Skip to main content

Amniotic Fluid Stem Cell Populations

  • Chapter
  • First Online:

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Amniotic fluid can be considered not only a precious source of information about the developing embryo/fetus, but also a reservoir of potentially invaluable cells for regenerative medicine. Amniotic fluid-derived cells fulfill two criteria to be considered clinically appealing: (1) they can be routinely collected as a side product of amniocenteses with no ethical issues, and (2) they can be easily expanded in vitro in preparation for autologous transplantation in the newborn period. Amniocytes have variable morphology and expression of markers from all three germ layers, making it difficult to determine their ontology. Gestational age, health status of the fetus, compartment of origin, and isolation methods are variables that contribute to the heterogeneity of this population. In the last decade several efforts has been done in order to identify and characterize subpopulations of progenitor/stem-like cells. Amniotic Fluid Mesenchymal Stromal Cells (AF-MSCs) are related to their bone marrow counterpart, however they replicate at a higher rate and are more easily accessible in the fetus. Due to their polyclonal nature, variability in terms of pluripotency markers expression and differentiation potential has been reported. Amniotic Fluid Stem Cells (AFSCs), on the other hand, are a clonal population of rare cells with broader multipotency. Increased standardization in cell isolation, culture, and preservation as well as more detailed characterization continue to evolve and are prerequisites towards eventual clinical application of AF-MSCs and AFSCs in patients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AF-MSC:

Amniotic fluid mesenchymal stromal cell

AFSC:

Amniotic fluid stem cell

BM-MSC:

Bone marrow mesenchymal stromal cell

ESC:

Embryonic stem cell

iPSC:

Induced pluripotent stem cell

References

  1. Arnhold S, Gluer S, Hartmann K, Raabe O, Addicks K, Wenisch S, et al. Amniotic-fluid stem cells: growth dynamics and differentiation potential after a CD-117-based selection procedure. Stem Cells Int. 2011;2011:715341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bai J, Wang Y, Liu L, Chen J, Yang W, Gao L, et al. Human amniotic fluid-derived c-kit(+) and c-kit (−) stem cells: growth characteristics and some differentiation potential capacities comparison. Cytotechnology. 2012;64(5):577–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bollini S, Cheung KK, Riegler J, Dong X, Smart N, Ghionzoli M, et al. Amniotic fluid stem cells are cardioprotective following acute myocardial infarction. Stem Cells Dev. 2011;20(11):1985–94.

    Article  CAS  PubMed  Google Scholar 

  4. Bollini S, Pozzobon M, Nobles M, Riegler J, Dong X, Piccoli M, et al. In vitro and in vivo cardiomyogenic differentiation of amniotic fluid stem cells. Stem Cell Rev. 2011;7(2):364–80.

    Article  PubMed  Google Scholar 

  5. Bossolasco P, Montemurro T, Cova L, Zangrossi S, Calzarossa C, Buiatiotis S, et al. Molecular and phenotypic characterization of human amniotic fluid cells and their differentiation potential. Cell Res. 2006;16(4):329–36.

    Article  CAS  PubMed  Google Scholar 

  6. Bottai D, Cigognini D, Nicora E, Moro M, Grimoldi MG, Adami R, et al. Third trimester amniotic fluid cells with the capacity to develop neural phenotypes and with heterogeneity among sub-populations. Restor Neurol Neurosci. 2012;30(1):55–68.

    PubMed  Google Scholar 

  7. Brace RA, Wolf EJ. Normal amniotic fluid volume changes throughout pregnancy. Am J Obstet Gynecol. 1989;161(2):382–8.

    Article  CAS  PubMed  Google Scholar 

  8. Buckley S, Shi W, Carraro G, Sedrakyan S, Da Sacco S, Driscoll BA, et al. The milieu of damaged alveolar epithelial type 2 cells stimulates alveolar wound repair by endogenous and exogenous progenitors. Am J Respir Cell Mol Biol. 2011;45(6):1212–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cananzi M, De Coppi P. CD117(+) amniotic fluid stem cells: state of the art and future perspectives. Organogenesis. 2012;8(3):77–88.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Carraro G, Perin L, Sedrakyan S, Giuliani S, Tiozzo C, Lee J, et al. Human amniotic fluid stem cells can integrate and differentiate into epithelial lung lineages. Stem Cells. 2008;26(11):2902–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cipriani S, Bonini D, Marchina E, Balgkouranidou I, Caimi L, Grassi Zucconi G, et al. Mesenchymal cells from human amniotic fluid survive and migrate after transplantation into adult rat brain. Cell Biol Int. 2007;31(8):845–50.

