Advertisement

Historical Perspectives

  • Scott M. Deeney
  • Timothy M. Crombleholme
Chapter
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)

Abstract

Stem cells are a unique cell type which possesses the characteristics of clonality, proliferative capacity, and plasticity. Embryonic and adult stem cells have been objects of intense study, yet each has demonstrated limitations. Fetal stem cells are a relatively newly described category of stem cells with qualities intermediate between embryonic and adult stem cells. Fetal stem cells can be obtained from the tissues of the fetus itself or from the extra-embryonic products of conception including the amniotic fluid and placenta. Many types of fetal stem cells have been isolated, each with characteristics unique to their source and level of fetal development. Some fetal stem cells are already being used in therapeutic applications, and others are in various stages of animal and human trials. The current trajectory of fetal stem cell research, and its relation to embryonic and adult stem cell research, can be more fully appreciated in the context of the historical progress in this area.

Keywords

Fetus Fetal research Tissue engineering Stem cells Fetal stem cells Embryonic stem cells Adult stem cells Review History Historical article 

Abbreviations

AEC

Amniotic epithelial cell

AF-MSC

Amniotic fluid mesenchymal stem cell

AFSC

Amniotic fluid stem cell

ALS

Amyotrophic lateral sclerosis

AMSC

Amniotic mesenchymal stem cell

ATN

Acute tubular necrosis

CDH

Congenital diaphragmatic hernia

CMSC

Chorionic mesenchymal stromal cell

EPC

Endothelial progenitor cell

ESC

Embryonic stem cell

HLA

Human leukocyte antigen

HSC

Hematopoietic stem cell

iPC

Induced pluripotent cell

MI

Myocardial infarction

MLSC

Multilineage stem cell

MSC

Mesenchymal stem cell

PAPC

Pregnancy-associated progenitor cell

PTFE

Polytetrafluoroethylene

UCB

Umbilical cord blood

UCMSC

Umbilical cord mesenchymal stem cell

VSEL

Very small embryonic-like stem cell

References

  1. 1.
    Liechty KW, Adzick NS, Crombleholme TM. Diminished interleukin 6 (IL-6) production during scarless human fetal wound repair. Cytokine. 2000;12(6):671–6.PubMedCrossRefGoogle Scholar
  2. 2.
    Guillot PV, Gotherstrom C, Chan J, Kurata H, Fisk NM. Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC. Stem Cells. 2007;25(3):646–54.PubMedCrossRefGoogle Scholar
  3. 3.
    Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Marcus AJ, Woodbury D. Fetal stem cells from extra-embryonic tissues: do not discard. J Cell Mol Med. 2008;12(3):730–42.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Davis JW. Skin transplantation with a review of 550 cases at the Johns Hopkins Hospital. Johns Hopkins Med J. 1910;15:307–96.Google Scholar
  6. 6.
    Stern W. The grafting of preserved amniotic membrane to burned and ulcerated skin. JAMA. 1913;13:973–4.CrossRefGoogle Scholar
  7. 7.
    Sabella W. Use of fetal membranes in skin grafting. Med Rec NY. 1913;83:478–80.Google Scholar
  8. 8.
    de Rotth A. Plastic repair of conjunctival defects with fetal membranes. Arch Ophthalmol. 1940;23:522–5.CrossRefGoogle Scholar
  9. 9.
    Hurst AF, Tanner WE, Osman AA. Addison’s disease, with severe anaemia, treated by suprarenal grafting. Proc R Soc Med. 1922;15(Clin Sect):19–20.PubMedCentralGoogle Scholar
  10. 10.
    Thomas ED, Lochte Jr HL, Lu WC, Ferrebee JW. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N Engl J Med. 1957;257(11):491–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Barr RD, Whang-Peng J, Perry S. Hemopoietic stem cells in human peripheral blood. Science. 1975;190(4211):284–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Ashton BA, Allen TD, Howlett CR, Eaglesom CC, Hattori A, Owen M. Formation of bone and cartilage by marrow stromal cells in diffusion chambers in vivo. Clin Orthop Relat Res. 1980;151:294–307.PubMedGoogle Scholar
