Skip to main content

The Physiology of the Metabolic Acidosis of Chronic Kidney Disease (CKD)

  • Chapter
  • First Online:
  • 1839 Accesses

Abstract

The kidney is the main organ responsible for excreting the “fixed” acid that continuously challenges acid–base balance. Clinicians diagnose metabolic acidosis in patients with supportive histories and appropriate changes in serum acid–base parameters. Metabolic acidosis is a common complication of chronic kidney disease (CKD) and typically is observed in patients with severe rather than modest reductions in kidney function. Understanding the physiology of the metabolic acidosis of CKD informs treatment strategies and provides insights into mechanisms for some CKD complications. The high-acid-producing diets typical of industrialized societies appear to increase the risk for metabolic acidosis at a given level of kidney function, suggesting the potential for dietary acid reduction as a treatment strategy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hsu CY, Chertow GM. Elevations of serum phosphorus and potassium due to mild to moderate chronic renal insufficiency. Nephrol Dial Transplant. 2002;17:1419–25.

    Article  CAS  PubMed  Google Scholar 

  2. US Renal Data System: USRDS 2012 Annual Data Report. Bethesda, MD: The National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases; 2012.

    Google Scholar 

  3. Remer T. Influence of nutrition on acid–base balance-metabolic aspects. Eur J Nutr. 2001;40:214–20.

    Article  CAS  PubMed  Google Scholar 

  4. Ypersele de Strihou C, Frans A. The pattern of respiratory compensation in chronic uraemic acidosis. The influence of dialysis. Nephron. 1970;7:37–50.

    Article  Google Scholar 

  5. Lemann Jr J, Bushinsky DA, Hamm LL. Bone buffering of acid and base in humans. Am J Physiol. 2003;285:F811–32.

    CAS  Google Scholar 

  6. Buerkert J, Martin D, Trigg D. Segmental analysis of the renal tubule in buffer production and net acid formation. Am J Physiol. 1983;244(Renal Fluid Electrolyte Physiol. 13):F442–54.

    Google Scholar 

  7. Lemann Jr J, Lennon EJ, Goodman Jr AD, Relman AS. The net balance of acid in subjects given large loads of acid or alkali. J Clin Invest. 1965;44:507–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Curthoys NP, Moe OW. Proximal tubule function and response to acidosis. Clin J Am Soc Nephrol. 2013. doi:10.2215/CJN.10391012.

    Google Scholar 

  9. Moe OW, Preisig PA. Dual role of citrate in mammalian urine. Curr Opin Nephrol Hypertens. 2006;15:419–24.

    Article  CAS  PubMed  Google Scholar 

  10. Mandel EI, Taylor EN, Curhan GC. Dietary and lifestyle factors and medical conditions associated with urine citrate excretion. Clin J Am Soc Nephrol. 2013;8:901–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pajor AM. Sequence and functional characterization of a renal sodium/dicarboxylate cotransporter. J Biol Chem. 1995;270:5779–85.

    CAS  PubMed  Google Scholar 

  12. Wesson DE. Dietary acid increases blood and renal cortical acid content in rats. Am J Physiol. 1998;274(Renal Physiol. 43):F97–103.

    Google Scholar 

  13. Kurtz I, Maher T, Hulter HN, et al. Effect of diet on plasma acid–base composition in normal humans. Kidney Int. 1983;24:670–80.

    Article  CAS  PubMed  Google Scholar 

  14. Sebastian A, Harris ST, Ottaway JH, Todd KM, Morris Jr RC. Improved mineral balance and skeletal metabolism in postmenopausal women treated with potassium bicarbonate. New Engl J Med. 1994;330:1776–81.

    Article  CAS  PubMed  Google Scholar 

  15. Wesson DE. Reduced HCO3 secretion mediates increased distal nephron acidification induced by dietary acid. Am J Physiol 1996;271(Renal Fluid and Electrolyte Physiol. 40):F670–8.

    Google Scholar 

  16. Wesson DE. Endogenous endothelins mediate increased distal tubule acidification induced by dietary acid in rats. J Clin Invest. 1997;99:2203–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Khanna A, Simoni J, Hacker C, Duran M-J, Wesson DE. Increased endothelin activity mediates augmented distal nephron acidification induced by dietary protein. J Am Soc Nephrol. 2004;15:2266–75.

    Article  CAS  PubMed  Google Scholar 

  18. Khanna A, Simoni J, Wesson DE. Endothelin-induced increased aldosterone activity mediates augmented distal nephron acidification as a result of dietary protein. J Am Soc Nephrol. 2005;16:1929–35.

    Article  CAS  PubMed  Google Scholar 

  19. Levine DZ, Iacovitti M, Buckman S, Harrison V. In vivo modulation of rat distal tubule net HCO3 flux by VIP, isoproterenol, angiotensin II, and ADH. Am J Physiol Renal Fluid Electrolyte Physiol. 1994;266:F878–83.

    CAS  Google Scholar 

  20. Moranne O, Froissart M, Rossert J, Gauci C, Boffa JJ, Haymann JP, M’rad MB, Jacquot C, Houillier P, Stengel B, Fouqueray B. Timing of onset of CKD-related metabolic complications. J Am Soc Nephrol. 2009;20:164–71.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kovesdy CP, Lott EH, Lu JL, et al. Hyponatremia, hypernatremia, and mortality in patients with chronic kidney disease with and without congestive heart failure. Circulation. 2012;125:677–84.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Driver TH, Shlipak MG, Katz R, Goldenstein L, Sarnak MJ, Hoofnagle AN, Siscovick DS, Kestenbaum B. Low serum bicarbonate and kidney function decline: the multi-ethnic study of atherosclerosis. Am J Kidney Dis. 2014;64:534–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. MacClean AJ, Hayslett JP. Adaptive change in ammonia excretion in renal insufficiency. Kidney Int. 1980;17:595–606.

    Article  CAS  PubMed  Google Scholar 

  24. Goodman AD, Lemann Jr J, Lennon EJ, Relman AS. Production, excretion, and net balance of fixed acid in patients with renal failure. J Clin Invest. 1980;17:595–606.

    Google Scholar 

  25. Widmer B, Gerhardt RE, Harrington JT, Cohen JJ. Serum electrolytes and acid base composition: the influence of graded degrees of chronic renal failure. Arch Intern Med. 1979;139:1099–102.

    Article  CAS  PubMed  Google Scholar 

  26. Hakim R, Lazarus JM. Biochemical parameters in chronic renal failure. Am J Kidney Dis. 1988;11:238–47.

    Article  CAS  PubMed  Google Scholar 

  27. Adeva MM, Souto G. Diet-induced metabolic acidosis. Clin Nutr. 2011;30:416–21.

    Article  CAS  PubMed  Google Scholar 

  28. Frassetto LA, Todd K, Morris Jr RC, Sebastian A. Estimation of net endogenous noncarbonic acid production in humans from diet potassium and protein contents. Am J Clin Nutr. 1998;68:576–83.

    CAS  PubMed  Google Scholar 

  29. Simpson DP. Control of hydrogen ion homeostasis and renal acidosis. Medicine. 1971;50:503–41.

    Article  CAS  PubMed  Google Scholar 

  30. Schwartz WB, Hall PW, Hays RM, Relman AS. On the mechanism of acidosis in chronic renal disease. J Clin Invest. 1959;38:39–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Welbourne T, Weber M, Bank N. The effect of glutamine administration on urinary ammonium excretion in normal subjects and patients with renal disease. J Clin Invest. 1972;51:1852–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tizianello A, DeFerrari G, Garibotto G, Gurreri G, Robaudo C. Renal metabolism of amino acids and ammonia in subjects with normal renal function and in patients with chronic renal insufficiency. J Clin Invest. 1980;65:1162–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dass PD, Kurtz I. Renal ammonia and bicarbonate production in chronic renal failure. Miner Electrolyte Metab. 1990;16:308–14.

    CAS  PubMed  Google Scholar 

  34. Vallet M, Metzger M, Haymann J-P, Flamant M, Gauci C, Theret E, Boffa J-J, Vrtovsnik F, Froissart M, Stengel B, Houillier P. Urinary ammonia and long-term outcomes in CKD. Kidney Int. doi:10.1038/ki.2015.52.