    Article  CAS  PubMed  Google Scholar 

  12. Da Sacco S, Sedrakyan S, Boldrin F, Giuliani S, Parnigotto P, Habibian R, et al. Human amniotic fluid as a potential new source of organ specific precursor cells for future regenerative medicine applications. J Urol. 2010;183(3):1193–200.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Da Sacco S, Lemley KV, Sedrakyan S, Zanusso I, Petrosyan A, Peti-Peterdi J, et al. A novel source of cultured podocytes. PLoS One. 2013;8(12), e81812.

    Article  PubMed  PubMed Central  Google Scholar 

  14. De Coppi P, Bartsch Jr G, Siddiqui MM, Xu T, Santos CC, Perin L, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol. 2007;25(1):100–6.

    Article  PubMed  Google Scholar 

  15. Di Trapani M, Bassi G, Fontana E, Giacomello L, Pozzobon M, Guillot PV, et al. Immune regulatory properties of CD117 amniotic fluid stem cells vary according to gestational age. Stem Cells Dev. 2014.

    Google Scholar 

  16. Ditadi A, de Coppi P, Picone O, Gautreau L, Smati R, Six E, et al. Human and murine amniotic fluid c-Kit+Lin− cells display hematopoietic activity. Blood. 2009;113(17):3953–60.

    Article  CAS  PubMed  Google Scholar 

  17. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.

    Article  CAS  PubMed  Google Scholar 

  18. Donaldson AE, Cai J, Yang M, Iacovitti L. Human amniotic fluid stem cells do not differentiate into dopamine neurons in vitro or after transplantation in vivo. Stem Cells Dev. 2009;18(7):1003–12.

    Article  CAS  PubMed  Google Scholar 

  19. Fauza D. Amniotic fluid and placental stem cells. Best Pract Res Clin Obstet Gynaecol. 2004;18(6):877–91.

    Article  PubMed  Google Scholar 

  20. Fuchs JR, Kaviani A, Oh JT, LaVan D, Udagawa T, Jennings RW, et al. Diaphragmatic reconstruction with autologous tendon engineered from mesenchymal amniocytes. J Pediatr Surg. 2004;39(6):834–8. discussion 8.

    Article  PubMed  Google Scholar 

  21. Galende E, Karakikes I, Edelmann L, Desnick RJ, Kerenyi T, Khoueiry G, et al. Amniotic fluid cells are more efficiently reprogrammed to pluripotency than adult cells. Cell Reprogram. 2010;12(2):117–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gekas J, Walther G, Skuk D, Bujold E, Harvey I, Bertrand OF. In vitro and in vivo study of human amniotic fluid-derived stem cell differentiation into myogenic lineage. Clin Exp Med. 2010;10(1):1–6.

    Article  PubMed  Google Scholar 

  23. Ginsberg M, James D, Ding BS, Nolan D, Geng F, Butler JM, et al. Efficient direct reprogramming of mature amniotic cells into endothelial cells by ETS factors and TGFbeta suppression. Cell. 2012;151(3):559–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gosden CM. Amniotic fluid cell types and culture. Br Med Bull. 1983;39(4):348–54.

    CAS  PubMed  Google Scholar 

  25. Hoehn H, Salk D. Morphological and biochemical heterogeneity of amniotic-fluid cells in culture. Method Cell Biol. 1982;26:11–34.

    Article  CAS  Google Scholar 

  26. In 't Anker PS, Scherjon SA, Kleijburg-van der Keur C, Noort WA, Claas FH, Willemze R, et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood. 2003;102(4):1548–9.

    Article  PubMed  Google Scholar 

  27. Jezierski A, Gruslin A, Tremblay R, Ly D, Smith C, Turksen K, et al. Probing stemness and neural commitment in human amniotic fluid cells. Stem Cell Rev. 2010;6(2):199–214.