  13. 13.
    Owen M, Friedenstein AJ. Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp. 1988;136:42–60.PubMedGoogle Scholar
  14. 14.
    Knudtzon S. In vitro growth of granulocytic colonies from circulating cells in human cord blood. Blood. 1974;43(3):357–61.PubMedGoogle Scholar
  15. 15.
    Broxmeyer HE, Gluckman E, Auerbach A, Douglas GW, Friedman H, Cooper S, et al. Human umbilical cord blood: a clinically useful source of transplantable hematopoietic stem/progenitor cells. Int J Cell Cloning. 1990;8 Suppl 1:76–89. discussion 89–91.PubMedCrossRefGoogle Scholar
  16. 16.
    Rubinstein P, Taylor PE, Scaradavou A, Adamson JW, Migliaccio G, Emanuel D, et al. Unrelated placental blood for bone marrow reconstitution: organization of the placental blood program. Blood Cells. 1994;20(2–3):587–96. discussion 96–600.PubMedGoogle Scholar
  17. 17.
    Long GD, Laughlin M, Madan B, Kurtzberg J, Gasparetto C, Morris A, et al. Unrelated umbilical cord blood transplantation in adult patients. Biol Blood Marrow Transplant. 2003;9(12):772–80.PubMedCrossRefGoogle Scholar
  18. 18.
    Pierce GB, Dixon Jr FJ. Testicular teratomas. I. Demonstration of teratogenesis by metamorphosis of multipotential cells. Cancer. 1959;12(3):573–83.PubMedCrossRefGoogle Scholar
  19. 19.
    Stevens LC. Embryonic potency of embryoid bodies derived from a transplantable testicular teratoma of the mouse. Dev Biol. 1960;2:285–97.PubMedCrossRefGoogle Scholar
  20. 20.
    Kleinsmith LJ, Pierce Jr GB. Multipotentiality of single embryonal carcinoma cells. Cancer Res. 1964;24:1544–51.PubMedGoogle Scholar
  21. 21.
    Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981;78(12):7634–8.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Bradley A, Evans M, Kaufman MH, Robertson E. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature. 1984;309(5965):255–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Kmiecik G, Niklinska W, Kuc P, Pancewicz-Wojtkiewicz J, Fil D, Karwowska A, et al. Fetal membranes as a source of stem cells. Adv Med Sci. 2013;58(2):185–95.PubMedCrossRefGoogle Scholar
  25. 25.
    Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH. Viable offspring derived from fetal and adult mammalian cells. Nature. 1997;385(6619):810–3.PubMedCrossRefGoogle Scholar
  26. 26.
    Gurdon JB, Elsdale TR, Fischberg M. Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature. 1958;182(4627):64–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Spinelli V, Guillot PV, De Coppi P. Induced pluripotent stem (iPS) cells from human fetal stem cells (hFSCs). Organogenesis. 2013;9(2):101–10.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Sgaramella V, Zinder ND. Dolly confirmation. Science. 1998;279(5351):635. 7–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.PubMedCrossRefGoogle Scholar
  30. 30.
    Sumi T, Tsuneyoshi N, Nakatsuji N, Suemori H. Apoptosis and differentiation of human embryonic stem cells induced by sustained activation of c-Myc. Oncogene. 2007;26(38):5564–76.PubMedCrossRefGoogle Scholar
  31. 31.
    Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–20.PubMedCrossRefGoogle Scholar
  32. 32.
    Fauza D. Amniotic fluid and placental stem cells. Best Pract Res Clin Obstet Gynaecol. 2004;18(6):877–91.PubMedCrossRefGoogle Scholar
  33. 33.
    Torricelli F, Brizzi L, Bernabei PA, Gheri G, Di Lollo S, Nutini L, et al. Identification of hematopoietic progenitor cells in human amniotic fluid before the 12th week of gestation. Ital J Anat Embryol. 1993;98(2):119–26.PubMedGoogle Scholar
  34. 34.
    Streubel B, Martucci-Ivessa G, Fleck T, Bittner RE. In vitro transformation of amniotic cells to muscle cells – background and outlook. Wien Med Wochenschr. 1996;146(9–10):216–7.PubMedGoogle Scholar
  35. 35.
    Hammerman MR. Classic and current opinion in embryonic organ transplantation. Curr Opin Organ Transplant. 2014;19(2):133–9.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Ilancheran S, Moodley Y, Manuelpillai U. Human fetal membranes: a source of stem cells for tissue regeneration and repair? Placenta. 2009;30(1):2–10.PubMedCrossRefGoogle Scholar
  37. 37.
    Selman K, Kafatos FC. Transdifferentiation in the labial gland of silk moths: is DNA required for cellular metamorphosis? Cell Differ. 1974;3(2):81–94.PubMedCrossRefGoogle Scholar
  38. 38.
    Quesenberry PJ, Colvin G, Dooner G, Dooner M, Aliotta JM, Johnson K. The stem cell continuum: cell cycle, injury, and phenotype lability. Ann N Y Acad Sci. 2007;1106:20–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Wang X, Willenbring H, Akkari Y, Torimaru Y, Foster M, Al-Dhalimy M, et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature. 2003;422(6934):897–901.PubMedCrossRefGoogle Scholar
  40. 40.
    Fan Y, Luo Y, Chen X, Li Q, Sun X. Generation of human beta-thalassemia induced pluripotent stem cells from amniotic fluid cells using a single excisable lentiviral stem cell cassette. J Reprod Dev. 2012;58(4):404–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Moschidou D, Mukherjee S, Blundell MP, Drews K, Jones GN, Abdulrazzak H, et al. Valproic acid confers functional pluripotency to human amniotic fluid stem cells in a transgene-free approach. Mol Ther. 2012;20(10):1953–67.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Turner CG, Fauza DO. Fetal tissue engineering. Clin Perinatol. 2009;36(2):473–88. xii.PubMedCrossRefGoogle Scholar
  43. 43.
    van de Ven C, Collins D, Bradley MB, Morris E, Cairo MS. The potential of umbilical cord blood multipotent stem cells for nonhematopoietic tissue and cell regeneration. Exp Hematol. 2007;35(12):1753–65.PubMedCrossRefGoogle Scholar
  44. 44.
    De Coppi P, Bartsch Jr G, Siddiqui MM, Xu T, Santos CC, Perin L, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol. 2007;25(1):100–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Ilancheran S, Michalska A, Peh G, Wallace EM, Pera M, Manuelpillai U. Stem cells derived from human fetal membranes display multilineage differentiation potential. Biol Reprod. 2007;77(3):577–88.PubMedCrossRefGoogle Scholar
  46. 46.
    Kaviani A, Perry TE, Dzakovic A, Jennings RW, Ziegler MM, Fauza DO. The amniotic fluid as a source of cells for fetal tissue engineering. J Pediatr Surg. 2001;36(11):1662–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Jones GN, Moschidou D, Puga-Iglesias TI, Kuleszewicz K, Vanleene M, Shefelbine SJ, et al. Ontological differences in first compared to third trimester human fetal placental chorionic stem cells. PLoS One. 2012;7(9):e43395.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Portmann-Lanz CB, Schoeberlein A, Huber A, Sager R, Malek A, Holzgreve W, et al. Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. Am J Obstet Gynecol. 2006;194(3):664–73.PubMedCrossRefGoogle Scholar
  49. 49.
    Parolini O, Alviano F, Bagnara GP, Bilic G, Buhring HJ, Evangelista M, et al. Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells. 2008;26(2):300–11.PubMedCrossRefGoogle Scholar
  50. 50.
    Abdulrazzak H, Moschidou D, Jones G, Guillot PV. Biological characteristics of stem cells from foetal, cord blood and extraembryonic tissues. J R Soc Interface. 2010;7 Suppl 6:S689–706.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Macian F, Im SH, Garcia-Cozar FJ, Rao A. T-cell anergy. Curr Opin Immunol. 2004;16(2):209–16.PubMedCrossRefGoogle Scholar
  52. 52.
    Magatti M, De Munari S, Vertua E, Gibelli L, Wengler GS, Parolini O. Human amnion mesenchyme harbors cells with allogeneic T-cell suppression and stimulation capabilities. Stem Cells. 2008;26(1):182–92.PubMedCrossRefGoogle Scholar
  53. 53.
    Li H, Niederkorn JY, Neelam S, Mayhew E, Word RA, McCulley JP, et al. Immunosuppressive factors secreted by human amniotic epithelial cells. Invest Ophthalmol Vis Sci. 2005;46(3):900–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Fong CY, Chak LL, Biswas A, Tan JH, Gauthaman K, Chan WK, et al. Human Wharton’s jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Rev. 2011;7(1):1–16.PubMedCrossRefGoogle Scholar
  55. 55.
    Meller D, Pauklin M, Thomasen H, Westekemper H, Steuhl KP. Amniotic membrane transplantation in the human eye. Dtsch Arztebl Int. 2011;108(14):243–8.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Sankar V, Muthusamy R. Role of human amniotic epithelial cell transplantation in spinal cord injury repair research. Neuroscience. 2003;118(1):11–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Nishio Y, Koda M, Kamada T, Someya Y, Yoshinaga K, Okada S, et al. The use of hemopoietic stem cells derived from human umbilical cord blood to promote restoration of spinal cord tissue and recovery of hindlimb function in adult rats. J Neurosurg Spine. 2006;5(5):424–33.PubMedCrossRefGoogle Scholar
  58. 58.
    Kim J, Kang HM, Kim H, Kim MR, Kwon HC, Gye MC, et al. Ex vivo characteristics of human amniotic membrane-derived stem cells. Cloning Stem Cells. 2007;9(4):581–94.PubMedCrossRefGoogle Scholar
  59. 59.
    Harrison DE, Zhong RK, Jordan CT, Lemischka IR, Astle CM. Relative to adult marrow, fetal liver repopulates nearly five times more effectively long-term than short-term. Exp Hematol. 1997;25(4):293–7.PubMedGoogle Scholar
  60. 60.
    Taylor PA, McElmurry RT, Lees CJ, Harrison DE, Blazar BR. Allogenic fetal liver cells have a distinct competitive engraftment advantage over adult bone marrow cells when infused into fetal as compared with adult severe combined immunodeficient recipients. Blood. 2002;99(5):1870–2.PubMedCrossRefGoogle Scholar
  61. 61.
    Cardoso AA, Li ML, Batard P, Hatzfeld A, Brown EL, Levesque JP, et al. Release from quiescence of CD34+ CD38- human umbilical cord blood cells reveals their potentiality to engraft adults. Proc Natl Acad Sci U S A. 1993;90(18):8707–11.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Nava S, Westgren M, Jaksch M, Tibell A, Broome U, Ericzon BG, et al. Characterization of cells in the developing human liver. Differentiation. 2005;73(5):249–60.PubMedCrossRefGoogle Scholar
  63. 63.
    Hammerman MR. Xenotransplantation of embryonic pig kidney or pancreas to replace the function of mature organs. J Transplant. 2011;2011:501749.PubMedPubMedCentralGoogle Scholar
  64. 64.
    in ’t Anker PS, Noort WA, Kruisselbrink AB, Scherjon SA, Beekhuizen W, Willemze R, et al. Nonexpanded primary lung and bone marrow-derived mesenchymal cells promote the engraftment of umbilical cord blood-derived CD34(+) cells in NOD/SCID mice. Exp Hematol. 2003;31(10):881–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A, Mortell K, et al. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood. 2004;104(9):2752–60.PubMedCrossRefGoogle Scholar
  66. 66.
    Kucia M, Halasa M, Wysoczynski M, Baskiewicz-Masiuk M, Moldenhawer S, Zuba-Surma E, et al. Morphological and molecular characterization of novel population of CXCR4+ SSEA-4+ Oct-4+ very small embryonic-like cells purified from human cord blood: preliminary report. Leukemia. 2007;21(2):297–303.PubMedCrossRefGoogle Scholar
  67. 67.
    Taghizadeh RR, Cetrulo KJ, Cetrulo CL. Wharton’s Jelly stem cells: future clinical applications. Placenta. 2011;32 Suppl 4:S311–5.PubMedCrossRefGoogle Scholar
  68. 68.
    Karahuseyinoglu S, Cinar O, Kilic E, Kara F, Akay GG, Demiralp DO, et al. Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells. 2007;25(2):319–31.PubMedCrossRefGoogle Scholar
  69. 69.
    Cremer M, Schachner M, Cremer T, Schmidt W, Voigtlander T. Demonstration of astrocytes in cultured amniotic fluid cells of three cases with neural-tube defect. Hum Genet. 1981;56(3):365–70.PubMedCrossRefGoogle Scholar
  70. 70.
    Gucciardo L, Lories R, Ochsenbein-Kolble N, Done E, Zwijsen A, Deprest J. Fetal mesenchymal stem cells: isolation, properties and potential use in perinatology and regenerative medicine. BJOG. 2009;116(2):166–72.PubMedCrossRefGoogle Scholar
  71. 71.
    Kaviani A, Perry TE, Barnes CM, Oh JT, Ziegler MM, Fishman SJ, et al. The placenta as a cell source in fetal tissue engineering. J Pediatr Surg. 2002;37(7):995–9. discussion -9.PubMedCrossRefGoogle Scholar
  72. 72.
    Bianchi DW, Zickwolf GK, Weil GJ, Sylvester S, DeMaria MA. Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci U S A. 1996;93(2):705–8.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Khosrotehrani K, Bianchi DW. Multi-lineage potential of fetal cells in maternal tissue: a legacy in reverse. J Cell Sci. 2005;118(Pt 8):1559–63.PubMedCrossRefGoogle Scholar
  74. 74.
    Nguyen Huu S, Dubernard G, Aractingi S, Khosrotehrani K. Feto-maternal cell trafficking: a transfer of pregnancy associated progenitor cells. Stem Cell Rev. 2006;2(2):111–6.PubMedGoogle Scholar
  75. 75.
    Kakishita K, Elwan MA, Nakao N, Itakura T, Sakuragawa N. Human amniotic epithelial cells produce dopamine and survive after implantation into the striatum of a rat model of Parkinson's disease: a potential source of donor for transplantation therapy. Exp Neurol. 2000;165(1):27–34.PubMedCrossRefGoogle Scholar
  76. 76.
    Kakishita K, Nakao N, Sakuragawa N, Itakura T. Implantation of human amniotic epithelial cells prevents the degeneration of nigral dopamine neurons in rats with 6-hydroxydopamine lesions. Brain Res. 2003;980(1):48–56.PubMedCrossRefGoogle Scholar
  77. 77.
    Weiss ML, Medicetty S, Bledsoe AR, Rachakatla RS, Choi M, Merchav S, et al. Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson's disease. Stem Cells. 2006;24(3):781–92.PubMedCrossRefGoogle Scholar
  78. 78.
    Nan Z, Grande A, Sanberg CD, Sanberg PR, Low WC. Infusion of human umbilical cord blood ameliorates neurologic deficits in rats with hemorrhagic brain injury. Ann N Y Acad Sci. 2005;1049:84–96.PubMedCrossRefGoogle Scholar
  79. 79.
    Garbuzova-Davis S, Willing AE, Zigova T, Saporta S, Justen EB, Lane JC, et al. Intravenous administration of human umbilical cord blood cells in a mouse model of amyotrophic lateral sclerosis: distribution, migration, and differentiation. J Hematother Stem Cell Res. 2003;12(3):255–70.PubMedCrossRefGoogle Scholar
  80. 80.
    Escolar ML, Poe MD, Provenzale JM, Richards KC, Allison J, Wood S, et al. Transplantation of umbilical-cord blood in babies with infantile Krabbe’s disease. N Engl J Med. 2005;352(20):2069–81.PubMedCrossRefGoogle Scholar
  81. 81.
    Pan HC, Yang DY, Chiu YT, Lai SZ, Wang YC, Chang MH, et al. Enhanced regeneration in injured sciatic nerve by human amniotic mesenchymal stem cell. J Clin Neurosci. 2006;13(5):570–5.PubMedCrossRefGoogle Scholar
  82. 82.
    Pan HC, Cheng FC, Chen CJ, Lai SZ, Lee CW, Yang DY, et al. Post-injury regeneration in rat sciatic nerve facilitated by neurotrophic factors secreted by amniotic fluid mesenchymal stem cells. J Clin Neurosci. 2007;14(11):1089–98.PubMedCrossRefGoogle Scholar
  83. 83.
    Zhao P, Ise H, Hongo M, Ota M, Konishi I, Nikaido T. Human amniotic mesenchymal cells have some characteristics of cardiomyocytes. Transplantation. 2005;79(5):528–35.PubMedCrossRefGoogle Scholar
  84. 84.
    Sartore S, Lenzi M, Angelini A, Chiavegato A, Gasparotto L, De Coppi P, et al. Amniotic mesenchymal cells autotransplanted in a porcine model of cardiac ischemia do not differentiate to cardiogenic phenotypes. Eur J Cardiothorac Surg. 2005;28(5):677–84.PubMedCrossRefGoogle Scholar
  85. 85.
    Hirata Y, Sata M, Motomura N, Takanashi M, Suematsu Y, Ono M, et al. Human umbilical cord blood cells improve cardiac function after myocardial infarction. Biochem Biophys Res Commun. 2005;327(2):609–14.PubMedCrossRefGoogle Scholar
  86. 86.
    Yeh YC, Lee WY, Yu CL, Hwang SM, Chung MF, Hsu LW, et al. Cardiac repair with injectable cell sheet fragments of human amniotic fluid stem cells in an immune-suppressed rat model. Biomaterials. 2010;31(25):6444–53.PubMedCrossRefGoogle Scholar
  87. 87.
    Taguchi A, Soma T, Tanaka H, Kanda T, Nishimura H, Yoshikawa H, et al. Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J Clin Invest. 2004;114(3):330–8.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Rehni AK, Singh N, Jaggi AS, Singh M. Amniotic fluid derived stem cells ameliorate focal cerebral ischaemia-reperfusion injury induced behavioural deficits in mice. Behav Brain Res. 2007;183(1):95–100.PubMedCrossRefGoogle Scholar
  89. 89.
    Kim SW, Han H, Chae GT, Lee SH, Bo S, Yoon JH, et al. Successful stem cell therapy using umbilical cord blood-derived multipotent stem cells for Buerger's disease and ischemic limb disease animal model. Stem Cells. 2006;24(6):1620–6.PubMedCrossRefGoogle Scholar
  90. 90.
    Carraro G, Perin L, Sedrakyan S, Giuliani S, Tiozzo C, Lee J, et al. Human amniotic fluid stem cells can integrate and differentiate into epithelial lung lineages. Stem Cells. 2008;26(11):2902–11.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Cargnoni A, Gibelli L, Tosini A, Signoroni PB, Nassuato C, Arienti D, et al. Transplantation of allogeneic and xenogeneic placenta-derived cells reduces bleomycin-induced lung fibrosis. Cell Transplant. 2009;18(4):405–22.PubMedCrossRefGoogle Scholar
  92. 92.
    Sakuragawa N, Enosawa S, Ishii T, Thangavel R, Tashiro T, Okuyama T, et al. Human amniotic epithelial cells are promising transgene carriers for allogeneic cell transplantation into liver. J Hum Genet. 2000;45(3):171–6.PubMedCrossRefGoogle Scholar
  93. 93.
    Khan AA, Shaik MV, Parveen N, Rajendraprasad A, Aleem MA, Habeeb MA, et al. Human fetal liver-derived stem cell transplantation as supportive modality in the management of end-stage decompensated liver cirrhosis. Cell Transplant. 2010;19(4):409–18.PubMedGoogle Scholar
  94. 94.
    Perin L, Sedrakyan S, Giuliani S, Da Sacco S, Carraro G, Shiri L, et al. Protective effect of human amniotic fluid stem cells in an immunodeficient mouse model of acute tubular necrosis. PLoS One. 2010;5(2):e9357.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Ersek A, Pixley JS, Goodrich AD, Porada CD, Almeida-Porada G, Thain DS, et al. Persistent circulating human insulin in sheep transplanted in utero with human mesenchymal stem cells. Exp Hematol. 2010;38(4):311–20.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Wei JP, Zhang TS, Kawa S, Aizawa T, Ota M, Akaike T, et al. Human amnion-isolated cells normalize blood glucose in streptozotocin-induced diabetic mice. Cell Transplant. 2003;12(5):545–52.PubMedCrossRefGoogle Scholar
  97. 97.
    Zhao Y, Wang H, Mazzone T. Identification of stem cells from human umbilical cord blood with embryonic and hematopoietic characteristics. Exp Cell Res. 2006;312(13):2454–64.PubMedCrossRefGoogle Scholar
  98. 98.
    Guillot PV, Abass O, Bassett JH, Shefelbine SJ, Bou-Gharios G, Chan J, et al. Intrauterine transplantation of human fetal mesenchymal stem cells from first-trimester blood repairs bone and reduces fractures in osteogenesis imperfecta mice. Blood. 2008;111(3):1717–25.PubMedCrossRefGoogle Scholar
  99. 99.
    Le Blanc K, Gotherstrom C, Ringden O, Hassan M, McMahon R, Horwitz E, et al. Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplantation. 2005;79(11):1607–14.PubMedCrossRefGoogle Scholar
  100. 100.
    Conconi MT, Burra P, Di Liddo R, Calore C, Turetta M, Bellini S, et al. CD105(+) cells from Wharton’s jelly show in vitro and in vivo myogenic differentiative potential. Int J Mol Med. 2006;18(6):1089–96.PubMedGoogle Scholar
  101. 101.
    Chan J, Waddington SN, O’Donoghue K, Kurata H, Guillot PV, Gotherstrom C, et al. Widespread distribution and muscle differentiation of human fetal mesenchymal stem cells after intrauterine transplantation in dystrophic mdx mouse. Stem Cells. 2007;25(4):875–84.PubMedCrossRefGoogle Scholar
  102. 102.
    Subrahmanyam M. Amniotic membrane as a cover for microskin grafts. Br J Plast Surg. 1995;48(7):477–8.PubMedCrossRefGoogle Scholar
  103. 103.
    Kamolz LP, Kolbus A, Wick N, Mazal PR, Eisenbock B, Burjak S, et al. Cultured human epithelium: human umbilical cord blood stem cells differentiate into keratinocytes under in vitro conditions. Burns. 2006;32(1):16–9.PubMedCrossRefGoogle Scholar
  104. 104.
    Lund RD, Wang S, Lu B, Girman S, Holmes T, Sauve Y, et al. Cells isolated from umbilical cord tissue rescue photoreceptors and visual functions in a rodent model of retinal disease. Stem Cells. 2007;25(3):602–11.PubMedCrossRefGoogle Scholar
  105. 105.
    Loebinger MR, Eddaoudi A, Davies D, Janes SM. Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Res. 2009;69(10):4134–42.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Rachakatla RS, Pyle MM, Ayuzawa R, Edwards SM, Marini FC, Weiss ML, et al. Combination treatment of human umbilical cord matrix stem cell-based interferon-beta gene therapy and 5-fluorouracil significantly reduces growth of metastatic human breast cancer in SCID mouse lungs. Cancer Invest. 2008;26(7):662–70.PubMedCrossRefGoogle Scholar
  107. 107.
    Vacanti JP, Morse MA, Saltzman WM, Domb AJ, Perez-Atayde A, Langer R. Selective cell transplantation using bioabsorbable artificial polymers as matrices. J Pediatr Surg. 1988;23(1 Pt 2):3–9.PubMedCrossRefGoogle Scholar
  108. 108.
    Fauza DO, Fishman SJ, Mehegan K, Atala A. Videofetoscopically assisted fetal tissue engineering: bladder augmentation. J Pediatr Surg. 1998;33(1):7–12.PubMedCrossRefGoogle Scholar
  109. 109.
    Fauza DO, Fishman SJ, Mehegan K, Atala A. Videofetoscopically assisted fetal tissue engineering: skin replacement. J Pediatr Surg. 1998;33(2):357–61.PubMedCrossRefGoogle Scholar
  110. 110.
    Fuchs JR, Terada S, Ochoa ER, Vacanti JP, Fauza DO. Fetal tissue engineering: in utero tracheal augmentation in an ovine model. J Pediatr Surg. 2002;37(7):1000–6. discussion -6.PubMedCrossRefGoogle Scholar
  111. 111.
    Kunisaki SM, Fuchs JR, Steigman SA, Fauza DO. A comparative analysis of cartilage engineered from different perinatal mesenchymal progenitor cells. Tissue Eng. 2007;13(11):2633–44.PubMedCrossRefGoogle Scholar
  112. 112.
    Fuchs JR, Kaviani A, Oh JT, LaVan D, Udagawa T, Jennings RW, et al. Diaphragmatic reconstruction with autologous tendon engineered from mesenchymal amniocytes. J Pediatr Surg. 2004;39(6):834–8. discussion -8.PubMedCrossRefGoogle Scholar
  113. 113.
    Schmidt D, Mol A, Odermatt B, Neuenschwander S, Breymann C, Gossi M, et al. Engineering of biologically active living heart valve leaflets using human umbilical cord-derived progenitor cells. Tissue Eng. 2006;12(11):3223–32.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Surgery, Laboratory for Fetal and Regenerative BiologyUniversity of Colorado School of MedicineAuroraUSA
  2. 2.Laboratory for Fetal and Regenerative BiologyChildren’s Hospital ColoradoAuroraUSA

Personalised recommendations