Advertisement

Amniotic Membrane Stem Cell Populations

  • Rebecca Lim
  • Jean Tan
  • Ryan J. Hodges
  • Euan M. Wallace
Chapter
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)

Abstract

Amnion membrane has long been used to facilitate wound healing and repair. However, the recent recognition that the fetal membranes, both amnion and chorion, contain a variety of cell populations with stem cell or stem cell-like properties has led to renewed interest in the regenerative medicine potential of these tissues that are otherwise regarded as medical waste. There are two main populations of stem cell-like cells in the amnion—amnion mesenchymal stem cells and amnion epithelial cells. While they possess similar properties there are also some important differences that may be important for future clinical applications. Studies using these cells to date have been mainly limited to experimental animal work but have addressed diverse applications such as lung disease, diabetes, neurological disorders, liver disease, ischaemic disorders. It would appear that for most of these applications the cells are not implanting and differentiating into niche lineages to effect organ repair but rather are targeting host immune responses to injury to drive these towards reparative pathways. Specifically, the cells appear to critically modulate host macrophage and T cell responses. Most recently, it has been shown that the cells themselves may not be required to effect repair but that cell-conditioned media may be sufficient. Exploring what cell secreted products effect the reparative actions is now an urgent focus of attention. These insights will likely better direct translation of the experimental research into clinical trials, many of which are poised to begin.

Keywords

Amnion Chorion Epithelial cells Immunomodulation Macrophage T cells HLA-G Lung disease Liver cirrhosis 

References

  1. 1.
    Kesting MR, Wolff KD, Hohlweg-Majert B, Steinstraesser L. The role of allogenic amniotic membrane in burn treatment. J Burn Care Res. 2008;29:907–16.CrossRefPubMedGoogle Scholar
  2. 2.
    Gruss JS, Jirsch DW. Human amniotic membrane: a versatile wound dressing. Can Med Assoc J. 1978;118:1237–46.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Ricciardelli G, Ceccuzzi R, Raneri M, Scalisi A, Bianchi PE. Management of recurrent corneal ulcers: use of amniotic membrane. Eur J Ophthalmol. 2014;24:793–6.CrossRefPubMedGoogle Scholar
  4. 4.
    Koob TJ, Rennert R, Zabek N, Massee M, Lim JJ, Temenoff JS, Li WW, Gurtner G. Biological properties of dehydrated human amnion/chorion composite graft: implications for chronic wound healing. Int Wound J. 2013;10:493–500.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Sheikh ES, Sheikh ES, Fetterolf DE. Use of dehydrated human amniotic membrane allografts to promote healing in patients with refractory non healing wounds. Int Wound J. 2014;11:711–7.CrossRefPubMedGoogle Scholar
  6. 6.
    de Moraes-Pinto MI, Vince GS, Flanagan BF, Hart CA, Johnson PM. Localization of IL-4 and IL-4 receptors in the human term placenta, decidua and amniochorionic membranes. Immunology. 1997;90:87–94.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lefebvre S, Adrian F, Moreau P, Gourand L, Dausset J, Berrih-Aknin S, Carosella ED, Paul P. Modulation of HLA-G expression in human thymic and amniotic epithelial cells. Hum Immunol. 2000;61:1095–101.CrossRefPubMedGoogle Scholar
  8. 8.
    In ‘t Anker PS, Scherjon SA, Kleijburg-van der C, de Groot-Swings GM, Claas FH, Fibbe WE, Kanhai HH. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells. 2004;22:1338–45.CrossRefPubMedGoogle Scholar
  9. 9.
    Portmann-Lanz CB, Schoeberlein A, Huber A, Sager R, Malek A, Holzgreve W, Surbek DV. Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. Am J Obstet Gynecol. 2006;194:664–73.CrossRefPubMedGoogle Scholar
  10. 10.
    Soncini M, Vertua E, Gibelli L, Zorzi F, Denegri M, Albertini A, Wengler GS, Parolini O. Isolation and characterization of mesenchymal cells from human fetal membranes. J Tissue Eng Regen Med. 2007;1:296–305.CrossRefPubMedGoogle Scholar
  11. 11.
    Poloni A, Rosini V, Mondini E, Maurizi G, Mancini S, Discepoli G, Biasio S, Battaglini G, Berardinelli E, Serrani F, Leoni P. Characterization and expansion of mesenchymal progenitor cells from first-trimester chorionic villi of human placenta. Cytotherapy. 2008;10:690–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Zhang Y, Li CD, Jiang XX, Li HL, Tang PH, Mao N. Comparison of mesenchymal stem cells from human placenta and bone marrow. Chin Med J (Engl). 2004;117:882–7.Google Scholar
  13. 13.
    Alviano F, Fossati V, Marchionni C, Arpinati M, Bonsi L, Franchina M, Lanzoni G, Cantoni S, Cavallini C, Bianchi F, Tazzari PL, Pasquinelli G, Foroni L, Ventura C, Grossi A, Bagnara GP. Term amniotic membrane is a high throughput source for multipotent mesenchymal stem cells with the ability to differentiate into endothelial cells in vitro. BMC Dev Biol. 2007;7:11.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Yamahara K, Harada K, Ohshima M, Ishikane S, Ohnishi S, Tsuda H, Otani K, Taguchi A, Soma T, Ogawa H, Katsuragi S, Yoshimatsu J, Harada-Shiba M, Kangawa K, Ikeda T. Comparison of angiogenic, cytoprotective, and immunosuppressive properties of human amnion- and chorion-derived mesenchymal stem cells. PLoS One. 2014;9, e88319.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Schellenberg A, Lin Q, Schüler H, Koch CM, Joussen S, Denecke B, Walenda G, Pallua N, Suschek CV, Zenke M, Wagner W. Replicative senescence of mesenchymal stem cells causes DNA-methylation changes which correlate with repressive histone marks. Aging (Albany, NY). 2011;3:873–88.CrossRefGoogle Scholar
  16. 16.
    Wang Y, Zhang Z, Chi Y, Zhang Q, Xu F, Yang Z, Meng L, Yang S, Yan S, Mao A, Zhang J, Yang Y, Wang S, Cui J, Liang L, Ji Y, Han ZB, Fang X, Han ZC. Long-term cultured mesenchymal stem cells frequently develop genomic mutations but do not undergo malignant transformation. Cell Death Dis. 2013;4, e950.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Murphy S, Rosli S, Acharya R, Mathias L, Lim R, Wallace E, Jenkin G. Amnion epithelial cell isolation and characterization for clinical use. Curr Protoc Stem Cell Biol. 2010;Chapter 1:Unit 1E.6. doi: 10.1002/9780470151808.PubMedGoogle Scholar
  18. 18.
    Miki T, Lehmann T, Cai H, Stolz DB, Strom SC. Stem cell characteristics of amniotic epithelial cells. Stem Cells. 2005;23:1549–59.CrossRefPubMedGoogle Scholar
  19. 19.
    Vancheri C, Mastruzzo C, Sortino MA, Crimi N. The lung as a privileged site for the beneficial actions of PGE2. Trends Immunol. 2004;25:40–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Prescott D, McKay DM. Aspirin-triggered lipoxin enhances macrophage phagocytosis of bacteria while inhibiting inflammatory cytokine production. Am J Physiol Gastrointest Liver Physiol. 2011;301:G487–97.CrossRefPubMedGoogle Scholar
  21. 21.
    Mandapathil M, Szczepanski MJ, Szajnik M, Ren J, Jackson EK, Johnson JT, Gorelik E, Lang S, Whiteside TL. Adenosine and prostaglandin E2 cooperate in the suppression of immune responses mediated by adaptive regulatory T cells. J Biol Chem. 2010;285:27571–80.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Mahic M, Yaqub S, Johansson CC, Taskén K, Aandahl EM. FOXP3+CD4+CD25+ adaptive regulatory T cells express cyclooxygenase-2 and suppress effector T cells by a prostaglandin E2-dependent mechanism. J Immunol. 2006;177(1):246–54.CrossRefPubMedGoogle Scholar
  23. 23.
    Aggarwal NR, D’Alessio FR, Tsushima K, Sidhaye VK, Cheadle C, Grigoryev DN, Barnes KC, King LS. Regulatory T cell-mediated resolution of lung injury: identification of potential target genes via expression profiling. Physiol Genomics. 2010;41:109–19.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Lim R, Chan ST, Tan JL, Mockler JC, Murphy SV, Wallace EM. Preterm human amnion epithelial cells have limited reparative potential. Placenta. 2013;34:486–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Li H, Niederkorn JY, Neelam S, Mayhew E, Word RA, McCulley JP, Alizadeh H. Immunosuppressive factors secreted by human amniotic epithelial cells. Invest Ophthalmol Vis Sci. 2005;46:900–7.CrossRefPubMedGoogle Scholar
  26. 26.
    Kubo M, Sonoda Y, Muramatsu R, Usui M. Immunogenicity of human amniotic membrane in experimental xenotransplantation. Invest Ophthalmol Vis Sci. 2001;42:1539–46.PubMedGoogle Scholar
  27. 27.
    Liu YH, Vaghjiani V, Tee JY, To K, Cui P, Oh DY, Manuelpillai U, Toh BH, Chan J. Amniotic epithelial cells from the human placenta potently suppress a mouse model of multiple sclerosis. PLoS One. 2012;7, e35758.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Tan JL, Chan ST, Wallace EM, Lim R. Human amnion epithelial cells mediate lung repair by directly modulating macrophage recruitment and polarization. Cell Transplant. 2014;23:319–28.CrossRefPubMedGoogle Scholar
  29. 29.
    Jang MJ, Kim HS, Lee HG, Kim GJ, Jeon HG, Shin HS, Chang SK, Hur GH, Chong SY, Oh D, Chung HM. Placenta-derived mesenchymal stem cells have an immunomodulatory effect that can control acute graft-versus-host disease in mice. Acta Haematol. 2013;129:197–206.CrossRefPubMedGoogle Scholar
  30. 30.
    Kim J, Kang HM, Kim H, Kim MR, Kwon HC, Gye MC, Kang SG, Yang HS, You J. Ex vivo characteristics of human amniotic membrane-derived stem cells. Cloning Stem Cells. 2007;9:581–94.CrossRefPubMedGoogle Scholar
  31. 31.
    Koo BK, Park IY, Kim J, Kim JH, Kwon A, Kim Y, Shin JC, Kim JH. Isolation and characterization of chorionic mesenchymal stromal cells from human full term placenta. J Korean Med Sci. 2012;27:857–63.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Wang J, Zhu Z, Huang Y, Wang P, Luo Y, Gao Y, Du Z. The subtype CD200-positive, chorionic mesenchymal stem cells from the placenta promote regeneration of human hepatocytes. Biotechnol Lett. 2014;36:1335–41.CrossRefPubMedGoogle Scholar
  33. 33.
    Ishikane S, Ohnishi S, Yamahara K, Sada M, Harada K, Mishima K, Iwasaki K, Fujiwara M, Kitamura S, Nagaya N, Ikeda T. Allogeneic injection of fetal membrane-derived mesenchymal stem cells induces therapeutic angiogenesis in a rat model of hind limb ischemia. Stem Cells. 2008;26:2625–33.CrossRefPubMedGoogle Scholar
  34. 34.
    Ohshima M, Yamahara K, Ishikane S, Harada K, Tsuda H, Otani K, Taguchi A, Miyazato M, Katsuragi S, Yoshimatsu J, Kodama M, Kangawa K, Ikeda T. Systemic transplantation of allogenic fetal membrane-derived mesenchymal stem cells suppresses Th1 and Th17 T cell responses in experimental autoimmune myocarditis. J Mol Cell Cardiol. 2012;53:420–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Tsuda H, Yamahara K, Ishikane S, Otani K, Nakamura A, Sawai K, Ichimaru N, Sada M, Taguchi A, Hosoda H, Tsuji M, Kawachi H, Horio M, Isaka Y, Kangawa K, Takahara S, Ikeda T. Allogenic fetal membrane-derived mesenchymal stem cells contribute to renal repair in experimental glomerulonephritis. Am J Physiol Renal Physiol. 2010;299:F1004–13.CrossRefPubMedGoogle Scholar
  36. 36.
    Tsuda H, Yamahara K, Otani K, Okumi M, Yazawa K, Kaimori JY, Taguchi A, Kangawa K, Ikeda T, Takahara S, Isaka Y. Transplantation of allogenic fetal membrane-derived mesenchymal stem cells protects against ischemia/reperfusion-induced acute kidney injury. Cell Transplant. 2014;23:889–99.CrossRefPubMedGoogle Scholar
  37. 37.
    Ishikane S, Hosoda H, Yamahara K, Akitake Y, Kyoungsook J, Mishima K, Iwasaki K, Fujiwara M, Miyazato M, Kangawa K, Ikeda T. Allogeneic transplantation of fetal membrane-derived mesenchymal stem cell sheets increases neovascularization and improves cardiac function after myocardial infarction in rats. Transplantation. 2013;96:697–706.CrossRefPubMedGoogle Scholar
  38. 38.
    Prather WR, Toren A, Meiron M. Placental-derived and expanded mesenchymal stromal cells (PLX-I) to enhance the engraftment of hematopoietic stem cells derived from umbilical cord blood. Expert Opin Biol Ther. 2008;8:1241–50.CrossRefPubMedGoogle Scholar
  39. 39.
    Kim SW, Zhang HZ, Guo L, Kim JM, Kim MH. Amniotic mesenchymal stem cells enhance wound healing in diabetic NOD/SCID mice through high angiogenic and engraftment capabilities. PLoS One. 2012;7, e41105.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kim SW, Zhang HZ, Kim CE, An HS, Kim JM, Kim MH. Amniotic mesenchymal stem cells have robust angiogenic properties and are effective in treating hindlimb ischaemia. Cardiovasc Res. 2012;93:525–34.CrossRefPubMedGoogle Scholar
  41. 41.
    Adzick NS, Longaker MT. Scarless fetal healing. Therapeutic implications. Ann Surg. 1992;215:3–7.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Lin RY, Sullivan KM, Argenta PA, Peter Lorenz H, Scott Adzick N. Scarless human fetal skin repair is intrinsic to the fetal fibroblast and occurs in the absence of an inflammatory response. Wound Repair Regen. 1994;2:297–305.CrossRefPubMedGoogle Scholar
  43. 43.
    Tsuji H, Miyoshi S, Ikegami Y, Hida N, Asada H, Togashi I, Suzuki J, Satake M, Nakamizo H, Tanaka M, Mori T, Segawa K, Nishiyama N, Inoue J, Makino H, Miyado K, Ogawa S, Yoshimura Y, Umezawa A. Xenografted human amniotic membrane-derived mesenchymal stem cells are immunologically tolerated and transdifferentiated into cardiomyocytes. Circ Res. 2010;106:1613–23.CrossRefPubMedGoogle Scholar
  44. 44.
    Kim SW, Zhang HZ, Kim CE, Kim JM, Kim MH. Amniotic mesenchymal stem cells with robust chemotactic properties are effective in the treatment of a myocardial infarction model. Int J Cardiol. 2013;168:1062–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Fang CH, Jin J, Joe JH, Song YS, So BI, Lim SM, Cheon GJ, Woo SK, Ra JC, Lee YY, Kim KS. In vivo differentiation of human amniotic epithelial cells into cardiomyocyte-like cells and cell transplantation effect on myocardial infarction in rats: comparison with cord blood and adipose tissue-derived mesenchymal stem cells. Cell Transplant. 2012;21:1687–96.CrossRefPubMedGoogle Scholar
  46. 46.
    Zhang D, Jiang M, Miao D. Transplanted human amniotic membrane-derived mesenchymal stem cells ameliorate carbon tetrachloride-induced liver cirrhosis in mouse. PLoS One. 2011;6, e16789.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Manuelpillai U, Tchongue J, Lourensz D, Vaghjiani V, Samuel CS, Liu A, Williams ED, Sievert W. Transplantation of human amnion epithelial cells reduces hepatic fibrosis in immunocompetent CCl4-treated mice. Cell Transplant. 2010;19:1157–68.CrossRefPubMedGoogle Scholar
  48. 48.
    Hodge A, Lourensz D, Vaghjiani V, Nguyen H, Tchongue J, Wang B, Murthi P, Sievert W, Manuelpillai U. Soluble factors derived from human amniotic epithelial cells suppress collagen production in human hepatic stellate cells. Cytotherapy. 2014;16:1132–44.CrossRefPubMedGoogle Scholar
  49. 49.