    Article  CAS  PubMed  Google Scholar 

  28. Jiang G, Di Bernardo J, Maiden MM, Villa-Diaz LG, Mabrouk OS, Krebsbach PH, et al. Human transgene-free amniotic-fluid-derived induced pluripotent stem cells for autologous cell therapy. Stem Cells Dev. 2014;23(21):2613–25.

    Article  CAS  PubMed  Google Scholar 

  29. Joo S, Ko IK, Atala A, Yoo JJ, Lee SJ. Amniotic fluid-derived stem cells in regenerative medicine research. Arch Pharm Res. 2012;35(2):271–80.

    Article  CAS  PubMed  Google Scholar 

  30. Karlmark KR, Freilinger A, Marton E, Rosner M, Lubec G, Hengstschlager M. Activation of ectopic Oct-4 and Rex-1 promoters in human amniotic fluid cells. Int J Mol Med. 2005;16(6):987–92.

    CAS  PubMed  Google Scholar 

  31. Kaviani A, Perry TE, Dzakovic A, Jennings RW, Ziegler MM, Fauza DO. The amniotic fluid as a source of cells for fetal tissue engineering. J Pediatr Surg. 2001;36(11):1662–5.

    Article  CAS  PubMed  Google Scholar 

  32. Kaviani A, Guleserian K, Perry TE, Jennings RW, Ziegler MM, Fauza DO. Fetal tissue engineering from amniotic fluid. J Am Coll Surg. 2003;196(4):592–7.

    Article  PubMed  Google Scholar 

  33. Klein JD, Fauza DO. Amniotic and placental mesenchymal stem cell isolation and culture. Methods Mol Biol. 2011;698:75–88.

    Article  CAS  PubMed  Google Scholar 

  34. Klein JD, Turner CG, Steigman SA, Ahmed A, Zurakowski D, Eriksson E, et al. Amniotic mesenchymal stem cells enhance normal fetal wound healing. Stem Cells Dev. 2011;20(6):969–76.

    Article  CAS  PubMed  Google Scholar 

  35. Kunisaki SM. Congenital anomalies: treatment options based on amniotic fluid-derived stem cells. Organogenesis. 2012;8(3):89–95.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kunisaki SM, Freedman DA, Fauza DO. Fetal tracheal reconstruction with cartilaginous grafts engineered from mesenchymal amniocytes. J Pediatr Surg. 2006;41(4):675–82. discussion 82.

    Article  PubMed  Google Scholar 

  37. Kunisaki SM, Jennings RW, Fauza DO. Fetal cartilage engineering from amniotic mesenchymal progenitor cells. Stem Cells Dev. 2006;15(2):245–53.

    Article  CAS  PubMed  Google Scholar 

  38. Kunisaki SM, Armant M, Kao GS, Stevenson K, Kim H, Fauza DO. Tissue engineering from human mesenchymal amniocytes: a prelude to clinical trials. J Pediatr Surg. 2007;42(6):974–9. discussion 9-80.

    Article  PubMed  Google Scholar 

  39. Li C, Zhou J, Shi G, Ma Y, Yang Y, Gu J, et al. Pluripotency can be rapidly and efficiently induced in human amniotic fluid-derived cells. Hum Mol Genet. 2009;18(22):4340–9.

    Article  CAS  PubMed  Google Scholar 

  40. Liu H, Liu DQ, Li BW, Guan LD, Yan ZF, Li YL, et al. Human amniotic fluid-derived stem cells can differentiate into hepatocyte-like cells in vitro and in vivo. In Vitro Cell Dev Biol Anim. 2011;47(9):601–8.

    Article  PubMed  Google Scholar 

  41. Liu T, Guo L, Liu Z, Huang Y, Cheng W. Induction of dopaminergic neuronal-like cells from CD44+ human amniotic fluids that are ameliorative to behavioral recovery in a Parkinson's disease rat model. Int J Mol Med. 2011;28(5):745–52.

    PubMed  Google Scholar 

  42. Liu T, Zou G, Gao Y, Zhao X, Wang H, Huang Q, et al. High efficiency of reprogramming CD34(+) cells derived from human amniotic fluid into induced pluripotent stem cells with Oct4. Stem Cells Dev. 2012;21(12):2322–32.

