Skip to main content

Fetal Tissue Engineering

  • Chapter
  • First Online:
Fetal Stem Cells in Regenerative Medicine

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 793 Accesses

Abstract

Although numerous properties and therapeutic applications of fetal cells/tissues have been explored experimentally or clinically for decades, fetal tissue engineering is a fairly recent concept. It involves the procurement of fetal cells, which are then processed to engineer tissue in parallel to the remainder of gestation, so that an infant, or a fetus, with a prenatally diagnosed birth defect can benefit from having autologous, expanded tissue readily available for surgical implantation before or after birth. Fetal annexes such as the amniotic fluid, placenta, and umbilical cord have been shown to provide minimally invasive access to unique fetal progenitor cell populations that are quite conducive to tissue engineering. Despite encouraging results in large animal models, controlled clinical trials involving fetal tissue engineering have yet to be reported. At the same time, it has been shown experimentally that many complications of tissue engineering can be better managed, if not totally prevented, when fetal cells are used. Compared with mature cells, fetal cells have multiple properties that render them better options for tissue engineering, such as the fact that they typically proliferate more rapidly, are more plastic in their differentiation potential, frequently produce more angiogenic and trophic factors, tend to be less immunogenic, can survive at lower oxygen tensions, commonly lack strong intercellular adhesions, and display better survival after refrigeration and cryopreservation protocols. Further, the developmental and long-term impacts of tissue implantations into a fetus or neonate are unmatched by implantations in most other age groups. This chapter offers an overview of fetal tissue engineering as a perinatal therapeutic concept, along with general perspectives on fetal cell and tissue transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hurst AF, Tanner WE, Osman AA. Addison’s disease with severe anemia treated by suprarenal grafting. Proc R Soc Med. 1922;15:19.

    CAS  PubMed Central  Google Scholar 

  2. Fichera G. Implanti omoplastici feto-umani nei cancro e nel diabete. Tumori. 1928;14:434.

    Google Scholar 

  3. Thomas ED, Lochte HL, Lu WC, et al. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N Engl J Med. 1957;247:491.

    Article  Google Scholar 

  4. Klopper A, Diczfalusy E. Foetus and placenta. Oxford: Blackwell; 1969.

    Google Scholar 

  5. Diczfalusy E. Reproductive endocrinology in 1974. In: Crosignani PG, James VE, editors. Recent progress in reproductive endocrinology. London: Academic; 1974. p. 833–40.

    Google Scholar 

  6. Vacanti JP, Morse MA, Saltzman WM, Domb AJ, Perez-Atayde A, Langer R. Selective cell transplantation using bioabsorbable artificial polymers as matrices. J Pediatr Surg. 1988;23(1 Pt 2):3–9.

    Article  CAS  PubMed  Google Scholar 

  7. Cusick RA, Sano K, Lee H, Pollok J, Mooney D, Langer R, et al. Heterotopic fetal rat hepatocyte transplantation on biodegradable polymers. Surg Forum. 1995;XLVI:658–61.

    Google Scholar 

  8. Fauza DO, Fishman SJ, Mehegan K, Atala A. Videofetoscopically assisted fetal tissue engineering: bladder augmentation. J Pediatr Surg. 1998;33(1):7–12.

    Article  CAS  PubMed  Google Scholar 

  9. Fauza DO, Fishman SJ, Mehegan K, Atala A. Videofetoscopically assisted fetal tissue engineering: skin replacement. J Pediatr Surg. 1998;33(2):357–61.

    Article  CAS  PubMed  Google Scholar 

  10. Dionigi B, Ahmed A, Pennington EC, Zurakowski D, Fauza DO. A comparative analysis of human mesenchymal stem cell response to hypoxia in vitro: implications to translational strategies. J Pediatr Surg. 2014;49(6):915–8.

    Article  PubMed  Google Scholar 

  11. Liechty KW, MacKenzie TC, Shaaban AF, Radu A, Moseley AM, Deans R, et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med. 2000;6(11):1282–6.

    Article  CAS  PubMed  Google Scholar 

  12. Fauza DO, Jennings RW, Teng YD, Snyder EY. Neural stem cell delivery to the spinal cord in an ovine model of fetal surgery for spina bifida. Surgery. 2008;144(3):367–73.

