Skip to main content

Perinatal Gene Therapy

  • Chapter
  • First Online:
Fetal Stem Cells in Regenerative Medicine

Abstract

The first human gene therapy trials began over 10 years ago, but in spite of continuous technological progress most clinical results have been disappointing. The reasons for this include difficulties in targeting the appropriate organ, a robust immune response to the therapy in adults and low level expression of the therapeutic gene product. Applying the therapy before birth may avoid these difficulties, and recent pre-clinical work has shown proof-of-principle for phenotypic cure of congenital disease in animal models using this approach. Selecting the right diseases for therapeutic intervention will be critical for clinical translation. Perinatal application of gene therapy has been proposed to be appropriate for life-threatening disorders, in which prenatal gene delivery maintains a clear advantage over cell transplantation or postnatal gene therapy and for which there are currently no satisfactory treatments available. Gene therapy could be applied directly to the fetus in utero. In the case of maternal pathology affecting the fetus such as occurs in uteroplacental insufficiency, a major cause of fetal growth restriction, gene therapy could be given to the mother. Combining stem cell transplantation (SCT) and gene therapy by transplanting the fetus with gene corrected autologous stem cells is an attractive proposition. This would avoid some of the issues of safety with regard to direct fetal vector injection, in particular the potential for germline gene transfer and untargeted fetal systemic vector delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lewis C, Hill M, Chitty LS. Non-invasive prenatal diagnosis for single gene disorders: experience of patients. Clin Genet. 2014;85(4):336–42.

    Article  CAS  PubMed  Google Scholar 

  2. Twiss P, et al. Non-invasive prenatal testing for Down syndrome. Semin Fetal Neonatal Med. 2014;19(1):9–14.

    Article  PubMed  Google Scholar 

  3. Flake AW. In utero stem cell transplantation. Best Pract Res Clin Obstet Gynaecol. 2004;18(6):941–58.

    Article  PubMed  Google Scholar 

  4. Peebles D, et al. Widespread and efficient marker gene expression in the airway epithelia of fetal sheep after minimally invasive tracheal application of recombinant adenovirus in utero. Gene Ther. 2004;11(1):70–8.

    Article  CAS  PubMed  Google Scholar 

  5. Polakowska RR, et al. Apoptosis in human skin development: morphogenesis, periderm, and stem cells. Dev Dyn. 1994;199(3):176–88.

    Article  CAS  PubMed  Google Scholar 

  6. Endo M, et al. Early intra-amniotic gene transfer using lentiviral vector improves skin blistering phenotype in a murine model of Herlitz junctional epidermolysis bullosa. Gene Ther. 2012;19(5):561–9.

    Article  CAS  PubMed  Google Scholar 

  7. Manno CS, et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med. 2006;12(3):342–7.

    Article  CAS  PubMed  Google Scholar 

  8. Nathwani AC, et al. Adenovirus-associated virus vector–mediated gene transfer in hemophilia B. N Engl J Med. 2011;365(25):2357–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nathwani AC, et al. Self-complementary adeno-associated virus vectors containing a novel liver-specific human factor IX expression cassette enable highly efficient transduction of murine and nonhuman primate liver. Blood. 2006;107(7):2653–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Billingham RE, Brent L. Acquired tolerance of foreign cells in newborn animals. Proc R Soc Lond B Biol Sci. 1956;146(922):78–90.

    Article  CAS  PubMed  Google Scholar 

  11. Billingham RE, Brent L, Medawar PB. Actively acquired tolerance of foreign cells. Nature. 1953;172(4379):603–6.

    Article  CAS  PubMed  Google Scholar 

  12. Waddington SN, et al. Fetal gene transfer. Curr Opin Mol Ther. 2007;9(5):432–8.

    CAS  PubMed  Google Scholar 

  13. Waddington SN, et al. Fetal and neonatal gene therapy: benefits and pitfalls. Gene Ther. 2004a;11 Suppl 1:S92–7.

    Article  CAS  PubMed  Google Scholar 

  14. David AL, et al. Recombinant adeno-associated virus-mediated in utero gene transfer gives therapeutic transgene expression in the sheep. Hum Gene Ther. 2011;22(4):419–26.

    Article  CAS  PubMed  Google Scholar 

  15. Mattar CNZ, et al. Stable human FIX expression after 0.9G intrauterine gene transfer of self-complementary adeno-associated viral vector 5 and 8 in macaques. Mol Ther. 2011;19(11):1950–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Anon. Prenatal gene transfer: scientific, medical, and ethical issues: a report of the Recombinant DNA Advisory Committee. Hum Gene Ther. 2000;11(8):1211–29.

    Article  Google Scholar 

  17. Lipshutz GS, et al. Short-term correction of factor VIII deficiency in a murine model of hemophilia A after delivery of adenovirus murine factor VIII in utero. Proc Natl Acad Sci U S A. 1999;96(23):13324–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Waddington SN, et al. Permanent phenotypic correction of hemophilia B in immunocompetent mice by prenatal gene therapy. Blood. 2004b;104(9):2714–21.

    Article  CAS  PubMed  Google Scholar 

  19. Dejneka NS, et al. In utero gene therapy rescues vision in a murine model of congenital blindness. Mol Ther. 2004;9(2):182–8.

    Article  CAS  PubMed  Google Scholar 

  20. Seppen J, et al. Long-term correction of bilirubin UDPglucuronyltransferase deficiency in rats by in utero lentiviral gene transfer. Mol Ther. 2003;8(4):593–9.

    Article  CAS  PubMed  Google Scholar 

  21. Rucker M, et al. Rescue of enzyme deficiency in embryonic diaphragm in a mouse model of metabolic myopathy: pompe disease. Development. 2004;131(12):3007–19.

    Article  CAS  PubMed  Google Scholar 

  22. Wu C, et al. Intra-amniotic transient transduction of the periderm with a viral vector encoding TGFβ3 prevents cleft palate in Tgfβ3(-/-) mouse embryos. Mol Ther. 2013;21(1):8–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Carr DJ, et al. Uteroplacental adenovirus vascular endothelial growth factor gene therapy increases fetal growth velocity in growth-restricted sheep pregnancies. Hum Gene Ther. 2014;25(4):375–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gharwan H, et al. Nonviral gene transfer into fetal mouse livers (a comparison between the cationic polymer PEI and naked DNA). Gene Ther. 2003;10(9):810–7.

    Article  CAS  PubMed  Google Scholar 

  25. Luton D, et al. Gene transfection into fetal sheep airways in utero using guanidinium-cholesterol cationic lipids. J Gene Med. 2004;6(3):328–36.

    Article  CAS  PubMed  Google Scholar 

  26. Fletcher S, et al. In vivo studies of dialkynoyl analogues of DOTAP demonstrate improved gene transfer efficiency of cationic liposomes in mouse lung. J Med Chem. 2006;49(1):349–57.

    Article  CAS  PubMed  Google Scholar 

  27. Mason CA, et al. Gene transfer in utero biologically engineers a patent ductus arteriosus in lambs by arresting fibronectin-dependent neointimal formation. Nat Med. 1999;5(2):176–82.

    Article  CAS  PubMed  Google Scholar 

  28. David A, et al. Ultrasound-guided percutaneous delivery of adenoviral vectors encoding the beta-galactosidase and human factor IX genes to early gestation fetal sheep in utero. Hum Gene Ther. 2003;14(4):353–64.

    Article  CAS  PubMed  Google Scholar 

  29. Lipshutz GS, Flebbe-Rehwaldt L, Gaensler KM. Reexpression following readministration of an adenoviral vector in adult mice after initial in utero adenoviral administration. Mol Ther. 2000;2(4):374–80.

    Article  CAS  PubMed  Google Scholar 

  30. Waddington SN, et al. In utero gene transfer of human factor IX to fetal mice can induce postnatal tolerance of the exogenous clotting factor. Blood. 2003;101(4):1359–66.

    Article  CAS  PubMed  Google Scholar 

  31. Crystal RG. Adenovirus: the first effective in vivo gene delivery vector. Hum Gene Ther. 2014;25(1):3–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Joyeux L, et al. In utero lung gene transfer using adeno-associated viral and lentiviral vectors in mice. Hum Gene Ther Methods. 2014;25(3):197–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bouchard S, et al. Long-term transgene expression in cardiac and skeletal muscle following fetal administration of adenoviral or adeno-associated viral vectors in mice. J Gene Med. 2003;5(11):941–50.

    Article  CAS  PubMed  Google Scholar 

  34. Lipshutz GS, et al. In utero delivery of adeno-associated viral vectors: intraperitoneal gene transfer produces long-term expression. Mol Ther. 2001;3(3):284–92.

    Article  CAS  PubMed  Google Scholar 

  35. Mitchell M, et al. Long-term gene transfer to mouse fetuses with recombinant adenovirus and adeno-associated virus (AAV) vectors. Gene Ther. 2000;7(23):1986–92.

    Article  CAS  PubMed  Google Scholar 

  36. Mühle C, et al. Evaluation of prenatal intra-amniotic LAMB3 gene delivery in a mouse model of Herlitz disease. Gene Ther. 2006;13(23):1665–76.

    Article  PubMed  CAS  Google Scholar 

  37. Garrett DJ, et al. In utero recombinant adeno-associated virus gene transfer in mice, rats, and primates. BMC Biotechnol. 2003;3:16.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hellström M, Harvey AR. Retinal ganglion cell gene therapy and visual system repair. Curr Gene Ther. 2011;11(2):116–31.

    Article  PubMed  Google Scholar 

  39. Yang B, et al. Global CNS transduction of adult mice by intravenously delivered rAAVrh.8 and rAAVrh.10 and nonhuman primates by rAAVrh.10. Mol Ther. 2014;22(7):1299–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Burguete T. Evidence for infection of the human embryo with adeno-associated virus in pregnancy. Hum Reprod. 1999;14(9):2396–401.

    Article  CAS  PubMed  Google Scholar 

  41. Porada CD, et al. In utero gene therapy: transfer and long-term expression of the bacterial neo(r) gene in sheep after direct injection of retroviral vectors into preimmune fetuses. Hum Gene Ther. 1998;9(11):1571–85.

    Article  CAS  PubMed  Google Scholar 

  42. Schoenhard JA, Hatzopoulos AK. Stem cell therapy: pieces of the puzzle. J Cardiovasc Transl Res. 2010;3(1):49–60.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cavazzana-Calvo M, et al. Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature. 2010;467(7313):318–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Levasseur DN, et al. Correction of a mouse model of sickle cell disease: lentiviral/antisickling beta-globin gene transduction of unmobilized, purified hematopoietic stem cells. Blood. 2003;102(13):4312–9.

    Article  CAS  PubMed  Google Scholar 

  45. Kim H, Kim J-S. A guide to genome engineering with programmable nucleases. Nat Rev Genet. 2014;15(5):321–34.

    Article  CAS  PubMed  Google Scholar 

  46. Gaj T, Gersbach CA, Barbas CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31(7):397–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hwang WY, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol. 2013;31(3):227–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Boch J, et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science. 2009;326(5959):1509–12.

    Article  CAS  PubMed  Google Scholar 

  49. Cermak T, et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 2011;39(12):e82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Christian M, et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 2010;186(2):757–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Moscou M. A simple cipher governs DNA recognition by TAL effectors. Science. 2009;326:1501.

    Article  CAS  PubMed  Google Scholar 

  52. Bedell VM, et al. In vivo genome editing using a high-efficiency TALEN system. Nature. 2012;491(7422):114–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Beumer KJ, et al. Comparing zinc finger nucleases and transcription activator-like effector nucleases for gene targeting in Drosophila. G3 (Bethesda). 2013;3(10):1717–25.

    Article  CAS  Google Scholar 

  54. Xiao A, et al. Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res. 2013;41(14):e141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Huard J, et al. Differential short-term transduction efficiency of adult versus newborn mouse tissues by adenoviral recombinants. Exp Mol Pathol. 1995;62(2):131–43.

    Article  CAS  PubMed  Google Scholar 

  56. Endo M, et al. The developmental stage determines the distribution and duration of gene expression after early intra-amniotic gene transfer using lentiviral vectors. Gene Ther. 2010;17(1):61–71.

    Article  CAS  PubMed  Google Scholar 

  57. Hong S, et al. Functional analysis of various promoters in lentiviral vectors at different stages of in vitro differentiation of mouse embryonic stem cells. Mol Ther. 2007;15(9):1630–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Brown BD, Gentner B, et al. Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat Biotechnol. 2007;25(12):1457–67.

    Article  CAS  PubMed  Google Scholar 

  59. Brown BD, Cantore A, et al. A microRNA-regulated lentiviral vector mediates stable correction of hemophilia B mice. Blood. 2007;110(13):4144–52.

    Article  CAS  PubMed  Google Scholar 

  60. Lindenburg ITM, van Kamp IL, Oepkes D. Intrauterine blood transfusion: current indications and associated risks. Fetal Diagn Ther. 2014;36:263.

    Article  PubMed  Google Scholar 

  61. Liley AW. Errors in the assessment of hemolytic disease from amniotic fluid. Am J Obstet Gynecol. 1963;86:485–94.

    Article  CAS  PubMed  Google Scholar 

  62. Furie B, Limentani SA, Rosenfield CG. A practical guide to the evaluation and treatment of hemophilia. Blood. 1994;84(1):3–9.

    CAS  PubMed  Google Scholar 

  63. Di Minno MND, et al. Cost of care of haemophilia with inhibitors. Haemophilia. 2010;16(1):e190–201.

    Article  PubMed  Google Scholar 

  64. Lusher JM. Inhibitors in young boys with haemophilia. Baillieres Best Pract Res Clin Haematol. 2000;13(3):457–68.

    Article  CAS  PubMed  Google Scholar 

  65. Von Drygalski A, et al. Prevalence and risk factors for hypertension in hemophilia. Hypertension. 2013;62(1):209–15.

    Article  CAS  Google Scholar 

  66. Chao H, et al. Sustained and complete phenotype correction of hemophilia B mice following intramuscular injection of AAV1 serotype vectors. Mol Ther. 2001;4(3):217–22.

    Article  CAS  PubMed  Google Scholar 

  67. Herzog RW, et al. Long-term correction of canine hemophilia B by gene transfer of blood coagulation factor IX mediated by adeno-associated viral vector. Nat Med. 1999;5(1):56–63.

    Article  CAS  PubMed  Google Scholar 

  68. Snyder RO, et al. Correction of hemophilia B in canine and murine models using recombinant adeno-associated viral vectors. Nat Med. 1999;5(1):64–70.

    Article  CAS  PubMed  Google Scholar 

  69. Manno CS, et al. AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood. 2003;101(8):2963–72.

    Article  CAS  PubMed  Google Scholar 

  70. Allay JA, et al. Good manufacturing practice production of self-complementary serotype 8 adeno-associated viral vector for a hemophilia B clinical trial. Hum Gene Ther. 2011;22(5):595–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Calcedo R, et al. Worldwide epidemiology of neutralizing antibodies to adeno-associated viruses. J Infect Dis. 2009;199(3):381–90.

    Article  PubMed  Google Scholar 

  72. Jiang H, et al. Effects of transient immunosuppression on adenoassociated, virus-mediated, liver-directed gene transfer in rhesus macaques and implications for human gene therapy. Blood. 2006;108(10):3321–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. High KH, et al. Current status of haemophilia gene therapy. Haemophilia. 2014;20 Suppl 4:43–9.

    Article  CAS  PubMed  Google Scholar 

  74. Sabatino DE, et al. Persistent expression of hF.IX After tolerance induction by in utero or neonatal administration of AAV-1-F.IX in hemophilia B mice. Mol Ther. 2007;15(9):1677–85.

    Article  CAS  PubMed  Google Scholar 

  75. Yang EY, et al. BAPS Prize--1997. Fetal gene therapy: efficacy, toxicity, and immunologic effects of early gestation recombinant adenovirus. British Association of Paediatric Surgeons. J Pediatr Surg. 1999;34(2):235–41.

    Article  CAS  PubMed  Google Scholar 

  76. McVey JH, et al. Factor VII deficiency and the FVII mutation database. Hum Mutat. 2001;17(1):3–17.

    Article  CAS  PubMed  Google Scholar 

  77. Peyvandi F, et al. Rare bleeding disorders. Haemophilia. 2006;12 Suppl 3:137–42.

    Article  PubMed  Google Scholar 

  78. Binny C, et al. AAV-mediated gene transfer in the perinatal period results in expression of FVII at levels that protect against fatal spontaneous hemorrhage. Blood. 2012;119(4):957–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Modell B, Khan M, Darlison M. Survival in β-thalassaemia major in the UK: data from the UK Thalassaemia Register Meningococcal disease among children of Indian subcontinent ethnic origin For personal use only. Not to be reproduced without permission of The Lancet. Lancet. 2000;355:2051–2.

    Article  CAS  PubMed  Google Scholar 

  80. Ge H, et al. Noninvasive prenatal detection for pathogenic CNVs: the application in α-thalassemia. PLoS One. 2013;8(6):e67464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lucarelli G, Andreani M, Angelucci E. The cure of thalassemia by bone marrow transplantation. Blood Rev. 2002;16(2):81–5.

    Article  CAS  PubMed  Google Scholar 

  82. Angelucci E. Hematopoietic stem cell transplantation in thalassemia. Hematology Am Soc Hematol Educ Program. 2010;2010:456–62.

    PubMed  Google Scholar 

  83. Harteveld CL, Higgs DR. Alpha-thalassaemia. Orphanet J Rare Dis. 2010;5:13.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Meremikwu MM, Okomo U. 2011. Sickle cell disease. Clinical evidence, 2011.

    Google Scholar 

  85. Quek L, Thein SL. Molecular therapies in beta-thalassaemia. Br J Haematol. 2007;136(3):353–65.

    Article  CAS  PubMed  Google Scholar 

  86. Pawliuk R, et al. Correction of sickle cell disease in transgenic mouse models by gene therapy. Science. 2001;294(5550):2368–71.

    Article  CAS  PubMed  Google Scholar 

  87. Persons DA, et al. Successful treatment of murine beta-thalassemia using in vivo selection of genetically modified, drug-resistant hematopoietic stem cells. Blood. 2003;102(2):506–13.

    Article  CAS  PubMed  Google Scholar 

  88. Puthenveetil G, et al. Successful correction of the human beta-thalassemia major phenotype using a lentiviral vector. Blood. 2004;104(12):3445–53.

    Article  CAS  PubMed  Google Scholar 

  89. Rivella S, et al. A novel murine model of Cooley anemia and its rescue by lentiviral-mediated human beta-globin gene transfer. Blood. 2003;101(8):2932–9.

    Article  CAS  PubMed  Google Scholar 

  90. Han X, et al. Fetal gene therapy of α-thalassemia in a mouse model. Proc Natl Acad Sci U S A. 2007;104(21):9007–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Antoniou M, et al. Transgenes encompassing dual-promoter CpG islands from the human TBP and HNRPA2B1 loci are resistant to heterochromatin-mediated silencing. Genomics. 2003;82(3):269–79.