    Article  CAS  PubMed  Google Scholar 

  43. Luo C, Jia W, Wang K, Chi F, Gu Y, Yan X, et al. Human amniotic fluid stem cells suppress PBMC proliferation through IDO and IL-10-dependent pathways. Curr Stem Cell Res Ther. 2014;9(1):36–45.

    Article  CAS  PubMed  Google Scholar 

  44. Ma X, Zhang S, Zhou J, Chen B, Shang Y, Gao T, et al. Clone-derived human AF-amniotic fluid stem cells are capable of skeletal myogenic differentiation in vitro and in vivo. J Tissue Eng Regen Med. 2012;6(8):598–613.

    Article  CAS  PubMed  Google Scholar 

  45. Maguire CT, Demarest BL, Hill JT, Palmer JD, Brothman AR, Yost HJ, et al. Genome-wide analysis reveals the unique stem cell identity of human amniocytes. PLoS One. 2013;8(1), e53372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Milunsky A. Amniotic fluid cell types and culture. In: Milunsky A, editor. Genetic disorders and the fetus: diagnosis, prevention, and treatment. New York, NY: Plenum; 1979.

    Chapter  Google Scholar 

  47. Moorefield EC, McKee EE, Solchaga L, Orlando G, Yoo JJ, Walker S, et al. Cloned, CD117 selected human amniotic fluid stem cells are capable of modulating the immune response. PLoS One. 2011;6(10), e26535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Moschidou D, Mukherjee S, Blundell MP, Drews K, Jones GN, Abdulrazzak H, et al. Valproic acid confers functional pluripotency to human amniotic fluid stem cells in a transgene-free approach. Mol Ther. 2012;20(10):1953–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Moschidou D, Drews K, Eddaoudi A, Adjaye J, De Coppi P, Guillot PV. Molecular signature of human amniotic fluid stem cells during fetal development. Curr Stem Cell Res Ther. 2013;8(1):73–81.

    Article  CAS  PubMed  Google Scholar 

  50. Mosquera A, Fernandez JL, Campos A, Goyanes VJ, Ramiro-Diaz J, Gosalvez J. Simultaneous decrease of telomere length and telomerase activity with ageing of human amniotic fluid cells. J Med Genet. 1999;36(6):494–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Pan HC, Yang DY, Chiu YT, Lai SZ, Wang YC, Chang MH, et al. Enhanced regeneration in injured sciatic nerve by human amniotic mesenchymal stem cell. J Clin Neurosci. 2006;13(5):570–5.

    Article  PubMed  Google Scholar 

  52. Pennington EC, Gray FL, Ahmed A, Zurakowski D, Fauza DO. Targeted quantitative amniotic cell profiling: a potential diagnostic tool in the prenatal management of neural tube defects. J Pediatr Surg. 2013;48(6):1205–10.

    Article  PubMed  Google Scholar 

  53. Pennington EC, Rialon KL, Dionigi B, Ahmed A, Zurakowski D, Fauza DO. The impact of gestational age on targeted amniotic cell profiling in experimental neural tube defects. Fetal Diagn Ther. 2014.

    Google Scholar 

  54. Perin L, Giuliani S, Jin D, Sedrakyan S, Carraro G, Habibian R, et al. Renal differentiation of amniotic fluid stem cells. Cell Prolif. 2007;40(6):936–48.

    Article  CAS  PubMed  Google Scholar 

  55. Perin L, Sedrakyan S, Giuliani S, Da Sacco S, Carraro G, Shiri L, et al. Protective effect of human amniotic fluid stem cells in an immunodeficient mouse model of acute tubular necrosis. PLoS One. 2010;5(2), e9357.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Phermthai T, Suksompong S, Tirawanchai N, Issaragrisil S, Julavijitphong S, Wichitwiengrat S, et al. Epigenetic analysis and suitability of amniotic fluid stem cells for research and therapeutic purposes. Stem Cells Dev. 2013;22(9):1319–28.

    Article  CAS  PubMed  Google Scholar 

  57. Pozzobon M, Piccoli M, Schiavo AA, Atala A, De Coppi P. Isolation of c-Kit+ human amniotic fluid stem cells from second trimester. Methods Mol Biol. 2013;1035:191–8.

    Article  CAS  PubMed  Google Scholar 

  58. Prasongchean W, Bagni M, Calzarossa C, De Coppi P, Ferretti P. Amniotic fluid stem cells increase embryo survival following injury. Stem Cells Dev. 2012;21(5):675–88.

    Article  CAS  PubMed  Google Scholar 

  59. Prusa AR, Hengstschlager M. Amniotic fluid cells and human stem cell research: a new connection. Med Sci Monit. 2002;8(11):RA253–7.

    PubMed  Google Scholar 

  60. Prusa AR, Marton E, Rosner M, Bernaschek G, Hengstschlager M. Oct-4-expressing cells in human amniotic fluid: a new source for stem cell research? Hum Reprod. 2003;18(7):1489–93.

    Article  PubMed  Google Scholar 

  61. Prusa AR, Marton E, Rosner M, Bettelheim D, Lubec G, Pollack A, et al. Neurogenic cells in human amniotic fluid. Am J Obstet Gynecol. 2004;191(1):309–14.

    Article  PubMed  Google Scholar 

  62. Rehni AK, Singh N, Jaggi AS, Singh M. Amniotic fluid derived stem cells ameliorate focal cerebral ischaemia-reperfusion injury induced behavioural deficits in mice. Behav Brain Res. 2007;183(1):95–100.

    Article  CAS  PubMed  Google Scholar 

  63. Rosner M, Schipany K, Shanmugasundaram B, Lubec G, Hengstschlager M. Amniotic fluid stem cells: future perspectives. Stem Cells Int. 2012;2012:741810.

    PubMed  PubMed Central  Google Scholar 

  64. Roubelakis MG, Pappa KI, Bitsika V, Zagoura D, Vlahou A, Papadaki HA, et al. Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells. Stem Cells Dev. 2007;16(6):931–52.

    Article  CAS  PubMed  Google Scholar 

  65. Roubelakis MG, Bitsika V, Zagoura D, Trohatou O, Pappa KI, Makridakis M, et al. In vitro and in vivo properties of distinct populations of amniotic fluid mesenchymal progenitor cells. J Cell Mol Med. 2011;15(9):1896–913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ryan JM, Pettit AR, Guillot PV, Chan JK, Fisk NM. Unravelling the pluripotency paradox in fetal and placental mesenchymal stem cells: Oct-4 expression and the case of The Emperor’s New Clothes. Stem Cell Rev. 2013;9(4):408–21.

    Article  CAS  PubMed  Google Scholar 

  67. Schmidt D, Achermann J, Odermatt B, Breymann C, Mol A, Genoni M, et al. Prenatally fabricated autologous human living heart valves based on amniotic fluid derived progenitor cells as single cell source. Circulation. 2007;116(11 Suppl):I64–70.

    PubMed  Google Scholar 

  68. Sedrakyan S, Da Sacco S, Milanesi A, Shiri L, Petrosyan A, Varimezova R, et al. Injection of amniotic fluid stem cells delays progression of renal fibrosis. J Am Soc Nephrol. 2012;23(4):661–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sessarego N, Parodi A, Podesta M, Benvenuto F, Mogni M, Raviolo V, et al. Multipotent mesenchymal stromal cells from amniotic fluid: solid perspectives for clinical application. Haematologica. 2008;93(3):339–46.

    Article  PubMed  Google Scholar 

  70. Steigman SA, Armant M, Bayer-Zwirello L, Kao GS, Silberstein L, Ritz J, et al. Preclinical regulatory validation of a 3-stage amniotic mesenchymal stem cell manufacturing protocol. J Pediatr Surg. 2008;43(6):1164–9.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Steigman SA, Ahmed A, Shanti RM, Tuan RS, Valim C, Fauza DO. Sternal repair with bone grafts engineered from amniotic mesenchymal stem cells. J Pediatr Surg. 2009;44(6):1120–6. discussion 6.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Tajiri N, Acosta S, Glover LE, Bickford PC, Jacotte Simancas A, Yasuhara T, et al. Intravenous grafts of amniotic fluid-derived stem cells induce endogenous cell proliferation and attenuate behavioral deficits in ischemic stroke rats. PLoS One. 2012;7(8), e43779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tajiri N, Acosta S, Portillo-Gonzales GS, Aguirre D, Reyes S, Lozano D, et al. Therapeutic outcomes of transplantation of amniotic fluid-derived stem cells in experimental ischemic stroke. Front Cell Neurosci. 2014;8:227.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Tsai MS, Lee JL, Chang YJ, Hwang SM. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod. 2004;19(6):1450–6.

    Article  PubMed  Google Scholar 

  75. Tsai MS, Hwang SM, Tsai YL, Cheng FC, Lee JL, Chang YJ. Clonal amniotic fluid-derived stem cells express characteristics of both mesenchymal and neural stem cells. Biol Reprod. 2006;74(3):545–51.

    Article  CAS  PubMed  Google Scholar 

  76. Tsangaris G, Weitzdorfer R, Pollak D, Lubec G, Fountoulakis M. The amniotic fluid cell proteome. Electrophoresis. 2005;26(6):1168–73.

    Article  CAS  PubMed  Google Scholar 

  77. Underwood MA, Gilbert WM, Sherman MP. Amniotic fluid: not just fetal urine anymore. J Perinatol. 2005;25(5):341–8.

    Article  PubMed  Google Scholar 

  78. Valli A, Rosner M, Fuchs C, Siegel N, Bishop CE, Dolznig H, et al. Embryoid body formation of human amniotic fluid stem cells depends on mTOR. Oncogene. 2010;29(7):966–77.

    Article  CAS  PubMed  Google Scholar 

  79. Villani V, Milanesi A, Sedrakyan S, Da Sacco S, Angelow S, Conconi MT, et al. Amniotic fluid stem cells prevent beta-cell injury. Cytotherapy. 2014;16(1):41–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Whitsett CF, Priest JH, Priest RE, Marion J. HLA typing of cultured amniotic fluid cells. Am J Clin Pathol. 1983;79(2):186–94.

    Article  CAS  PubMed  Google Scholar 

  81. Wilson PG, Devkota L, Payne T, Crisp L, Winter A, Wang Z. Clonal populations of amniotic cells by dilution and direct plating: evidence for hidden diversity. Stem Cells Int. 2012;2012:485950.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Yeh YC, Wei HJ, Lee WY, Yu CL, Chang Y, Hsu LW, et al. Cellular cardiomyoplasty with human amniotic fluid stem cells: in vitro and in vivo studies. Tissue Eng Part A. 2010;16(6):1925–36.

    Article  CAS  PubMed  Google Scholar 

  83. You Q, Tong X, Guan Y, Zhang D, Huang M, Zhang Y, et al. The biological characteristics of human third trimester amniotic fluid stem cells. J Int Med Res. 2009;37(1):105–12.

    Article  CAS  PubMed  Google Scholar 

  84. Zani A, Cananzi M, Fascetti-Leon F, Lauriti G, Smith VV, Bollini S, et al. Amniotic fluid stem cells improve survival and enhance repair of damaged intestine in necrotising enterocolitis via a COX-2 dependent mechanism. Gut. 2014;63(2):300–9.

    CAS  PubMed  Google Scholar 

  85. Zhang S, Geng H, Xie H, Wu Q, Ma X, Zhou J, et al. The heterogeneity of cell subtypes from a primary culture of human amniotic fluid. Cell Mol Biol Lett. 2010;15(3):424–39.

    CAS  PubMed  Google Scholar 

  86. Zheng YB, Gao ZL, Xie C, Zhu HP, Peng L, Chen JH, et al. Characterization and hepatogenic differentiation of mesenchymal stem cells from human amniotic fluid and human bone marrow: a comparative study. Cell Biol Int. 2008;32(11):1439–48.

    Article  CAS  PubMed  Google Scholar 

  87. Zou G, Liu T, Zhang L, Liu Y, Li M, Du X, et al. Induction of pancreatic beta-cell-like cells from CD44+/CD105+ human amniotic fluids via epigenetic regulation of the pancreatic and duodenal homeobox factor 1 promoter. DNA Cell Biol. 2011;30(9):739–48.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaun M. Kunisaki M.D., M.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Di Bernardo, J., Kunisaki, S.M. (2016). Amniotic Fluid Stem Cell Populations. In: Fauza, D., Bani, M. (eds) Fetal Stem Cells in Regenerative Medicine. Stem Cell Biology and Regenerative Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3483-6_9

Download citation

Publish with us

Policies and ethics