    Article  PubMed  Google Scholar 

  13. Pereira MC, Secco M, Suzuki DE, Janjoppi L, Rodini CO, Torres LB, et al. Contamination of mesenchymal stem-cells with fibroblasts accelerates neurodegeneration in an experimental model of Parkinson’s disease. Stem Cell Rev. 2011;7(4):1006–17.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bianchi DW, Johnson KL, Salem D. Chimerism of the transplanted heart. N Engl J Med. 2002;346(18):1410–2. author reply 2.

    Article  PubMed  Google Scholar 

  15. Khosrotehrani K, Bianchi DW. Multi-lineage potential of fetal cells in maternal tissue: a legacy in reverse. J Cell Sci. 2005;118(Pt 8):1559–63.

    Article  CAS  PubMed  Google Scholar 

  16. Bili C, Divane A, Apessos A, Konstantinos T, Apostolos A, Ioannis B, et al. Prenatal diagnosis of common aneuploidies using quantitative fluorescent PCR. Prenat Diagn. 2002;22(5):360–5.

    Article  CAS  PubMed  Google Scholar 

  17. Kaviani A, Perry TE, Dzakovic A, Jennings RW, Ziegler MM, Fauza DO. The amniotic fluid as a source of cells for fetal tissue engineering. J Pediatr Surg. 2001;36(11):1662–5.

    Article  CAS  PubMed  Google Scholar 

  18. Kaviani A, Guleserian K, Perry TE, Jennings RW, Ziegler MM, Fauza DO. Fetal tissue engineering from amniotic fluid. J Am Coll Surg. 2003;196(4):592–7.

    Article  PubMed  Google Scholar 

  19. Klein JD, Fauza DO. Amniotic and placental mesenchymal stem cell isolation and culture. Methods Mol Biol. 2011;698:75–88.

    Article  CAS  PubMed  Google Scholar 

  20. Fuchs JR, Kaviani A, Oh JT, LaVan D, Udagawa T, Jennings RW, et al. Diaphragmatic reconstruction with autologous tendon engineered from mesenchymal amniocytes. J Pediatr Surg. 2004;39(6):834–8. discussion 8.

    Article  PubMed  Google Scholar 

  21. Kunisaki SM, Armant M, Kao GS, Stevenson K, Kim H, Fauza DO. Tissue engineering from human mesenchymal amniocytes: a prelude to clinical trials. J Pediatr Surg. 2007;42(6):974–9. discussion 9–80.

    Article  PubMed  Google Scholar 

  22. Steigman SA, Armant M, Bayer-Zwirello L, Kao GS, Silberstein L, Ritz J, et al. Preclinical regulatory validation of a 3-stage amniotic mesenchymal stem cell manufacturing protocol. J Pediatr Surg. 2008;43(6):1164–9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kaviani A, Perry TE, Barnes CM, Oh JT, Ziegler MM, Fishman SJ, et al. The placenta as a cell source in fetal tissue engineering. J Pediatr Surg. 2002;37(7):995–9.

    Article  PubMed  Google Scholar 

  24. Norwitz ER, Levy B. Noninvasive prenatal testing: the future is now. Rev Obstet Gynecol. 2013;6(2):48–62.

    PubMed  PubMed Central  Google Scholar 

  25. Seppanen E, Fisk NM, Khosrotehrani K. Pregnancy-acquired fetal progenitor cells. J Reprod Immunol. 2013;97(1):27–35.

    Article  CAS  PubMed  Google Scholar 

  26. Lillie FR. The theory of the free-martin. Science. 1916;43:611–3.

    Article  CAS  PubMed  Google Scholar 

  27. Owen RD. Immunogenic consequences of vascular anastomosis between bovine twins. Science. 1945;102:400–1.

    Article  CAS  PubMed  Google Scholar 

  28. Mjosberg JM, Trifari S, Crellin NK, Peters CP, van Drunen CM, Piet B, et al. Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat Immunol. 2011;12(11):1055–62.

    Article  PubMed  CAS  Google Scholar 

  29. Constantinides MG, McDonald BD, Verhoef PA, Bendelac A. A committed precursor to innate lymphoid cells. Nature. 2014;508(7496):397–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Spits H, Di Santo JP. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat Immunol. 2011;12(1):21–7.

    Article  CAS  PubMed  Google Scholar 

  31. Benito AI, Diaz MA, Gonzalez-Vicent M, Sevilla J, Madero L. Hematopoietic stem cell transplantation using umbilical cord blood progenitors: review of current clinical results. Bone Marrow Transplant. 2004;33(7):675–90.

    Article  CAS  PubMed  Google Scholar 

  32. Rocha V, Garnier F, Ionescu I, Gluckman E. Hematopoietic stem-cell transplantation using umbilical-cord blood cells. Rev Invest Clin. 2005;57(2):314–23.

    PubMed  Google Scholar 

  33. Nijagal A, Wegorzewska M, Jarvis E, Le T, Tang Q, MacKenzie TC. Maternal T cells limit engraftment after in utero hematopoietic cell transplantation in mice. J Clin Invest. 2011;121(2):582–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nijagal A, Wegorzewska M, Le T, Tang Q, Mackenzie TC. The maternal immune response inhibits the success of in utero hematopoietic cell transplantation. Chimerism. 2011;2(2):55–7.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Moustafa ME, Srivastava AS, Nedelcu E, Donahue J, Gueorguieva I, Shenouda SS, et al. Chimerism and tolerance post-in utero transplantation with embryonic stem cells. Transplantation. 2004;78(9):1274–82.

    Article  PubMed  Google Scholar 

  36. Lee PW, Cina RA, Randolph MA, Goodrich J, Rowland H, Arellano R, et al. Stable multilineage chimerism across full MHC barriers without graft-versus-host disease following in utero bone marrow transplantation in pigs. Exp Hematol. 2005;33(3):371–9.

    Article  CAS  PubMed  Google Scholar 

  37. Javazon EH, Merchant AM, Danzer E, Flake AW. Reconstitution of hematopoiesis following intrauterine transplantation of stem cells. Methods Mol Med. 2005;105:81–94.

    PubMed  Google Scholar 

  38. Ashizuka S, Peranteau WH, Hayashi S, Flake AW. Busulfan-conditioned bone marrow transplantation results in high-level allogeneic chimerism in mice made tolerant by in utero hematopoietic cell transplantation. Exp Hematol. 2006;34(3):359–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Saadai P, Wang A, Nout YS, Downing TL, Lofberg K, Beattie MS, et al. Human induced pluripotent stem cell-derived neural crest stem cells integrate into the injured spinal cord in the fetal lamb model of myelomeningocele. J Pediatr Surg. 2013;48(1):158–63.

    Article  PubMed  Google Scholar 

  40. Kunisaki SM, Freedman DA, Fauza DO. Fetal tracheal reconstruction with cartilaginous grafts engineered from mesenchymal amniocytes. J Pediatr Surg. 2006;41(4):675–82.

    Article  PubMed  Google Scholar 

  41. Gray FL, Turner CG, Ahmed A, Calvert CE, Zurakowski D, Fauza DO. Prenatal tracheal reconstruction with a hybrid amniotic mesenchymal stem cells-engineered construct derived from decellularized airway. J Pediatr Surg. 2012;47(6):1072–9.

    Article  PubMed  Google Scholar 

  42. Fauza DO, Marler JJ, Koka R, Forse RA, Mayer JE, Vacanti JP. Fetal tissue engineering: diaphragmatic replacement. J Pediatr Surg. 2001;36(1):146–51.

    Article  CAS  PubMed  Google Scholar 

  43. Fuchs JR, Terada S, Ochoa ER, Vacanti JP, Fauza DO. Fetal tissue engineering: in utero tracheal augmentation in an ovine model. J Pediatr Surg. 2002;37(7):1000–6.

    Article  PubMed  Google Scholar 

  44. Fuchs JR, Hannouche D, Terada S, Vacanti JP, Fauza DO. Fetal tracheal augmentation with cartilage engineered from bone marrow-derived mesenchymal progenitor cells. J Pediatr Surg. 2003;38(6):984–7.

    Article  PubMed  Google Scholar 

  45. Fuchs JR, Terada S, Hannouche D, Ochoa ER, Vacanti JP, Fauza DO. Fetal tissue engineering: chest wall reconstruction. J Pediatr Surg. 2003;38(8):1188–93.

    Article  PubMed  Google Scholar 

  46. Wu X, Rabkin-Aikawa E, Guleserian KJ, Perry TE, Masuda Y, Sutherland FW, et al. Tissue-engineered microvessels on three-dimensional biodegradable scaffolds using human endothelial progenitor cells. Am J Physiol Heart Circ Physiol. 2004;287(2):H480–7.

    Article  CAS  PubMed  Google Scholar 

  47. Fuchs JR, Hannouche D, Terada S, Zand S, Vacanti JP, Fauza DO. Cartilage engineering from ovine umbilical cord blood mesenchymal progenitor cells. Stem Cells. 2005;23(7):958–64.

    Article  CAS  PubMed  Google Scholar 

  48. Fuchs JR, Nasseri BA, Vacanti JP, Fauza DO. Postnatal myocardial augmentation with skeletal myoblast-based fetal tissue engineering. Surgery. 2006;140(1):100–7.

    Article  PubMed  Google Scholar 

  49. Krupnick AS, Balsara KR, Kreisel D, Riha M, Gelman AE, Estives MS, et al. Fetal liver as a source of autologous progenitor cells for perinatal tissue engineering. Tissue Eng. 2004;10(5-6):723–35.

    Article  PubMed  Google Scholar 

  50. Kunisaki M, Fuchs JR, Kaviani A, Oh JT, LaVan DA, Vacanti JP, et al. Diaphragmatic repair through fetal tissue engineering: a comparison between mesenchymal amniocyte- and myoblast-based constructs. J Pediatr Surg. 2006;41(1):34–9. discussion 9.

    Article  PubMed  Google Scholar 

  51. Kunisaki SM, Jennings RW, Fauza DO. Fetal cartilage engineering from amniotic mesenchymal progenitor cells. Stem Cells Dev. 2006;15(2):245–53.

    Article  CAS  PubMed  Google Scholar 

  52. Schmidt D, Mol A, Breymann C, Achermann J, Odermatt B, Gossi M, et al. Living autologous heart valves engineered from human prenatally harvested progenitors. Circulation. 2006;114(1 Suppl):1125–31.

    Google Scholar 

  53. Schmidt D, Achermann J, Odermatt B, Breymann C, Mol A, Genoni M, et al. Prenatally fabricated autologous human living heart valves based on amniotic fluid derived progenitor cells as single cell source. Circulation. 2007;116(11 Suppl):164–70.

    Google Scholar 

  54. Steigman SA, Ahmed A, Shanti RM, Tuan RS, Valim C, Fauza DO. Sternal repair with bone grafts engineered from amniotic mesenchymal stem cells. J Pediatr Surg. 2009;44(6):1120–6. discussion 6.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Turner CG, Fauza DO. Fetal tissue engineering. Clin Perinatol. 2009;36(2):473–88. xii.

    Article  PubMed  Google Scholar 

  56. Klein JD, Turner CG, Ahmed A, Steigman SA, Zurakowski D, Fauza DO. Chest wall repair with engineered fetal bone grafts: an efficacy analysis in an autologous leporine model. J Pediatr Surg. 2010;45(6):1354–60.

    Article  PubMed  Google Scholar 

  57. Turner CG, Klein JD, Steigman SA, Armant M, Nicksa GA, Zurakowski D, et al. Preclinical regulatory validation of an engineered diaphragmatic tendon made with amniotic mesenchymal stem cells. J Pediatr Surg. 2011;46(1):57–61.

    Article  PubMed  Google Scholar 

  58. Weber B, Schoenauer R, Papadopulos F, Modregger P, Peter S, Stampanoni M, et al. Engineering of living autologous human umbilical cord cell-based septal occluder membranes using composite PGA-P4HB matrices. Biomaterials. 2011;32(36):9630–41.

    Article  CAS  PubMed  Google Scholar 

  59. Weber B, Zeisberger SM, Hoerstrup SP. Prenatally harvested cells for cardiovascular tissue engineering: fabrication of autologous implants prior to birth. Placenta. 2011;32 Suppl 4:S316–9.

    Article  CAS  PubMed  Google Scholar 

  60. Turner CG, Klein JD, Gray FL, Ahmed A, Zurakowski D, Fauza DO. Craniofacial repair with fetal bone grafts engineered from amniotic mesenchymal stem cells. J Surg Res. 2012;178(2):785–90.

    Article  PubMed  Google Scholar 

  61. Weber B, Kehl D, Bleul U, Behr L, Sammut S, Frese L, et al. In vitro fabrication of autologous living tissue-engineered vascular grafts based on prenatally harvested ovine amniotic fluid-derived stem cells. J Tissue Eng Regen Med. 2013. doi: 10.1002/term.1781

    Google Scholar 

  62. Pennington EC, Dionigi B, Gray FL, Ahmed A, Brazzo J, Dolinko A, et al. Limb reconstruction with decellularized, non-demineralized bone in a young leporine model. Biomed Mater. 2015;10(1):015021.

    Article  PubMed  CAS  Google Scholar 

  63. Moss RL, Chen CM, Harrison MR. Prosthetic patch durability in congenital diaphragmatic hernia: a long- term follow-up study. J Pediatr Surg. 2001;36(1):152–4.

    Article  CAS  PubMed  Google Scholar 

  64. Lund DP, Mitchell J, Kharasch V, Quigley S, Kuehn M, Wilson JM. Congenital diaphragmatic hernia: the hidden morbidity. J Pediatr Surg. 1994;29(2):258–62. discussion 62–4.

    Article  CAS  PubMed  Google Scholar 

  65. Kimber CP, Dunkley MP, Haddock G, Robertson L, Carey FA, Cuschieri A. Patch incorporation in diaphragmatic hernia. J Pediatr Surg. 2000;35(1):120–3.

    Article  CAS  PubMed  Google Scholar 

  66. Laituri CA, Garey CL, Valusek PA, Fike FB, Kaye AJ, Ostlie DJ, et al. Outcome of congenital diaphragmatic hernia repair depending on patch type. Eur J Pediatr Surg. 2010;20(6):363–5.

    Article  CAS  PubMed  Google Scholar 

  67. Fauza DO. Tissue engineering in congenital diaphragmatic hernia. Semin Pediatr Surg. 2014;23(3):135–40.

    Article  PubMed  Google Scholar 

  68. Hill SA, Milam M, Manaligod JM. Tracheal agenesis: diagnosis and management. Int J Pediatr Otorhinolaryngol. 2001;59(1):63–8.

    Article  CAS  PubMed  Google Scholar 

  69. Backer CL, Mavroudis C, Dunham ME, Holinger L. Intermediate-term results of the free tracheal autograft for long segment congenital tracheal stenosis. J Pediatr Surg. 2000;35(6):813–8. discussion 8–9.

    Article  CAS  PubMed  Google Scholar 

  70. Bando K, Turrentine MW, Sun K, Sharp TG, Matt B, Karmazyn B, et al. Anterior pericardial tracheoplasty for congenital tracheal stenosis: intermediate to long-term outcomes. Ann Thorac Surg. 1996;62(4):981–9.

    Article  CAS  PubMed  Google Scholar 

  71. Jacobs JR. Investigations into tracheal prosthetic reconstruction. Laryngoscope. 1988;98(11):1239–45.

    Article  CAS  PubMed  Google Scholar 

  72. Wright CD, Graham BB, Grillo HC, Wain JC, Mathisen DJ. Pediatric tracheal surgery. Ann Thorac Surg. 2002;74(2):308–13. discussion 14.

    Article  PubMed  Google Scholar 

  73. Backer CL, Mavroudis C, Gerber ME, Holinger LD. Tracheal surgery in children: an 18-year review of four techniques. Eur J Cardiothorac Surg. 2001;19(6):777–84.

    Article  CAS  PubMed  Google Scholar 

  74. Jacobs JP, Quintessenza JA, Andrews T, Burke RP, Spektor Z, Delius RE, et al. Tracheal allograft reconstruction: the total North American and worldwide pediatric experiences. Ann Thorac Surg. 1999;68(3):1043–51. discussion 52.

    Article  CAS  PubMed  Google Scholar 

  75. Chiu PP, Kim PC. Prognostic factors in the surgical treatment of congenital tracheal stenosis: a multicenter analysis of the literature. J Pediatr Surg. 2006;41(1):221–5. discussion 5.

    Article  PubMed  Google Scholar 

  76. Elliott MJ, De Coppi P, Speggiorin S, Roebuck D, Butler CR, Samuel E, et al. Stem-cell-based, tissue engineered tracheal replacement in a child: a 2-year follow-up study. Lancet. 2012;380(9846):994–1000.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Kunisaki SM, Fuchs JR, Steigman SA, Fauza DO. A comparative analysis of cartilage engineered from different perinatal mesenchymal progenitor cells. Tissue Eng. 2007;13(11):2633–44.

    Article  CAS  PubMed  Google Scholar 

  78. Hirose S, Farmer DL, Lee H, Nobuhara KK, Harrison MR. The ex utero intrapartum treatment procedure: looking back at the EXIT. J Pediatr Surg. 2004;39(3):375–80. discussion 80.

    Article  PubMed  Google Scholar 

  79. Hirose S, Sydorak RM, Tsao K, Cauldwell CB, Newman KD, Mychaliska GB, et al. Spectrum of intrapartum management strategies for giant fetal cervical teratoma. J Pediatr Surg. 2003;38(3):446–50. discussion 50.

    Article  PubMed  Google Scholar 

  80. Steigman SA, Nemes L, Barnewolt CE, Estroff JA, Valim C, Jennings RW, et al. Differential risk for neonatal surgical airway intervention in prenatally diagnosed neck masses. J Pediatr Surg. 2009;44(1):76–9.

    Article  PubMed  Google Scholar 

  81. Li RK, Yau TM, Weisel RD, Mickle DA, Sakai T, Choi A, et al. Construction of a bioengineered cardiac graft. J Thorac Cardiovasc Surg. 2000;119(2):368–75.

    Article  CAS  PubMed  Google Scholar 

  82. Taylor DA, Atkins BZ, Hungspreugs P, Jones TR, Reedy MC, Hutcheson KA, et al. Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat Med. 1998;4(8):929–33.

    Article  CAS  PubMed  Google Scholar 

  83. Sartore S, Lenzi M, Angelini A, Chiavegato A, Gasparotto L, De Coppi P, et al. Amniotic mesenchymal cells autotransplanted in a porcine model of cardiac ischemia do not differentiate to cardiogenic phenotypes. Eur J Cardiothorac Surg. 2005;28(5):677–84.

    Article  PubMed  Google Scholar 

  84. Zhao P, Ise H, Hongo M, Ota M, Konishi I, Nikaido T. Human amniotic mesenchymal cells have some characteristics of cardiomyocytes. Transplantation. 2005;79(5):528–35.

    Article  PubMed  Google Scholar 

  85. Iop L, Chiavegato A, Callegari A, Bollini S, Piccoli M, Pozzobon M, et al. Different cardiovascular potential of adult- and fetal-type mesenchymal stem cells in a rat model of heart cryoinjury. Cell Transplant. 2008;17(6):679–94.

    Article  PubMed  Google Scholar 

  86. Shin’oka T, Imai Y, Ikada Y. Transplantation of a tissue-engineered pulmonary artery. N Engl J Med. 2001;344(7):532–3.

    Article  PubMed  Google Scholar 

  87. Matsumura G, Hibino N, Ikada Y, Kurosawa H, Shin’oka T. Successful application of tissue engineered vascular autografts: clinical experience. Biomaterials. 2003;24(13):2303–8.

    Article  CAS  PubMed  Google Scholar 

  88. Hibino N, Shin’oka T, Matsumura G, Ikada Y, Kurosawa H. The tissue-engineered vascular graft using bone marrow without culture. J Thorac Cardiovasc Surg. 2005;129(5):1064–70.

    Article  PubMed  Google Scholar 

  89. Shin’oka T, Matsumura G, Hibino N, Naito Y, Watanabe M, Konuma T, et al. Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J Thorac Cardiovasc Surg. 2005;129(6):1330–8.

    Article  PubMed  Google Scholar 

  90. Naito Y, Lee YU, Yi T, Church SN, Solomon D, Humphrey JD, et al. Beyond burst pressure: initial evaluation of the natural history of the biaxial mechanical properties of tissue-engineered vascular grafts in the venous circulation using a murine model. Tissue Eng Part A. 2014;20(1-2):346–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Vacanti CA, Bonassar LJ, Vacanti MP, Shufflebarger J. Replacement of an avulsed phalanx with tissue-engineered bone. N Engl J Med. 2001;344(20):1511–4.

    Article  CAS  PubMed  Google Scholar 

  92. Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WW, Gordon PL, Neel M, et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med. 1999;5(3):309–13.

    Article  CAS  PubMed  Google Scholar 

  93. Horwitz EM, Prockop DJ, Gordon PL, Koo WW, Fitzpatrick LA, Neel MD, et al. Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood. 2001;97(5):1227–31.

    Article  CAS  PubMed  Google Scholar 

  94. Le Blanc K, Gotherstrom C, Ringden O, Hassan M, McMahon R, Horwitz E, et al. Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplantation. 2005;79(11):1607–14.

    Article  PubMed  Google Scholar 

  95. Guillot PV, Abass O, Bassett JH, Shefelbine SJ, Bou-Gharios G, Chan J, et al. Intrauterine transplantation of human fetal mesenchymal stem cells from first-trimester blood repairs bone and reduces fractures in osteogenesis imperfecta mice. Blood. 2008;111(3):1717–25.

    Article  CAS  PubMed  Google Scholar 

  96. Gotherstrom C, Westgren M, Shaw SW, Astrom E, Biswas A, Byers PH, et al. Pre- and postnatal transplantation of fetal mesenchymal stem cells in osteogenesis imperfecta: a two-center experience. Stem Cells Transl Med. 2014;3(2):255–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Maraldi T, Riccio M, Resca E, Pisciotta A, La Sala GB, Ferrari A, et al. Human amniotic fluid stem cells seeded in fibroin scaffold produce in vivo mineralized matrix. Tissue Eng Part A. 2011;17(21-22):2833–43.

    Article  CAS  PubMed  Google Scholar 

  98. Peister A, Deutsch ER, Kolambkar Y, Hutmacher DW, Guldberg RE. Amniotic fluid stem cells produce robust mineral deposits on biodegradable scaffolds. Tissue Eng Part A. 2009;15(10):3129–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Riccio M, Maraldi T, Pisciotta A, La Sala GB, Ferrari A, Bruzzesi G, et al. Fibroin scaffold repairs critical-size bone defects in vivo supported by human amniotic fluid and dental pulp stem cells. Tissue Eng Part A. 2012;18(9-10):1006–13.

    Article  CAS  PubMed  Google Scholar 

  100. Sun H, Feng K, Hu J, Soker S, Atala A, Ma PX. Osteogenic differentiation of human amniotic fluid-derived stem cells induced by bone morphogenetic protein-7 and enhanced by nanofibrous scaffolds. Biomaterials. 2010;31(6):1133–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Adzick NS, Thom EA, Spong CY, Brock 3rd JW, Burrows PK, Johnson MP, et al. A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med. 2011;364(11):993–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ersek A, Pixley JS, Goodrich AD, Porada CD, Almeida-Porada G, Thain DS, et al. Persistent circulating human insulin in sheep transplanted in utero with human mesenchymal stem cells. Exp Hematol. 2010;38(4):311–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Carraro G, Perin L, Sedrakyan S, Giuliani S, Tiozzo C, Lee J, et al. Human amniotic fluid stem cells can integrate and differentiate into epithelial lung lineages. Stem Cells. 2008;26(11):2902–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Di Bernardo J, Maiden MM, Jiang G, Hershenson MB, Kunisaki SM. Paracrine regulation of fetal lung morphogenesis using human placenta-derived mesenchymal stromal cells. J Surg Res. 2014;190(1):255–63.

    Article  PubMed  CAS  Google Scholar 

  105. Di Bernardo J, Maiden MM, Hershenson MB, Kunisaki SM. Amniotic fluid derived mesenchymal stromal cells augment fetal lung growth in a nitrofen explant model. J Pediatr Surg. 2014;49(6):859–64.

    Article  PubMed  Google Scholar 

  106. Guillot PV, Cook HT, Pusey CD, Fisk NM, Harten S, Moss J, et al. Transplantation of human fetal mesenchymal stem cells improves glomerulopathy in a collagen type I alpha 2-deficient mouse. J Pathol. 2008;214(5):627–36.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario O. Fauza M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Feng, C., Fauza, D.O. (2016). Fetal Tissue Engineering. In: Fauza, D., Bani, M. (eds) Fetal Stem Cells in Regenerative Medicine. Stem Cell Biology and Regenerative Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3483-6_18

Download citation

Publish with us

Policies and ethics