    Google Scholar 

  35. Wesson DE, Simoni J. Increased tissue acid mediates progressive GFR decline in animals with reduced nephron mass. Kidney Int. 2009;75:929–35.

    Article  CAS  PubMed  Google Scholar 

  36. Wesson DE, Simoni J. Acid retention during kidney failure induces endothelin and aldosterone production which lead to progressive GFR decline, a situation ameliorated by alkali diet. Kidney Int. 2010;78:1128–35.

    Article  CAS  PubMed  Google Scholar 

  37. Wesson DE, Jo C-H, Simoni J. Angiotensin II-mediated GFR decline in subtotal nephrectomy is due to acid retention associated with reduced GFR. Nephrol Dial Transp. 2014. doi:10.1093/ndt/gfu388.

    Google Scholar 

  38. Wesson DE, Simoni J, Broglio K, Sheather S. Acid retention accompanies reduced GFR in humans and increases plasma levels of endothelin and aldosterone. Am J Physiol. 2011;Renal Physiol. 300:F830–7.

    Google Scholar 

  39. Batlle DC, Kurtzman NA. Renal regulation of acid–base homeostasis: integrated response. In: Seldin DW, Giebisch G, editors. The kidney: physiology and pathophysiology. New York: Raven; 1985. p. 1547–848.

    Google Scholar 

  40. Knepper MA, Packer R, Good DW. Ammonium transport in the kidney. Physiol Rev. 1989;69:179–248.

    CAS  PubMed  Google Scholar 

  41. Knepper MA, Good DW, Burg MB. Ammonia and bicarbonate transport by rat cortical collecting ducts perfused in vitro. Am J Physiol. 1985;249(Renal Fluid Electrolyte Physiol 18):F870–7.

    Google Scholar 

  42. Buerkert J, Martin D, Trigg D, Simon E. Effect of reduced renal mass on ammonium handling and net acid formation by the superficial and juxtaglomerullary nephron of the rat. Evidence for impaired reentrapment rather decreased production of ammonium on the acidosis of uremia. J Clin Invest. 1983;71:1661–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Levine DZ, Iaocovitti M, Buckman S, et al. Ang II-dependent HCO3 reabsorption in surviving rat distal tubules: expression/activation of H+-ATPase. Am J Physiol. 1997;272(Renal Physiol. 41):F799–808.

    Google Scholar 

  44. Levine DZ, Iaocovitti M, Luck B, et al. Surviving rat distal tubule bicarbonate reabsorption: effects of chronic AT1 blockade. Am J Physiol. 2000;278(Renal Physiol. 47):F476–83.

    Google Scholar 

  45. Wesson DE. Endogenous endothelins mediate augmented acidification in remnant kidneys. J Am Soc Nephrol. 2001;12:1826–35.

    CAS  PubMed  Google Scholar 

  46. Phisitkul S, Hacker C, Simoni J, et al. Dietary protein causes a decline in the glomerular filtration rate of the remnant kidney mediated by metabolic acidosis and endothelin receptors. Kidney Int. 2008;73:192–9.

    Article  CAS  PubMed  Google Scholar 

  47. Wesson DE, Jo C-H, Simoni J. Angiotensin II receptors mediate increased distal nephron acidification caused by acid retention. Kidney Int. 2012;82:1184–94.

    Article  CAS  PubMed  Google Scholar 

  48. Batlle DC. Segmental characterization of defects in collecting tubule acidification. Kidney Int. 1986;30:546–53.

    Article  CAS  PubMed  Google Scholar 

  49. Schambelan M, Sebastian A, Biglieri EG. Prevalence, pathogenesis, and functional significance of aldosterone deficiency in hyperkalemic patients with chronic renal insufficiency. Kidney Int. 1980;17:89–101.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald E. Wesson M.D., M.B.A. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Goraya, N., E. Wesson, D. (2016). The Physiology of the Metabolic Acidosis of Chronic Kidney Disease (CKD). In: E. Wesson, D. (eds) Metabolic Acidosis. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3463-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3463-8_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3461-4

  • Online ISBN: 978-1-4939-3463-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics