and University of Pennsylvania grant MPS I-11-009-01. M.J.O. and J.T. are also supported by the Children’s Cancer Research Fund, Minnesota. Research reported in this publication was supported by the National Center for Advancing Translational Sciences of the National Institutes of Health Award Number UL1TR000114 (M.J.O.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Tolar M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 American Society of Gene and Cell Therapy

About this chapter

Cite this chapter

Osborn, M.J., Tolar, J. (2016). Cellular Engineering and Disease Modeling with Gene-Editing Nucleases. In: Cathomen, T., Hirsch, M., Porteus, M. (eds) Genome Editing. Advances in Experimental Medicine and Biology(). Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3509-3_12

Download citation

Publish with us

Policies and ethics