    Manuelpillai U, Lourensz D, Vaghjiani V, Tchongue J, Lacey D, Tee JY, Murthi P, Chan J, Hodge A, Sievert W. Human amniotic epithelial cell transplantation induces markers of alternative macrophage activation and reduces established hepatic fibrosis. PLoS One. 2012;7, e38631.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Cargnoni A, Gibelli L, Tosini A, Signoroni PB, Nassuato C, Arienti D, Lombardi G, Albertini A, Wengler GS, Parolini O. Transplantation of allogeneic and xenogeneic placenta-derived cells reduces bleomycin-induced lung fibrosis. Cell Transplant. 2009;18:405–22.CrossRefPubMedGoogle Scholar
  51. 51.
    Cargnoni A, Ressel L, Rossi D, Poli A, Arienti D, Lombardi G, Parolini O. Conditioned medium from amniotic mesenchymal tissue cells reduces progression of bleomycin-induced lung fibrosis. Cytotherapy. 2012;14:153–61.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Murphy S, Lim R, Dickinson H, Acharya R, Rosli S, Jenkin G, Wallace E. Human amnion epithelial cells prevent bleomycin-induced lung injury and preserve lung function. Cell Transplant. 2011;20:909–23.CrossRefPubMedGoogle Scholar
  53. 53.
    Murphy SV, Shiyun SC, Tan JL, Chan S, Jenkin G, Wallace EM, Lim R. Human amnion epithelial cells do not abrogate pulmonary fibrosis in mice with impaired macrophage function. Cell Transplant. 2012;21:1477–92.CrossRefPubMedGoogle Scholar
  54. 54.
    Vosdoganes P, Wallace EM, Chan ST, Acharya R, Moss TJ, Lim R. Human amnion epithelial cells repair established lung injury. Cell Transplant. 2013;22:1337–49.CrossRefPubMedGoogle Scholar
  55. 55.
    Vosdoganes P, Lim R, Koulaeva E, Chan ST, Acharya R, Moss TJ, Wallace EM. Human amnion epithelial cells modulate hyperoxia-induced neonatal lung injury in mice. Cytotherapy. 2013;15:1021–9.CrossRefPubMedGoogle Scholar
  56. 56.
    Vosdoganes P, Hodges RJ, Lim R, Westover AJ, Acharya RY, Wallace EM, Moss TJ. Human amnion epithelial cells as a treatment for inflammation-induced fetal lung injury in sheep. Am J Obstet Gynecol. 2011;205:156.e26–33.CrossRefGoogle Scholar
  57. 57.
    Hodges RJ, Jenkin G, Hooper SB, Allison B, Lim R, Dickinson H, Miller SL, Vosdoganes P, Wallace EM. Human amnion epithelial cells reduce ventilation-induced preterm lung injury in fetal sheep. Am J Obstet Gynecol. 2012;206:448.e8–15.CrossRefGoogle Scholar
  58. 58.
    Li F, Miao ZN, Xu YY, Zheng SY, Qin MD, Gu YZ, Zhang XG. Transplantation of human amniotic mesenchymal stem cells in the treatment of focal cerebral ischemia. Mol Med Rep. 2012;6:625–30.PubMedGoogle Scholar
  59. 59.
    Tao J, Ji F, Liu B, Wang F, Dong F, Zhu Y. Improvement of deficits by transplantation of lentiviral vector-modified human amniotic mesenchymal cells after cerebral ischemia in rats. Brain Res. 2012;1448:1–10.CrossRefPubMedGoogle Scholar
  60. 60.
    Rehni AK, Singh N, Jaggi AS, Singh M. Amniotic fluid derived stem cells ameliorate focal cerebral ischaemia-reperfusion injury induced behavioural deficits in mice. Behav Brain Res. 2007;183:95–100.CrossRefPubMedGoogle Scholar
  61. 61.
    Liu T, Wu J, Huang Q, Hou Y, Jiang Z, Zang S, Guo L. Human amniotic epithelial cells ameliorate behavioral dysfunction and reduce infarct size in the rat middle cerebral artery occlusion model. Shock. 2008;29:603–11.CrossRefPubMedGoogle Scholar
  62. 62.
    Dong W, Chen H, Yang X, Guo L, Hui G. Treatment of intracerebral haemorrhage in rats with intraventricular transplantation of human amniotic epithelial cells. Cell Biol Int. 2010;34:573–7.CrossRefPubMedGoogle Scholar
  63. 63.
    Broughton BRS, Rebecca Lim R, Thiruma V, Arumugam TV, Grant R, Drummond GR, Euan M, Wallace EM, Sobey CG. Post-stroke inflammation and the potential efficacy of novel stem cell therapies: focus on amnion epithelial cells. Front Cell Neurosci. 2013;6:66.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Tajiri N, Acosta S, Glover LE, Bickford PC, Jacotte Simancas A, Yasuhara T, Date I, Solomita MA, Antonucci I, Stuppia L, Kaneko Y, Borlongan CV. Intravenous grafts of amniotic fluid-derived stem cells induce endogenous cell proliferation and attenuate behavioral deficits in ischemic stroke rats. PLoS One. 2012;7, e43779.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Yawno T, Schuilwerve J, Moss TJ, Vosdoganes P, Westover AJ, Afandi E, Jenkin G, Wallace EM, Miller SL. Human amnion epithelial cells reduce fetal brain injury in response to intrauterine inflammation. Dev Neurosci. 2013;35:272–82.CrossRefPubMedGoogle Scholar
  66. 66.
    Kaneko Y, Hayashi T, Yu S, Tajiri N, Bae EC, Solomita MA, Chheda SH, Weinbren NL, Parolini O, Borlongan CV. Human amniotic epithelial cells express melatonin receptor MT1, but not melatonin receptor MT2: a new perspective to neuroprotection. J Pineal Res. 2011;50:272–80.CrossRefPubMedGoogle Scholar
  67. 67.
    McDonald C, Siatskas C, Bernard CCA. The emergence of amnion epithelial stem cells for the treatment of multiple sclerosis. Inflamm Regen. 2011;31:256–71.CrossRefGoogle Scholar
  68. 68.
    Kakishita K, Elwan MA, Nakao N, Itakura T, Sakuragawa N. Human amniotic epithelial cells produce dopamine and survive after implantation into the striatum of a rat model of Parkinson’s disease: a potential source of donor for transplantation therapy. Exp Neurol. 2000;165:27–34.CrossRefPubMedGoogle Scholar
  69. 69.
    Kakishita K, Nakao N, Sakuragawa N, Itakura T. Implantation of human amniotic epithelial cells prevents the degeneration of nigral dopamine neurons in rats with 6-hydroxydopamine lesions. Brain Res. 2003;980:48–56.CrossRefPubMedGoogle Scholar
  70. 70.
    Sun H, Hou Z, Yang H, Meng M, Li P, Zou Q, Yang L, Chen Y, Chai H, Zhong H, Yang ZZ, Zhao J, Lai L, Jiang X, Xiao Z. Multiple systemic transplantations of human amniotic mesenchymal stem cells exert therapeutic effects in an ALS mouse model. Cell Tissue Res. 2014;357:571–82.CrossRefPubMedGoogle Scholar
  71. 71.
    Sankar V, Muthusamy R. Role of human amniotic epithelial cell transplantation in spinal cord injury repair research. Neuroscience. 2033;118:11–7.CrossRefGoogle Scholar
  72. 72.
    Wu ZY, Hui GZ. Materials for neuro-transplantation and the amnion. Chin Med J (Engl). 2006;119:1323–6.Google Scholar
  73. 73.
    Li Y, Guo L, Ahn HS, Kim MH, Kim SW. Amniotic mesenchymal stem cells display neurovascular tropism and aid in the recovery of injured peripheral nerves. J Cell Mol Med. 2014;18:1028–34.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Rebecca Lim
    • 1
  • Jean Tan
    • 1
  • Ryan J. Hodges
    • 1
  • Euan M. Wallace
    • 1
  1. 1.The Ritchie Centre, Department of Obstetrics and GynaecologyMonash UniversityClaytonAustralia

Personalised recommendations