    Article  CAS  PubMed  Google Scholar 

  92. Williams S, et al. CpG-island fragments from the HNRPA2B1/CBX3 genomic locus reduce silencing and enhance transgene expression from the hCMV promoter/enhancer in mammalian cells. BMC Biotechnol. 2005;5:17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhang F, et al. Lentiviral vectors containing an enhancer-less ubiquitously acting chromatin opening element (UCOE) provide highly reproducible and stable transgene expression in hematopoietic cells. Blood. 2007;110(5):1448–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fan Y, et al. Generation of human β-thalassemia induced pluripotent stem cells from amniotic fluid cells using a single excisable lentiviral stem cell cassette. J Reprod Dev. 2012;58(4):404–9.

    Article  CAS  PubMed  Google Scholar 

  95. Weiss DJ, Bonneau L, Liggitt D. Use of perfluorochemical liquid allows earlier detection of gene expression and use of less vector in normal lung and enhances gene expression in acutely injured lung. Mol Ther. 2001;3(5 Pt 1):734–45.

    Article  CAS  PubMed  Google Scholar 

  96. Ornoy A, et al. Pathological confirmation of cystic fibrosis in the fetus following prenatal diagnosis. Am J Med Genet. 1987;28(4):935–47.

    Article  CAS  PubMed  Google Scholar 

  97. Johnson LG, et al. Efficiency of gene transfer for restoration of normal airway epithelial function in cystic fibrosis. Nat Genet. 1992;2(1):21–5.

    Article  CAS  PubMed  Google Scholar 

  98. Kreda SM, et al. Characterization of wild-type and deltaF508 cystic fibrosis transmembrane regulator in human respiratory epithelia. Mol Biol Cell. 2005;16(5):2154–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Dray X, et al. Distal intestinal obstruction syndrome in adults with cystic fibrosis. Clin Gastroenterol Hepatol. 2004;2(6):498–503.

    Article  PubMed  Google Scholar 

  100. Boué A, et al. Prenatal diagnosis in 200 pregnancies with a 1-in-4 risk of cystic fibrosis. Hum Genet. 1986;74(3):288–97.

    Article  PubMed  Google Scholar 

  101. Scotet V, et al. Prenatal diagnosis of cystic fibrosis: the 18-year experience of Brittany (western France). Prenat Diagn. 2008;28(3):197–202.

    Article  PubMed  Google Scholar 

  102. Boyd AC. Gene and stem cell therapy. In: Bush A, Alton EWFW, Davies JC, Griesenbach U, Jaffe A, editors. Cystic fibrosis in the 21st century. Karge: Basel; 2006. p. 221–9.

    Google Scholar 

  103. Pickles RJ, et al. Retargeting the coxsackievirus and adenovirus receptor to the apical surface of polarized epithelial cells reveals the glycocalyx as a barrier to adenovirus-mediated gene transfer. J Virol. 2000;74(13):6050–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Harvey B-G, et al. Safety of local delivery of low- and intermediate-dose adenovirus gene transfer vectors to individuals with a spectrum of morbid conditions. Hum Gene Ther. 2002;13(1):15–63.

    Article  CAS  PubMed  Google Scholar 

  105. Flotte TR, et al. Phase I trial of intranasal and endobronchial administration of a recombinant adeno-associated virus serotype 2 (rAAV2)-CFTR vector in adult cystic fibrosis patients: a two-part clinical study. Hum Gene Ther. 2003;14(11):1079–88.

    Article  CAS  PubMed  Google Scholar 

  106. Moss RB, et al. Repeated adeno-associated virus serotype 2 aerosol-mediated cystic fibrosis transmembrane regulator gene transfer to the lungs of patients with cystic fibrosis: a multicenter, double-blind, placebo-controlled trial. Chest. 2004;125(2):509.

    Article  PubMed  Google Scholar 

  107. Alexander BL, et al. Progress and prospects: gene therapy clinical trials (part 1). Gene Ther. 2007;14(20):1439–47.

    Article  CAS  PubMed  Google Scholar 

  108. Griesenbach U, Geddes DM, Alton EWFW. Gene therapy progress and prospects: cystic fibrosis. Gene Ther. 2006;13(14):1061–7.

    Article  CAS  PubMed  Google Scholar 

  109. Armstrong DK, et al. Gene therapy in cystic fibrosis. Arch Dis Child. 2014;99(5):465–8.

    Article  PubMed  Google Scholar 

  110. Voynow JA, et al. Basal-like cells constitute the proliferating cell population in cystic fibrosis airways. Am J Respir Crit Care Med. 2005;172(8):1013–8.

    Article  PubMed  Google Scholar 

  111. Larson JE, et al. Reversal of cystic fibrosis phenotype in mice by gene therapy in utero. Lancet. 1997;349(9052):619–20.

    Article  CAS  PubMed  Google Scholar 

  112. Buckley SMK, et al. Factors influencing adenovirus-mediated airway transduction in fetal mice. Mol Ther. 2005;12(3):484–92.

    Article  CAS  PubMed  Google Scholar 

  113. Davies LA, et al. Adenovirus-mediated in utero expression of CFTR does not improve survival of CFTR knockout mice. Mol Ther. 2008;16(5):812–8.

    Article  CAS  PubMed  Google Scholar 

  114. Egan M, et al. Defective regulation of outwardly rectifying Cl- channels by protein kinase A corrected by insertion of CFTR. Nature. 1992;358(6387):581–4.

    Article  CAS  PubMed  Google Scholar 

  115. Boyle MP, et al. In utero AAV-mediated gene transfer to rabbit pulmonary epithelium. Mol Ther. 2001;4(2):115–21.

    Article  CAS  PubMed  Google Scholar 

  116. Moss IR, Scarpelli EM. Stimulatory effect of theophylline on regulation of fetal breathing movements. Pediatr Res. 1981;15(5):870–3.

    Article  CAS  PubMed  Google Scholar 

  117. Henriques-Coelho T, et al. Targeted gene transfer to fetal rat lung interstitium by ultrasound-guided intrapulmonary injection. Mol Ther. 2007;15(2):340–7.

    Article  CAS  PubMed  Google Scholar 

  118. Toelen J, et al. Long term pulmonary gene therapy with a lentiviral vector in a fetal rat model. Am J Obstet Gynecol. 2006;195(6):S22.

    Article  Google Scholar 

  119. Tarantal AF, et al. Intrapulmonary and intramyocardial gene transfer in rhesus monkeys (Macaca mulatta): safety and efficiency of HIV-1-derived lentiviral vectors for fetal gene delivery. Mol Ther. 2005;12(1):87–98.

    Article  CAS  PubMed  Google Scholar 

  120. Tarantal AF, Lee CI, et al. Lentiviral vector gene transfer into fetal rhesus monkeys (Macaca mulatta): lung-targeting approaches. Mol Ther. 2001;4(6):614–21.

    Article  CAS  PubMed  Google Scholar 

  121. Bilbao R, et al. Patterns of gene expression from in utero delivery of adenoviral-associated vector serotype 1. Hum Gene Ther. 2005;16(6):678–84.

    Article  CAS  PubMed  Google Scholar 

  122. Gregory LG, et al. Enhancement of adenovirus-mediated gene transfer to the airways by DEAE dextran and sodium caprate in vivo. Mol Ther. 2003;7(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  123. Carlon MS et al. A novel surgical approach for intratracheal administration of bioactive agents in a fetal mouse model. Journal of visualized experiments. J Vis Exp 2012; (68): e4219.

    Google Scholar 

  124. Carlon M, et al. Efficient gene transfer into the mouse lung by fetal intratracheal injection of rAAV2/6.2. Mol Ther. 2010;18(12):2130–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Carlon MS, et al. Immunological ignorance allows long-term gene expression after perinatal recombinant adeno-associated virus-mediated gene transfer to murine airways. Hum Gene Ther. 2014;25(6):517–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lim F-Y, et al. Adeno-associated virus (AAV)-mediated gene transfer in respiratory epithelium and submucosal gland cells in human fetal tracheal organ culture. J Pediatr Surg. 2002;37(7):1051–7. discussion 1051–7.

    Article  PubMed  Google Scholar 

  127. Lim F-Y, et al. Human fetal trachea-SCID mouse xenografts: efficacy of vesicular stomatitis virus-G pseudotyped lentiviral-mediated gene transfer. J Pediatr Surg. 2003;38(6):834–9.

    Article  PubMed  Google Scholar 

  128. David AL, et al. Clinically applicable procedure for gene delivery to fetal gut by ultrasound-guided gastric injection: toward prenatal prevention of early-onset intestinal diseases. Hum Gene Ther. 2006;17(7):767–79.

    Article  CAS  PubMed  Google Scholar 

  129. Meikle PJ, et al. Prevalence of lysosomal storage disorders. JAMA. 1999;281(3):249–54.

    Article  CAS  PubMed  Google Scholar 

  130. Zadeh N, Hudgins L, Norton ME. Nuchal translucency measurement in fetuses with spinal muscular atrophy. Prenat Diagn. 2011;31(4):327–30.

    Article  PubMed  Google Scholar 

  131. Spiegel R, et al. The clinical spectrum of fetal Niemann-Pick type C. Am J Med Genet A. 2009;149A(3):446–50.

    Article  CAS  PubMed  Google Scholar 

  132. Eng CM, et al. Prenatal genetic carrier testing using triple disease screening. JAMA. 1997;278(15):1268–72.

    Article  CAS  PubMed  Google Scholar 

  133. Mulcahy PJ, et al. Gene therapy: a promising approach to treating spinal muscular atrophy. Hum Gene Ther. 2014;25(7):575–86.

    Article  CAS  PubMed  Google Scholar 

  134. Okano H, Yamanaka S. iPS cell technologies: significance and applications to CNS regeneration and disease. Mol Brain. 2014;7:22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Sly WS, et al. Beta glucuronidase deficiency: report of clinical, radiologic, and biochemical features of a new mucopolysaccharidosis. J Pediatr. 1973;82(2):249–57.

    Article  CAS  PubMed  Google Scholar 

  136. Sands MS, Davidson BL. Gene therapy for lysosomal storage diseases. Mol Ther. 2006;13(5):839–49.

    Article  CAS  PubMed  Google Scholar 

  137. Mango RL, et al. Neonatal retroviral vector-mediated hepatic gene therapy reduces bone, joint, and cartilage disease in mucopolysaccharidosis VII mice and dogs. Mol Genet Metab. 2004;82(1):4–19.

    Article  CAS  PubMed  Google Scholar 

  138. Aronovich EL, et al. Prolonged expression of a lysosomal enzyme in mouse liver after Sleeping Beauty transposon-mediated gene delivery: implications for non-viral gene therapy of mucopolysaccharidoses. J Gene Med. 2007;9(5):403–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Berges BK, et al. Widespread correction of lysosomal storage in the mucopolysaccharidosis type VII mouse brain with a herpes simplex virus type 1 vector expressing beta-glucuronidase. Mol Ther. 2006;13(5):859–69.

    Article  CAS  PubMed  Google Scholar 

  140. Ciron C, et al. Gene therapy of the brain in the dog model of Hurler’s syndrome. Ann Neurol. 2006;60(2):204–13.

    Article  CAS  PubMed  Google Scholar 

  141. Cearley CN, Wolfe JH. A single injection of an adeno-associated virus vector into nuclei with divergent connections results in widespread vector distribution in the brain and global correction of a neurogenetic disease. J Neurosci. 2007;27(37):9928–40.

    Article  CAS  PubMed  Google Scholar 

  142. Shen J-S, et al. Widespread and highly persistent gene transfer to the CNS by retrovirus vector in utero: implication for gene therapy to Krabbe disease. J Gene Med. 2005;7(5):540–51.

    Article  CAS  PubMed  Google Scholar 

  143. Karolewski BA, Wolfe JH. Genetic correction of the fetal brain increases the lifespan of mice with the severe multisystemic disease mucopolysaccharidosis type VII. Mol Ther. 2006;14(1):14–24.

    Article  CAS  PubMed  Google Scholar 

  144. Tarantal AF, et al. Sonographic heat generation in vivo in the gravid long-tailed macaque (Macaca fascicularis). J Ultrasound Med. 1993;12(5):285–95.

    CAS  PubMed  Google Scholar 

  145. Daffos F, Capella-Pavlovsky M, Forestier F. A new procedure for fetal blood sampling in utero: preliminary results of fifty-three cases. Am J Obstet Gynecol. 1983;146(8):985–7.

    Article  CAS  PubMed  Google Scholar 

  146. Duque S, et al. Intravenous administration of self-complementary AAV9 enables transgene delivery to adult motor neurons. Mol Ther. 2009;17(7):1187–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Foust KD, et al. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol. 2009;27(1):59–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Bevan AK, et al. Systemic gene delivery in large species for targeting spinal cord, brain, and peripheral tissues for pediatric disorders. Mol Ther. 2011;19(11):1971–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Manfredsson FP, Rising AC, Mandel RJ. AAV9: a potential blood-brain barrier buster. Mol Ther. 2009;17(3):403–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Rahim AA, et al. Intravenous administration of AAV2/9 to the fetal and neonatal mouse leads to differential targeting of CNS cell types and extensive transduction of the nervous system. FASEB J. 2011;25(10):3505–18.

    Article  CAS  PubMed  Google Scholar 

  151. Vanhanen SL, et al. EEG and evoked potentials in infantile neuronal ceroid-lipofuscinosis. Dev Med Child Neurol. 1997;39(7):456–63.

    Article  CAS  PubMed  Google Scholar 

  152. Macauley SL, et al. Cerebellar pathology and motor deficits in the palmitoyl protein thioesterase 1-deficient mouse. Exp Neurol. 2009;217(1):124–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ferla R, et al. Similar therapeutic efficacy between a single administration of gene therapy and multiple administrations of recombinant enzyme in a mouse model of lysosomal storage disease. Hum Gene Ther. 2014;25(7):609–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Shayman JA. Thematic review series: Recent advances in the treatment of lysosomal storage diseases. J Lipid Res. 2014;55(6):993–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Wirth B, et al. Mildly affected patients with spinal muscular atrophy are partially protected by an increased SMN2 copy number. Hum Genet. 2006;119(4):422–8.

    Article  CAS  PubMed  Google Scholar 

  156. Federici T, Boulis NM. Gene-based treatment of motor neuron diseases. Muscle Nerve. 2006;33(3):302–23.

    Article  CAS  PubMed  Google Scholar 

  157. Dubowitz V. Very severe spinal muscular atrophy (SMA type 0): an expanding clinical phenotype. Eur J Paediatr Neurol. 1999;3(2):49–51.

    Article  CAS  PubMed  Google Scholar 

  158. Fidziańska A, Rafalowska J. Motoneuron death in normal and spinal muscular atrophy-affected human fetuses. Acta Neuropathol. 2002;104(4):363–8.

    PubMed  Google Scholar 

  159. Lesbordes J-C, et al. Therapeutic benefits of cardiotrophin-1 gene transfer in a mouse model of spinal muscular atrophy. Hum Mol Genet. 2003;12(11):1233–9.

    Article  CAS  PubMed  Google Scholar 

  160. Matsuoka N, et al. Adenovirus-mediated gene transfer of Bcl-xL prevents cell death in primary neuronal culture of the rat. Neurosci Lett. 1999;270(3):177–80.

    Article  CAS  PubMed  Google Scholar 

  161. Azzouz M, et al. Lentivector-mediated SMN replacement in a mouse model of spinal muscular atrophy. J Clin Invest. 2004;114(12):1726–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Boulis NM, et al. Adenoviral nerve growth factor and beta-galactosidase transfer to spinal cord: a behavioral and histological analysis. J Neurosurg. 1999;90(1 Suppl):99–108.

    CAS  PubMed  Google Scholar 

  163. Tenenbaum L, et al. Recombinant AAV-mediated gene delivery to the central nervous system. J Gene Med. 2004;6 Suppl 1:S212–22.

    Article  CAS  PubMed  Google Scholar 

  164. Passini MA, et al. CNS-targeted gene therapy improves survival and motor function in a mouse model of spinal muscular atrophy. J Clin Invest. 2010;120(4):1253–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Kahn A, et al. Gene therapy of neurological diseases. C R Seances Soc Biol Fil. 1996;190(1):9–11.

    CAS  PubMed  Google Scholar 

  166. Yamamura J, et al. Long-term gene expression in the anterior horn motor neurons after intramuscular inoculation of a live herpes simplex virus vector. Gene Ther. 2000;7(11):934–41.

    Article  CAS  PubMed  Google Scholar 

  167. Rahim AA, et al. In utero gene transfer to the mouse nervous system. Biochem Soc Trans. 2010;38(6):1489–93.

    Article  CAS  PubMed  Google Scholar 

  168. Foust KD, et al. Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nat Biotechnol. 2010;28(3):271–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Dominguez E, et al. Intravenous scAAV9 delivery of a codon-optimized SMN1 sequence rescues SMA mice. Hum Mol Genet. 2011;20(4):681–93.

    Article  CAS  PubMed  Google Scholar 

  170. Maestri NE, Clissold D, Brusilow SW. Neonatal onset ornithine transcarbamylase deficiency: a retrospective analysis. J Pediatr. 1999;134(3):268–72.

    Article  CAS  PubMed  Google Scholar 

  171. Stratford-Perricaudet LD, et al. Evaluation of the transfer and expression in mice of an enzyme-encoding gene using a human adenovirus vector. Hum Gene Ther. 1990;1(3):241–56.

    Article  CAS  PubMed  Google Scholar 

  172. Raper SE, et al. A pilot study of in vivo liver-directed gene transfer with an adenoviral vector in partial ornithine transcarbamylase deficiency. Hum Gene Ther. 2002;13(1):163–75.

    Article  CAS  PubMed  Google Scholar 

  173. Raper SE, et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab. 2003;80(1-2):148–58.

    Article  CAS  PubMed  Google Scholar 

  174. Mian A, et al. Long-term correction of ornithine transcarbamylase deficiency by WPRE-mediated overexpression using a helper-dependent adenovirus. Mol Ther. 2004;10(3):492–9.

    Article  CAS  PubMed  Google Scholar 

  175. Moscioni D, et al. Long-term correction of ammonia metabolism and prolonged survival in ornithine transcarbamylase-deficient mice following liver-directed treatment with adeno-associated viral vectors. Mol Ther. 2006;14(1):25–33.

    Article  CAS  PubMed  Google Scholar 

  176. Seppen J, et al. Immune response to lentiviral bilirubin UDP-glucuronosyltransferase gene transfer in fetal and neonatal rats. Gene Ther. 2006;13(8):672–7.

    Article  CAS  PubMed  Google Scholar 

  177. Lai L, et al. A preliminary evaluation of recombinant adeno-associated virus biodistribution in rhesus monkeys after intrahepatic inoculation in utero. Hum Gene Ther. 2002;13(17):2027–39.

    Article  CAS  PubMed  Google Scholar 

  178. Lee CCI, et al. Fetal gene transfer using lentiviral vectors and the potential for germ cell transduction in rhesus monkeys (Macaca mulatta). Hum Gene Ther. 2005;16(4):417–25.

    Article  CAS  PubMed  Google Scholar 

  179. Tarantal AF, et al. Fetal gene transfer using lentiviral vectors: in vivo detection of gene expression by microPET and optical imaging in fetal and infant monkeys. Hum Gene Ther. 2006;17(12):1254–61.

    Article  CAS  PubMed  Google Scholar 

  180. Tarantal AF, O’Rourke JP, et al. Rhesus monkey model for fetal gene transfer: studies with retroviral- based vector systems. Mol Ther. 2001;3(2):128–38.

    Article  CAS  PubMed  Google Scholar 

  181. Raymond FL, et al. Molecular prenatal diagnosis: the impact of modern technologies. Prenat Diagn. 2010;30(7):674–81.

    Article  PubMed  Google Scholar 

  182. Häberle J. Urea cycle disorders revisited–clinical, biochemical and therapeutical aspects. J Pediat Biochem. 2014;4:1–3.

    Google Scholar 

  183. Van Deutekom JCT, van Ommen G-JB. Advances in Duchenne muscular dystrophy gene therapy. Nature reviews. Genetics. 2003;4(10):774–83.

    PubMed  Google Scholar 

  184. Romero NB, et al. Phase I study of dystrophin plasmid-based gene therapy in Duchenne/Becker muscular dystrophy. Hum Gene Ther. 2004;15(11):1065–76.

    Article  CAS  PubMed  Google Scholar 

  185. Tang Y, et al. AAV-directed muscular dystrophy gene therapy. Expert Opin Biol Ther. 2010;10(3):395–408.

    Article  CAS  PubMed  Google Scholar 

  186. Wells DJ, Ferrer A, Wells KE. Immunological hurdles in the path to gene therapy for Duchenne muscular dystrophy. Expert Rev Mol Med. 2004;4(23):1.

    Google Scholar 

  187. MacKenzie TC, et al. Transduction of satellite cells after prenatal intramuscular administration of lentiviral vectors. J Gene Med. 2005;7(1):50–8.

    Article  CAS  PubMed  Google Scholar 

  188. Ahmad A. Mdx mice inducibly expressing dystrophin provide insights into the potential of gene therapy for Duchenne muscular dystrophy. Hum Mol Genet. 2000;9(17):2507–15.

    Article  CAS  PubMed  Google Scholar 

  189. Reay DP, et al. Full-length dystrophin gene transfer to the mdx mouse in utero. Gene Ther. 2008;15(7):531–6.

    Article  CAS  PubMed  Google Scholar 

  190. Gregory LG, et al. Highly efficient EIAV-mediated in utero gene transfer and expression in the major muscle groups affected by Duchenne muscular dystrophy. Gene Ther. 2004;11(14):1117–25.

    Article  CAS  PubMed  Google Scholar 

  191. Weisz B, et al. Targeting the respiratory muscles of fetal sheep for prenatal gene therapy for Duchenne muscular dystrophy. Am J Obstet Gynecol. 2005;193(3 Pt 2):1105–9.

    Article  CAS  PubMed  Google Scholar 

  192. Koppanati BM, et al. Systemic delivery of AAV8 in utero results in gene expression in diaphragm and limb muscle: treatment implications for muscle disorders. Gene Ther. 2009;16(9):1130–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Koppanati BM, et al. Improvement of the mdx mouse dystrophic phenotype by systemic in utero AAV8 delivery of a minidystrophin gene. Gene Ther. 2010;17(11):1355–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Wang B, Li J, Xiao X. Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. Proc Natl Acad Sci U S A. 2000;97(25):13714–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Lu Q-L, et al. The status of exon skipping as a therapeutic approach to duchenne muscular dystrophy. Mol Ther. 2011;19(1):9–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Luu M, Cantatore-Francis JL, Glick SA. Prenatal diagnosis of genodermatoses: current scope and future capabilities. Int J Dermatol. 2010;49(4):353–61.

    Article  PubMed  Google Scholar 

  197. Sato M, Tanigawa M, Kikuchi N. Nonviral gene transfer to surface skin of mid-gestational murine embryos by intraamniotic injection and subsequent electroporation. Mol Reprod Dev. 2004;69(3):268–77.

    Article  CAS  PubMed  Google Scholar 

  198. Endoh M, et al. Fetal gene transfer by intrauterine injection with microbubble-enhanced ultrasound. Mol Ther. 2002;5(5 Pt 1):501–8.

    Article  CAS  PubMed  Google Scholar 

  199. Yoshizawa J, et al. Successful in utero gene transfer using a gene gun in midgestational mouse fetuses. J Pediatr Surg. 2004;39(1):81–4.

    Article  PubMed  Google Scholar 

  200. Endo M, et al. Efficient in vivo targeting of epidermal stem cells by early gestational intraamniotic injection of lentiviral vector driven by the keratin 5 promoter. Mol Ther. 2008;16(1):131–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Aiuti A, et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science. 2002;296(5577):2410–3.

    Article  CAS  PubMed  Google Scholar 

  202. Gaspar HB, et al. Successful reconstitution of immunity in ADA-SCID by stem cell gene therapy following cessation of PEG-ADA and use of mild preconditioning. Mol Ther. 2006;14(4):505–13.

    Article  CAS  PubMed  Google Scholar 

  203. Hacein-Bey-Abina S, et al. Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med. 2002;346(16):1185–93.

    Article  CAS  PubMed  Google Scholar 

  204. Ott MG, et al. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med. 2006;12(4):401–9.

    Article  CAS  PubMed  Google Scholar 

  205. Hacein-Bey-Abina S, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003;302(5644):415–9.

    Article  CAS  PubMed  Google Scholar 

  206. Hanawa H, et al. Efficient gene transfer into rhesus repopulating hematopoietic stem cells using a simian immunodeficiency virus-based lentiviral vector system. Blood. 2004;103(11):4062–9.

    Article  CAS  PubMed  Google Scholar 

  207. Hollis RP, et al. Stable gene transfer to human CD34(+) hematopoietic cells using the Sleeping Beauty transposon. Exp Hematol. 2006;34(10):1333–43.

    Article  CAS  PubMed  Google Scholar 

  208. Tabori U, et al. Detection of RAG mutations and prenatal diagnosis in families presenting with either T-B- severe combined immunodeficiency or Omenn’s syndrome. Clin Genet. 2004;65(4):322–6.

    Article  CAS  PubMed  Google Scholar 

  209. Touzot F, et al. Gene therapy for inherited immunodeficiency. Expert Opin Biol Ther. 2014;14(6):789–98.

    Article  CAS  PubMed  Google Scholar 

  210. Williams ML, et al. Lentiviral expression of retinal guanylate cyclase-1 (RetGC1) restores vision in an avian model of childhood blindness. PLoS Med. 2006;3(6):e201.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Bedrosian JC, et al. In vivo delivery of recombinant viruses to the fetal murine cochlea: transduction characteristics and long-term effects on auditory function. Mol Ther. 2006;14(3):328–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Endo M, et al. Gene transfer to ocular stem cells by early gestational intraamniotic injection of lentiviral vector. Mol Ther. 2007;15(3):579–87.

    Article  CAS  PubMed  Google Scholar 

  213. Pinyon JL, et al. Close-field electroporation gene delivery using the cochlear implant electrode array enhances the bionic ear. Sci Transl Med. 2014;6(233):233ra54.

    Article  PubMed  CAS  Google Scholar 

  214. Acosta R, et al. Anticholinergic suppression of fetal rabbit upper gastrointestinal motility. J Matern Fetal Neonatal Med. 2002;11(3):153–7.

    Article  CAS  PubMed  Google Scholar 

  215. David AL, Peebles D. Gene therapy for the fetus: is there a future? Best Pract Res Clin Obstet Gynaecol. 2008;22(1):203–18.

    Article  PubMed  Google Scholar 

  216. Mehta V, et al. Long-term increase in uterine blood flow is achieved by local overexpression of VEGF-A(165) in the uterine arteries of pregnant sheep. Gene Ther. 2012;19(9):925–35.

    Article  CAS  PubMed  Google Scholar 

  217. RCOG. The role of emergency and elective interventional radiology in postpartum haemorrhage, vol. 6. London: RCOG; 2007. p. 2–3.

    Google Scholar 

  218. EVERREST, EVERREST. Available at: www.everrest-fp7.eu

  219. Deprest J, Gratacos E, Nicolaides KH. Fetoscopic tracheal occlusion (FETO) for severe congenital diaphragmatic hernia: evolution of a technique and preliminary results. Ultrasound Obstet Gynecol. 2004;24(2):121–6.

    Article  CAS  PubMed  Google Scholar 

  220. Larson JE, Cohen JC. Improvement of pulmonary hypoplasia associated with congenital diaphragmatic hernia by in utero CFTR gene therapy. Am J Physiol Lung Cell Mol Physiol. 2006;291(1):L4–10.

    Article  CAS  PubMed  Google Scholar 

  221. Saada J, et al. Combining keratinocyte growth factor transfection into the airways and tracheal occlusion in a fetal sheep model of congenital diaphragmatic hernia. J Gene Med. 2010;12(5):413–22.

    Article  CAS  PubMed  Google Scholar 

  222. Muench MO. In utero transplantation: baby steps towards an effective therapy. Bone Marrow Transplant. 2005;35(6):537–47.

    Article  CAS  PubMed  Google Scholar 

  223. Flake AW, et al. Treatment of X-linked severe combined immunodeficiency by in utero transplantation of paternal bone marrow. N Engl J Med. 1996;335(24):1806–10.

    Article  CAS  PubMed  Google Scholar 

  224. Westgren M, et al. Prenatal T-cell reconstitution after in utero transplantation with fetal liver cells in a patient with X-linked severe combined immunodeficiency. Am J Obstet Gynecol. 2002;187(2):475–82.

    Article  PubMed  Google Scholar 

  225. Shaw SWS, et al. Autologous transplantation of amniotic fluid-derived mesenchymal stem cells into sheep fetuses. Cell Transplant. 2011;20(7):1015–31.

    Article  PubMed  Google Scholar 

  226. Orlandi F, et al. The risks of early cordocentesis (12-21 weeks): analysis of 500 procedures. Prenat Diagn. 1990;10(7):425–8.

    Article  CAS  PubMed  Google Scholar 

  227. Schoeberlein A, et al. In utero transplantation of autologous and allogeneic fetal liver stem cells in ovine fetuses. Am J Obstet Gynecol. 2004;191(3):1030–6.

    Article  PubMed  Google Scholar 

  228. De Coppi P, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol. 2007;25(1):100–6.

    Article  PubMed  CAS  Google Scholar 

  229. Lee LK, et al. Placenta as a newly identified source of hematopoietic stem cells. Curr Opin Hematol. 2010;17(4):313–8.

    Article  PubMed  PubMed Central  Google Scholar 

  230. Parolini O, et al. Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells. 2008;26(2):300–11.

    Article  PubMed  Google Scholar 

  231. Parolini O, et al. Toward cell therapy using placenta-derived cells: disease mechanisms, cell biology, preclinical studies, and regulatory aspects at the round table. Stem Cells Dev. 2010;19(2):143–54.

    Article  PubMed  Google Scholar 

  232. Portmann-lanz CB, et al. Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. Am J Obstet Gynecol. 2006;194(3):664–73.

    Article  CAS  PubMed  Google Scholar 

  233. Bollini S, et al. In vitro and in vivo cardiomyogenic differentiation of amniotic fluid stem cells. Stem Cell Rev. 2011;7(2):364–80.

    Article  PubMed  Google Scholar 

  234. Ditadi A, et al. Human and murine amniotic fluid c-Kit + Lin- cells display hematopoietic activity. Blood. 2009;113(17):3953–60.

    Article  CAS  PubMed  Google Scholar 

  235. Spinelli V, Guillot PV, De Coppi P. Induced pluripotent stem (iPS) cells from human fetal stem cells (hFSCs). Organogenesis. 2013;9(2):101–10.

    Article  PubMed  PubMed Central  Google Scholar 

  236. Shaw SSWS, et al. Clinical applications of prenatal and postnatal therapy using stem cells retrieved from amniotic fluid. Curr Opin Obstet Gynecol. 2011;23(2):109–16.

    Article  PubMed  Google Scholar 

  237. EU, 2006. Committee for the Medicinal Products for Human Use (CHMP). Guideline on non-clinical testing for inadvertent germline transmission of gene transfer vectors. EMEA/273974/2005. 2006. European Medicines Agency.

    Google Scholar 

  238. Schneider CK, et al. Challenges with advanced therapy medicinal products and how to meet them. Nat Rev Drug Discov. 2010;9(3):195–201.

    Article  CAS  PubMed  Google Scholar 

  239. Crocker IP, Tansinda DM, Baker PN. Altered cell kinetics in cultured placental villous explants in pregnancies complicated by pre-eclampsia and intrauterine growth restriction. J Pathol. 2004;204(1):11–8.

    Article  PubMed  Google Scholar 

  240. Brownbill P, et al. Mechanisms of alphafetoprotein transfer in the perfused human placental cotyledon from uncomplicated pregnancy. J Clin Invest. 1995;96(5):2220–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Brownbill P, et al. Vasoactivity to and endogenous release of vascular endothelial growth factor in the in vitro perfused human placental lobule from pregnancies complicated by preeclampsia. Placenta. 2008;29(11):950–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna L. David Ph.D., M.R.C.O.G. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shangaris, P., David, A.L. (2016). Perinatal Gene Therapy. In: Fauza, D., Bani, M. (eds) Fetal Stem Cells in Regenerative Medicine. Stem Cell Biology and Regenerative Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3483-6_19

Download citation

Publish with us

Policies and ethics