Skip to main content

Metabolic Acidosis and Cardiovascular Disease

  • Chapter
  • First Online:
Book cover Metabolic Acidosis

Abstract

Metabolic acidosis can be acute (lasting minutes to a few days) or chronic (lasting weeks to years) in nature. Depression of cardiac function is a common complication of acute metabolic acidosis developing when blood pH is <7.1–7.2. The response to catecholamines is also muted. The mechanisms underlying these effects are complex involving activation of several channels or transporters. Both a reduction in interstitial and intracellular pH appear to play a role. Administration of base in the form of bicarbonate does not improve cardiac function despite improvement in extracellular pH. This might be related to excess generation of carbon dioxide during the buffering process and a reduction in ionized calcium. The link between chronic metabolic acidosis and cardiovascular disease is less clear. No acute effects have been noted. Some studies suggest acidosis contributes to development of hypertension. A role in genesis of ischemic cardiovascular disease is also postulated. The chapter reviews available information on the impact of acute and chronic metabolic acidosis on cardiovascular function, the possible underlying mechanisms, and the impact of base therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kraut JA, Madias NE. Metabolic acidosis: pathophysiology, diagnosis and management. Nat Rev Nephrol. 2010;6(5):274–85.

    Article  CAS  PubMed  Google Scholar 

  2. Bommer J, Locatelli F, Satayathum S, et al. Association of predialysis serum bicarbonate levels with risk of mortality and hospitalization in the Dialysis Outcomes and Practice Patterns Study (DOPPS). Am J Kidney Dis. 2004;44(4):661–71.

    Article  PubMed  Google Scholar 

  3. Mandel EI, Forman JP, Curhan GC, Taylor EN. Plasma bicarbonate and odds of incident hypertension. Am J Hypertens. 2013;26(12):1405–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Raj S, Scott DR, Nguyen T, Sachs G, Kraut JA. Acid stress increases gene expression of proinflammatory cytokines in Madin-Darby canine kidney cells. Am J Physiol Renal Physiol. 2013;304(1):F41–8.

    Article  CAS  PubMed  Google Scholar 

  5. Kraut JA, Kurtz I. Metabolic acidosis of CKD: diagnosis, clinical characteristics, and treatment. Am J Kidney Dis. 2005;45(6):978–93.

    Article  CAS  PubMed  Google Scholar 

  6. Lemann J, Bushinsky DA, Hamm LL. Bone buffering of acid and base in humans. Am J Physiol. 2003;285(5):F811–32.

    CAS  Google Scholar 

  7. Wildenthal K, Mierzwiak DS, Myers RW, Mitchell JH. Effects of acute lactic acidosis on left ventricular performance. Am J Physiol. 1968;214:1352–9.

    CAS  PubMed  Google Scholar 

  8. Mitchell JH, Wildenthal K, Johnson Jr RL. The effects of acid–base disturbances on cardiovascular and pulmonary function. Kidney Int. 1972;1(5):375–9.

    Article  CAS  PubMed  Google Scholar 

  9. Kellum JA, Song MC, Venkataraman R. Effects of hyperchloremic acidosis on arterial pressure and circulating inflammatory molecules in experimental sepsis. Chest. 2004;125(1):243–8.

    Article  CAS  PubMed  Google Scholar 

  10. Teplinsky K, Otoole M, Olman M, Walley KR, Wood LD. Effect of lactic acidosis on canine hemodynamics and left ventricular function. Am J Physiol. 1990;258(4):H1193–9.

    CAS  PubMed  Google Scholar 

  11. Davies AO. Rapid desensitization and uncoupling of human beta adrenergic receptors in an in vitro model of lactic acidosis. J Clin Endocrinol Metab. 1984;59(3):398–405.

    Article  CAS  PubMed  Google Scholar 

  12. Orchard CH, Cingolani HE. Acidosis and arrhythmias in cardiac muscle. Cardiovasc Res. 1994;28(9):1312–9.

    Article  CAS  PubMed  Google Scholar 

  13. Bellingham AJ, Detter JC, Lenfant C. Regulatory mechanisms of hemoglobin oxygen affinity in acidosis and alkalosis. J Clin Invest. 1971;50(3):700–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rolf LL, Garg LC. Effect of acetazolamide and carbonic anhydrase inhibition on erythrocyte 2,3-diphosphoglycerate content and metabolism. J Pharmacol Exp Ther. 1975;193(2):639–46.

    PubMed  Google Scholar 

  15. Zahler R, Barrett E, Majumdar S, Greene R, Gore J. Lactic acidosis: effect of treatment on intracellular pH and energetics in living rat heart. Am J Physiol. 1992;262:H1572–8.

    CAS  PubMed  Google Scholar 

  16. Halperin FA, Cheema-Dhadli S, Chen CB, Halperin MI. Alkali therapy extends the period of survival during hypoxia: studies in rats. Am J Physiol. 1996;271:R381–7.

    CAS  PubMed  Google Scholar 

  17. Trivedi B, Danforth WH. Effect of pH on the kinetics of frog muscle phosphofructokinase. J Biol Chem. 1966;241:4110–4.

    CAS  PubMed  Google Scholar 

  18. Kellum JA, Song MC, Almasri E. Hyperchloremic acidosis increases circulating inflammatory molecules in experimental sepsis. Chest. 2006;130(4):962–7.

    Article  CAS  PubMed  Google Scholar 

  19. Cuthbert C, Alberti KG. Acidemia and insulin resistance in the diabetic ketoacidotic rat. Metabolism. 1978;27:1903–16.

    Article  CAS  PubMed  Google Scholar 

  20. Kraut JA, Madias NE. Treatment of acute metabolic acidosis. Nephrol Nat Rev. 2012;8:589–601.

    Article  CAS  Google Scholar 

  21. Quinn SJ, Bai M, Brown EM. pH sensing by the calcium-sensing receptor. J Biol Chem. 2004;279(36):37241–9.

    Article  CAS  PubMed  Google Scholar 

  22. Whittaker C, Cuthbert C, Hammond VA, Alberti KGMM. The effect of metabolic acidosis in vivo on insulin binding to isolated rat adipocytes. Metabolism. 1982;31:553–7.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang WH, Fu SB, Lu FH, et al. Involvement of calcium-sensing receptor in ischemia/reperfusion-induced apoptosis in rat cardiomyocytes. Biochem Biophys Res Commun. 2006;347(4):872–81.

    Article  CAS  PubMed  Google Scholar 

  24. Guo J, Li HZ, Zhang WH, et al. Increased expression of calcium-sensing receptors induced by ox-LDL amplifies apoptosis of cardiomyocytes during simulated ischaemia-reperfusion. Clin Exp Pharmacol Physiol. 2010;37(3):e128–35.

    Article  CAS  PubMed  Google Scholar 

  25. Bethell HWL, Vandenberg JI, Smith GA, Grace AA. Changes in ventricular repolarization during acidosis and low-flow ischemia. Am J Physiol Heart Circ Physiol. 1998;44(2):H551–61.

    Google Scholar 

  26. Watanabe H, Murakami M, Ohba T, Ono K, Ito H. The pathological role of transient receptor potential channels in heart disease. Circ J. 2009;73(3):419–27.

    Article  CAS  PubMed  Google Scholar 

  27. Tomura H, Mogi C, Sato K, Okajima F. Proton-sensing and lysolipid-sensitive G-protein-coupled receptors: a novel type of multi-functional receptors. Cell Signal. 2005;17(12):1466–76.

    Article  CAS  PubMed  Google Scholar 

  28. Jiang C, Qu ZQ, Xu HX. Gating of inward rectifier K+ channels by proton-mediated interactions of intracellular protein domains. Trends Cardiovasc Med. 2002;12(1):5–13.

    Article  CAS  PubMed  Google Scholar 

  29. Garciarena CD, Youm JB, Swietach P, Vaughan-Jones RD. H(+)-activated Na(+) influx in the ventricular myocyte couples Ca(2+)-signalling to intracellular pH. J Mol Cell Cardiol. 2013;61:51–9.

    Article  CAS  PubMed  Google Scholar 

  30. Wu DM, Kraut JA. Potential role of NHE1 (sodium-hydrogen exchanger 1) in the cellular dysfunction of lactic acidosis: implications for treatment. Am J Kidney Dis. 2011;57(5):781–7.

    Article  CAS  PubMed  Google Scholar 

  31. Wu DM, Kraut JA, Abraham WM. Sabiporide improves cardiovascular function, decreases the inflammatory response, and reduces mortality in acute metabolic acidosis in pigs. PLoS One. 2013;8:e593932–8.

    Google Scholar 

  32. Graf H, Leach W, Arieff AI. Evidence for a detrimental effect of bicarbonate therapy in hypoxic lactic acidosis. Science. 1985;227:754–6.

    Article  CAS  PubMed  Google Scholar 

  33. Cooper DJ, Walley KR, Wiggs BR, Russell JA. Bicarbonate does not improve hemodynamics in critically ill patients who have lactic acidosis. Ann Intern Med. 1990;112(7):492–8.

    Article  CAS  PubMed  Google Scholar 

  34. Mathieu D, Neviere R, Billard V, Fleyfel M, Wattel F. Effects of bicarbonate therapy on hemodynamics and tissue oxygenation in patients with lactic acidosis: a prospective, controlled clinical study. Crit Care Med. 1991;19(11):1352–6.

    Article  CAS  PubMed  Google Scholar 

  35. Filley GF, Kindig NB. Carbicarb, an alkalinizing ion generating agent of possible clinical usefulness. Trans Am Clin Climatol Assoc. 1984;96:141–53.

    Google Scholar 

  36. Shapiro JI, Elkins N, Logan J, Ferstenberg LB, Repine JE. Effects of sodium-bicarbonate, disodium carbonate, and a sodium-bicarbonate carbonate mixture on the P-CO2 of blood in a closed-system. J Lab Clin Med. 1995;126(1):65–9.

    CAS  PubMed  Google Scholar 

  37. Shapiro JI, Whalen M, Chan L. Hemodynamic and hepatic pH responses to sodium-bicarbonate and carbicarb during systemic acidosis. Magn Reson Med. 1990;16(3):403–10.

    Article  CAS  PubMed  Google Scholar 

  38. Leung JM, Landow L, Franks M, et al. Safety and efficacy of intravenous Carbicarb in patients undergoing surgery: comparison with sodium bicarbonate in the treatment of metabolic acidosis. Crit Care Med. 1994;22(10):1540–9.

    Article  CAS  PubMed  Google Scholar 

  39. Sonikian M, Gogusev J, Zingraff J, et al. Potential effect of metabolic acidosis on beta 2-microglobulin generation: in vivo and in vitro studies. J Am Soc Nephrol. 1996;7(2):350–6.

    CAS  PubMed  Google Scholar 

  40. Zhang L, Curhan GC, Forman JP. Diet-dependent net acid load and risk of incident hypertension in United States women. Hypertension. 2009;54(4):751–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Engberink MF, Bakker SJ, Brink EJ, et al. Dietary acid load and risk of hypertension: the Rotterdam study. Am J Clin Nutr. 2012;95(6):1438–44.

    Article  CAS  PubMed  Google Scholar 

  42. Kellum JA, Song MC, Li JY. Lactic and hydrochloric acids induce different patterns of inflammatory response in LPS-stimulated RAW 264.7 cells. Am J Physiol. 2004;286(4):R686–92.

    CAS  Google Scholar 

  43. Wesson DE, Simoni J. Increased tissue acid mediates a progressive decline in the glomerular filtration rate of animals with reduced nephron mass. Kidney Int. 2009;75(9):929–35.

    Article  CAS  PubMed  Google Scholar 

  44. Kraut JA, Madias NE. Association of serum bicarbonate with clinical outcomes in CKD: could an increase in serum bicarbonate be a double-edged sword? Am J Kidney Dis. 2013;62:647–9.

    Article  PubMed  Google Scholar 

  45. Dobre M, Yang W, Chen J. Association of serum bicarbonate with risk of renal and cardiovascular outcomes in chronic kidney disease. A report from the chronic renal insufficiency cohort (CRIC). Am J Kidney Dis. 2013;62:670–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kraut JA, Madias NE. Consequences and therapy of the metabolic acidosis of chronic kidney disease. Pediatr Nephrol. 2011;26(1):19–28.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Goraya N, Simoni J, Hee-Jo C, Wesson DE. A comparison of treating metabolic acidosis in CKD stage 4 hypertensive kidney disease with fruits and vegetables or sodium bicarbonate. Clin J Am Soc Nephrol. 2013;8:3–11.

    Google Scholar 

  48. Goraya N, Wesson DE. Does correction of metabolic acidosis slow chronic kidney disease progression? Curr Opin Nephrol Hypertens. 2013;22(2):193–7.

    Article  CAS  PubMed  Google Scholar 

  49. Wesson DE, Simoni J. Acid retention during kidney failure induces endothelin and aldosterone production which lead to progressive GFR decline, a situation ameliorated by alkali diet. Kidney Int. 2010;78(11):1128–35.

    Article  CAS  PubMed  Google Scholar 

  50. National Kidney Foundation. K/DOQI clinical practice guidelines for nutrition in chronic renal failure. Am J Kidney Dis. 2000;35:S1–140.

    Google Scholar 

  51. KDIGO 2012 clinical practice guidelines for the evaluation and management of chronic kidney disease: Chapter 3. Kidney Int Suppl. 2013;3:73–90.

    Google Scholar 

  52. Goraya N, Simoni J, Jo CH, Wesson DE. A comparison of treating metabolic acidosis in CKD stage 4 hypertensive kidney disease with fruits and vegetables or sodium bicarbonate. Clin J Am Soc Nephrol. 2013;8:86–93.

    Google Scholar 

  53. Treatment of metabolic acidosis: controversies and challenges. NephSAP. 2015;14:1–6.

    Google Scholar 

  54. Kimmoun A, Ducrocq N, Sennoun N, Issa K, Strub C, Escamye JM. Efficient extra and intracellular alkalinization improves cardiovascular functions in severe lactic acidosis induced by hemorrhagic shock. Anaesthesiology. 2014;120:926–34.

    Article  Google Scholar 

  55. Wu D, Kraut J. Role of NHE1 in the cellular dysfunction of acute metabolic acidosis. Am J Nephrol. 2014;40:36–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeffrey A. Kraut M.D. or Glenn T. Nagami M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kraut, J.A., Nagami, G.T. (2016). Metabolic Acidosis and Cardiovascular Disease. In: E. Wesson, D. (eds) Metabolic Acidosis. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3463-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3463-8_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3461-4

  • Online ISBN: 978-1-4939-3463-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics