Skip to main content

MicroRNA Expression in Amniotic Fluid Cells

  • Chapter
  • First Online:
Fetal Stem Cells in Regenerative Medicine

Abstract

MicroRNAs (miRNAs) are 19–22 nucleotide non-coding RNA molecules that regulate the expression of protein-coding genes post-transcriptionally. It has been suggested that the majority of protein coding genes are regulated by miRNAs, thus they play important roles in the regulation of cell fate, cell survival, proliferation and differentiation. MiRNAs typically act intracellularly on messenger RNA, but they can be transported between cells via a number of mechanisms including microvesicles, exosomes and in a direct cell contact manner, through gap junctions. This chapter explores the roles of miRNAs in human amniotic fluid cells. We discuss the identification of the cellular origin of miRNAs in amniotic fluid and their potential use as diagnostic biomarkers to identify and monitor developmental, physiological and pathological conditions. Also, the role of miRNAs during reprogramming of amniotic fluid cells through induced pluripotency and early differentiation is presented. Finally, it is shown that amniotic fluid cells can be transfected to stably express and process exogenous miRNAs, followed by a summary on the potential of these cells to study the role of miRNAs in differentiation and drug testing and to deliver miRNAs to target cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Londin E, et al. Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs. PNAS. 2015; E1106–E1115 www.pnas.org/cgi/doi/10.1073/pnas.1420955112.

  2. Zhang J, et al. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics. 2015;13(1):17–24.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Li Z, Rana TM. Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov. 2014;13(8):622–38.

    Article  CAS  PubMed  Google Scholar 

  4. Jonas S, Izaurralde E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet. 2015;16(7):421–33.

    Article  CAS  PubMed  Google Scholar 

  5. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.

    Article  CAS  PubMed  Google Scholar 

  6. Friedlander MR, et al. Evidence for the biogenesis of more than 1,000 novel human microRNAs. Genome Biol. 2014;15(4):R57.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zeng Y. Principles of micro-RNA production and maturation. Oncogene. 2006;25(46):6156–62.

    Article  CAS  PubMed  Google Scholar 

  8. Gantier MP, et al. Analysis of microRNA turnover in mammalian cells following Dicer1 ablation. Nucleic Acids Res. 2011;39(13):5692–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Friedman RC, et al. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19(1):92–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guo WT, Wang XW, Wang Y. Micro-management of pluripotent stem cells. Protein Cell. 2014;5(1):36–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Javidi MA, et al. Cell-free microRNAs as cancer biomarkers: the odyssey of miRNAs through body fluids. Med Oncol. 2014;31(12):295.

    Article  PubMed  Google Scholar 

  12. Collino F, et al. Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS One. 2010;5(7):e11803.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Simpson RJ, et al. Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics. 2009;6(3):267–83.

    Article  CAS  PubMed  Google Scholar 

  14. Higa GS, et al. MicroRNAs in neuronal communication. Mol Neurobiol. 2014;49(3):1309–26.

    CAS  PubMed  Google Scholar 

  15. Qin J, Xu Q. Functions and application of exosomes. Acta Pol Pharm. 2014;71(4):537–43.

    PubMed  Google Scholar 

  16. Weber JA, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56(11):1733–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cortez MA, et al. MicroRNAs in body fluids--the mix of hormones and biomarkers. Nat Rev Clin Oncol. 2011;8(8):467–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Keller S, et al. Body fluid derived exosomes as a novel template for clinical diagnostics. J Transl Med. 2011;9:86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lim PK, et al. Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Res. 2011;71(5):1550–60.

    Article  CAS  PubMed  Google Scholar 

  20. Hosoda T. The mircrine mechanism controlling cardiac stem cell fate. Front Genet. 2013;4:204.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Greco SJ, Rameshwar P. Analysis of the transfer of circulating microRNA between cells mediated by gap junction. Methods Mol Biol. 2013;1024:87–96.

    Article  CAS  PubMed  Google Scholar 

  22. Hong X, et al. Gap junctions modulate glioma invasion by direct transfer of microRNA. Oncotarget. 2015;6:15566.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Katakowski M, et al. Functional microRNA is transferred between glioma cells. Cancer Res. 2010;70(21):8259–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nielsen MS, et al. Gap junctions. Compr Physiol. 2012;2(3):1981–2035.

    PubMed  Google Scholar 

  25. Judson RL, et al. Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol. 2009;27(5):459–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang Y, et al. miR-294/miR-302 promotes proliferation, suppresses G1-S restriction point, and inhibits ESC differentiation through separable mechanisms. Cell Rep. 2013;4(1):99–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shenoy A, Blelloch RH. Regulation of microRNA function in somatic stem cell proliferation and differentiation. Nat Rev Mol Cell Biol. 2014;15(9):565–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tay Y, et al. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature. 2008;455(7216):1124–8.

    Article  CAS  PubMed  Google Scholar 

  29. Xu N, et al. MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell. 2009;137(4):647–58.

    Article  CAS  PubMed  Google Scholar 

  30. Wang L, et al. Gene and MicroRNA profiling of human induced pluripotent stem cell-derived endothelial cells. Stem Cell Rev. 2015;11(2):219–27.

    Article  CAS  PubMed  Google Scholar 

  31. Trohatou O, et al. Sox2 suppression by miR-21 governs human mesenchymal stem cell properties. Stem Cells Transl Med. 2014;3(1):54–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jezierski A, et al. Human amniotic fluid cells form functional gap junctions with cortical cells. Stem Cells Int. 2012;2012:607161.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rennie K, et al. Therapeutic potential of amniotic fluid-derived cells for treating the injured nervous system. Biochem Cell Biol. 2013;91(5):271–86.

    Article  CAS  PubMed  Google Scholar 

  34. Roush S, Slack FJ. The let-7 family of microRNAs. Trends Cell Biol. 2008;18(10):505–16.

    Article  CAS  PubMed  Google Scholar 

  35. Barh D, et al. MicroRNA let-7: an emerging next-generation cancer therapeutic. Curr Oncol. 2010;17(1):70–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sanek NA, Young WS. Investigating the in vivo expression patterns of miR-7 microRNA family members in the adult mouse brain. Microrna. 2012;1(1):11–8.

    Article  CAS  PubMed  Google Scholar 

  37. Sekar D, et al. Role of microRNA 21 in mesenchymal stem cell (MSC) differentiation: a powerful biomarker in MSCs derived cells. Curr Pharm Biotechnol. 2015;16(1):43–8.

    Article  CAS  PubMed  Google Scholar 

  38. Di Bernardini E, et al. Endothelial lineage differentiation from induced pluripotent stem cells is regulated by microRNA-21 and transforming growth factor beta2 (TGF-beta2) pathways. J Biol Chem. 2014;289(6):3383–93.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Polajeva J, et al. miRNA-21 is developmentally regulated in mouse brain and is co-expressed with SOX2 in glioma. BMC Cancer. 2012;12:378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bhalala OG, et al. microRNA-21 regulates astrocytic response following spinal cord injury. J Neurosci. 2012;32(50):17935–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Buller B, et al. MicroRNA-21 protects neurons from ischemic death. FEBS J. 2010;277(20):4299–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ge XT, et al. miR-21 improves the neurological outcome after traumatic brain injury in rats. Sci Rep. 2014;4:6718.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Joglekar MV, et al. The miR-30 family microRNAs confer epithelial phenotype to human pancreatic cells. Islets. 2009;1(2):137–47.

    Article  PubMed  Google Scholar 

  44. Bridge G, et al. The microRNA-30 family targets DLL4 to modulate endothelial cell behavior during angiogenesis. Blood. 2012;120(25):5063–72.

    Article  CAS  PubMed  Google Scholar 

  45. Sun Y, et al. An updated role of microRNA-124 in central nervous system disorders: a review. Front Cell Neurosci. 2015;9:193.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Meza-Sosa KF, Pedraza-Alva G, Perez-Martinez L. microRNAs: key triggers of neuronal cell fate. Front Cell Neurosci. 2014;8:175.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zare M, et al. A novel protocol to differentiate induced pluripotent stem cells by neuronal microRNAs to provide a suitable cellular model. Chem Biol Drug Des. 2015;86:232.

    Article  CAS  PubMed  Google Scholar 

  48. Tan CL, et al. MicroRNA-128 governs neuronal excitability and motor behavior in mice. Science. 2013;342(6163):1254–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. O’Neill LA. Boosting the brain’s ability to block inflammation via microRNA-132. Immunity. 2009;31(6):854–5.

    Article  PubMed  Google Scholar 

  50. Devalliere J, et al. Sustained delivery of proangiogenic microRNA-132 by nanoparticle transfection improves endothelial cell transplantation. FASEB J. 2014;28(2):908–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu T, et al. Human amniotic epithelial cell feeder layers maintain human iPS cell pluripotency via inhibited endogenous microRNA-145 and increased Sox2 expression. Exp Cell Res. 2012;318(4):424–34.

    Article  CAS  PubMed  Google Scholar 

  52. Götte M, et al. miR-145-dependent targeting of junctional adhesion molecule A and modulation of fascin expression are associated with reduced breast cancer cell motility and invasiveness. Oncogene. 2010;29(50):6569–80.

    Article  PubMed  Google Scholar 

  53. Chen S, et al. MicroRNA-494 inhibits the growth and angiogenesis-regulating potential of mesenchymal stem cells. FEBS Lett. 2015;589(6):710–7.

    Article  CAS  PubMed  Google Scholar 

  54. Yang CS, Li Z, Rana TM. microRNAs modulate iPS cell generation. RNA. 2011;17(8):1451–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yang CS, Rana TM. Learning the molecular mechanisms of the reprogramming factors: let’s start from microRNAs. Mol Biosyst. 2013;9(1):10–7.

    Article  CAS  PubMed  Google Scholar 

  56. Kuppusamy KT, et al. Let-7 family of microRNA is required for maturation and adult-like metabolism in stem cell-derived cardiomyocytes. Proc Natl Acad Sci U S A. 2015;112(21):E2785–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jezierski A, et al. Neuroprotective effects of GDNF-expressing human amniotic fluid cells. Stem Cell Rev. 2014;10(2):251–68.

    Article  CAS  PubMed  Google Scholar 

  58. Smith B, et al. Large-scale expression analysis reveals distinct microRNA profiles at different stages of human neurodevelopment. PLoS One. 2010;5(6):e11109.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Davis CJ, Clinton JM, Krueger JM. MicroRNA 138, let-7b, and 125a inhibitors differentially alter sleep and EEG delta-wave activity in rats. J Appl Physiol (1985). 2012;113(11):1756–62.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmud Bani-Yaghoub Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ribecco-Lutkiewicz, M. et al. (2016). MicroRNA Expression in Amniotic Fluid Cells. In: Fauza, D., Bani, M. (eds) Fetal Stem Cells in Regenerative Medicine. Stem Cell Biology and Regenerative Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3483-6_11

Download citation

Publish with us

Policies and ethics